
27. Representations of GLn, I

We begin with a more detailed study of finite dimensional represen-
tations of semisimple Lie algebras and the corresponding complex Lie
groups.

27.1. Tensor products of fundamental representations. The fol-
lowing result shows that if we understand fundamental representations
of a semisimple Lie algebra g (i.e., irreducible representations with
fundamental highest weights ωi), we can gain some insight into general
finite dimensional representations.

Proposition 27.1. Let λ =
∑r

i=1 miωi be a dominant integral weight
for g. Consider the tensor product Tλ := ⊗iL⊗miωi

, and let v := ⊗iv⊗miωi
be the tensor product of the highest weight vectors. Let V be the sub-
representation of Tλ generated by v. Then V ∼= Lλ.

Proof. We have V = Lλ⊕
⊕

µ∈(λ−Q+)∩P+
NλµLµ where Nλµ are positive

integers. Let C ∈ U(g) be the Casimir element for g. Recall that
C|Lµ = (µ, µ + 2ρ). Thus C|V = (λ, λ + 2ρ). But we have seen in the
proof of the Weyl character formula that for any µ ∈ (λ − Q+) ∩ P+

such that µ 6= λ, we have (µ, µ + 2ρ) < (λ, λ + 2ρ). Therefore we see
that Nλµ = 0 for µ 6= λ. �

27.2. Representations of SLn(C). Let us now discuss more explic-
itly the representation theory of SLn(C). We will consider its finite
dimensional complex analytic representations as a complex Lie group.
We have shown that this is equivalent to considering finite dimensional
representations of the Lie algebra sln(C). We have also seen that these
are completely reducible and the irreducible representations are Lλ,
where λ =

∑n−1
i=1 miωi, ωi are the fundamental weights, and mi ∈ Z≥0.

First let us compute ωi. Recall that the standard Cartan subalgebra
h is the space Cn0 of vectors in Cn with zero sum of coordinates (diagonal
matrices with trace zero). So elements of h∗ can be viewed as vectors
(x1, ..., xn) ∈ Cn modulo simultaneous shift of all coordinates by the
same number (i.e., h∗ = Cn/Cdiag).

Recall that the simple roots are α∨i = ei − ei+1. Thus ωi are deter-
mined by the conditions

(ωi, ej − ej+1) = δij.

This means that ωi = (1, ..., 1, 0, ..., 0) where there are i copies of 1.
Thus a dominant integral weight λ has the form

λ = (m1 + ...+mn−1,m2 + ...+mn−1, ....,mn−1, 0).
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So dominant integral weights are parametrized by non-increasing se-
quences λ1 ≥ ... ≥ λn−1 of nonnegative integers. This agrees with the
representation theory of SL2(C) that we worked out before: in this
case the sequence has just one term.

Let us now describe explicitly the fundamental representations Lωi .
Consider first the representation V = Cn with the usual action of
matrices. It is called the vector representation or the tautological
representation (as every matrix goes to itself). It is irreducible and
has a standard basis v1, ..., vn. To find its highest weight, we have to
find a vector v 6= 0 such that eiv = 0. As ei = Ei,i+1, we have v = v1.
It is easy to see that hv = ω1(h)v, so we see that v has weight ω1, hence
Lω1 = V .

To construct Lωm for m > 1, consider the exterior power ∧mV . It is
easy to show that it is irreducible. A basis of ∧mV consists of wedges
vi1 ∧ ... ∧ vim where i1 < ... < im. The highest weight vector is clearly
v1 ∧ ... ∧ vm, and it has weight ωm. Thus Lωm = ∧mV .

Note that ∧nV = C (the trivial representation) since every matrix in
SLn(C) acts by its determinant, which is 1, and ∧mV = 0 for m > n.
Also V ∗ ∼= ∧n−1V since the wedge pairing V ⊗ ∧n−1V → ∧nV = C is
invariant and nondegenerate. Similarly, ∧mV ∗ ∼= ∧n−mV .

We now see from Proposition 27.1 that the irreducible representation
Lλ for λ =

∑
imiωi is generated inside ⊗n−1

i=1 (∧iV )⊗mi by the tensor
product of the highest weight vectors.

Example 27.2. LNω1 = SNV , generated by the vector v⊗N1 ∈ V ⊗N .

27.3. Representations of GLn(C). Let us now explain how to ex-
tend these results to GLn(C). This is easy to do since GLn(C) is
not very different from the direct product C× × SLn(C). Namely,
GLn(C) = (C× × SLn(C))/µn where µn is the group of roots of unity
of order n embedded as z 7→ (z−1, z1n). Indeed, the corresponding cov-
ering homomorphism C××SLn(C)→ GLn(C) is given by (z, A) 7→ zA.
So it suffices to classify irreducible holomorphic representations of the
complex Lie group C× × SLn(C); the irreducible holomorphic repre-
sentations of GLn(C) are a subset of them.

For n = 1 this is just the problem of describing the holomorphic
representations of C×. This is easy. The Lie algebra is spanned by
a single element h such that e2πih = 1. This element must act in a
representation by an operator H such that e2πiH = 1. It follows that
H is diagonalizable with integer eigenvalues. Thus representations of
C× are completely reducible, with irreducibles χN one-dimensional and
labeled by integers N ∈ Z, χN(z) = zN .
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The same argument leads to a similar answer for C× × SLn: rep-
resentations are completely reducible with irreducibles being Lλ,N =
χN ⊗ Lλ. Moreover, the ones factoring through GLn just have N =
nr +

∑n−1
i=1 λi for some integer r.

Recall that GLn has reductive Lie algebra gln with Cartan subalge-
bra h = Cn. The highest weight of Lλ,nmn+

∑n−1
i=1 λi

is easily computed

and equals (m1 + ... + mn−1 + mn, ...,mn−1 + mn,mn). Thus high-
est weights of finite dimensional representations are non-increasing se-
quences (λ1, ..., λn) of integers which don’t have to be positive. The
fundamental representations are still Lωm = ∧mV , and the only differ-
ence with SLn is that now the top exterior power ∧nV is not trivial
but rather is a 1-dimensional determinant character with highest
weight ωn = (1, ..., 1). The highest weight of a finite dimensional rep-
resentation then has the form λ =

∑n
i=1 miωi, where mi ≥ 0 for i 6= n,

while mn is an arbitrary integer. Consequently, Lλ is found inside
⊗ni=1(∧iV )⊗mi as the representation generated by the product of high-
est weight vectors. Note that it makes sense to take mn < 0, as for
a one-dimensional representation and k < 0 it is natural to define
χ⊗k := (χ∗)⊗−k.

The representations with mn ≥ 0 are especially important; it is
easy to see that these are exactly the ones that occur inside V ⊗N for
some N (check it!). These representations are called polynomial since
their matrix coefficients are polynomial functions of the matrix entries
xij of X ∈ GLn(C), and consequently they extend by continuity to
representations of the semigroup Matn(C) ⊃ GLn(C). Note that any
irreducible representation is a polynomial one tensored with a non-
positive power of the determinant character ∧nV .

27.4. Schur-Weyl duality. Note that highest weights of polynomial
representations are non-increasing sequences of nonnegative integers
(λ1, ..., λn), i.e. partitions with≤ n parts. Namely, they are partitions
of |λ| =

∑
i λi, which is just the eigenvalue of 1n ∈ gln on Lλ and can

also be defined as the number N such that Lλ occurs in V ⊗N .
Traditionally partitions are encoded by Young diagrams. Namely,

the Young diagram of a partition λ = (λ1, ..., λn) consists of n rows
of boxes, the i-th row consisting of λi boxes, so that row i is placed
directly under row i−1 and all rows start on the same vertical line. For
example, here are the Young diagrams of the partitions (4, 3, 2) (left)
and (3, 3, 2, 1) (right):
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Thus we have
V ⊗N = ⊕λ:|λ|=NLλ ⊗ πλ,

where πλ := HomGLn(C)(Lλ, V
⊗N) are multiplicity spaces. Here the

summation is over partitions of N , and Lλ = 0 if λ has more than n
parts. To understand the spaces πλ, note that the symmetric group SN
acts on V ⊗N and commutes with GLn(C), so it gets to act on each πλ.

Let A be the image of U(gln) in EndC(V ⊗N), and B be the image
there of CSN . The algebras A,B commute.

Theorem 27.3. (Schur-Weyl duality) (i) The centralizer of A is B
and vice versa.

(ii) If λ has at most n parts then the representation πλ of B (hence
SN) is irreducible, and such representations are pairwise non-isomorphic.

(iii) If dimV ≥ N then πλ exhaust all irreducible representations of
SN .

Proof. We start with

Lemma 27.4. If U is a C-vector space then SNU is spanned by ele-
ments x⊗ ...⊗ x, x ∈ U .

Proof. It suffices to consider the case when U is finite dimensional.
Then the span of these vectors is a nonzero subrepresentation in the
irreducible GL(U)-representation SNU , which implies the statement.

�

Lemma 27.5. For any associative algebra R over C, the algebra SNR
is generated by elements

∆N(x) := x⊗ 1⊗ ...⊗ 1 + 1⊗ x⊗ ...⊗ 1 + ...+ 1⊗ ...⊗ 1⊗ x
for x ∈ R.

Proof. Let PN be the Newton polynomial expressing z1...zN via pk :=∑N
i=1 z

k
i , k = 1, ..., N (it exists and is unique by the fundamental the-

orem on symmetric functions). Then we have

x⊗ ...⊗ x = PN(∆N(x), ...,∆N(xN)).

Hence the lemma follows from Lemma 27.4. �
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Let us now show that A is the centralizer ZB of B. Note that ZB =
SN(EndV ). Thus the statement follows from Lemma 27.5.

We will now use the following easy but important lemma (which
actually holds over any field).

Lemma 27.6. (Double centralizer lemma) Let V be a finite dimen-
sional vector space and A,B ⊂ EndV be subalgebras such that B is
isomorphic to a direct sum of matrix algebras and A is the centralizer
of B. Then A is also isomorphic to a direct sum of matrix algebras,
and moreover

V = ⊕ni=1Wi ⊗ Ui,
where Wi run through all irreducible A-modules and Ui through irre-
ducible B-modules. In particular, B is the centralizer of A and we
have a natural bijection between irreducible A-modules and irreducible
B-modules which matches Wi and Ui.

Proof. We have V = ⊕ni=1Wi⊗Ui where Ui run through irreducible rep-
resentations of B and Wi = HomB(Ui, V ) 6= 0 are multiplicity spaces.
Thus A = ⊕ni=1EndWi and B = ⊕ni=1EndUi, which implies the state-
ment. �

Since the algebra B is a direct sum of matrix algebras (by complete
reducibility of representations of finite groups), Lemma 27.6 yields (i).14

To prove (ii), it suffices to note that if λ has ≤ n parts then Lλ
occurs in V ⊗N , so πλ 6= 0. The rest follows from (i) and Lemma 27.6.

(iii) If dimV ≥ N then pickN linearly independent vectors v1, ..., vN ∈
V . It is easy to see that the map CSN → V ⊗N defined by s 7→
s(v1 ⊗ ... ⊗ vN) is injective. Thus B = CSN . This implies the state-
ment. �

Remark 27.7. The algebra A is called the Schur algebra and B the
centralizer algebra.

Thus we see that representations of SN are labeled by partitions λ of
N , and those that occur in V ⊗N correspond to the partitions that have
≤ dimV parts. Moreover, we claim that this labeling of representations
by partitions does not depend on dimV . To show this, suppose λ has
≤ n parts and V = Cn. We have the Schur-Weyl decomposition of
GLn+1(C)× SN -modules

(V ⊕ C)⊗N = ⊕µL(n+1)
µ ⊗ π(n+1)

µ ,

14This also gives another proof of the fact that A is a direct sum of matrix
algebras, i.e. complete reducibility of V ⊗N .
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Let us restrict this sum to GLn(C) × SN , and consider what happens

to the summand L
(n+1)
λ ⊗π(n+1)

λ . The highest weight vector v in L
(n+1)
λ

tensored with any element w of π
(n+1)
λ sits in V ⊗N ⊂ (V ⊕C)⊗N , since

the n + 1-th component of its weight is zero. Hence v ⊗ w generates

a copy of L
(n)
λ ⊗ π

(n)
λ as a GLn(C) × SN -module. This implies that

π
(n+1)
λ

∼= π
(n)
λ .

Exercise 27.8. Let R = C[x1, ..., xN , y1, ..., yN ]SN (the algebra of in-
variant polynomials). Show that R is generated by the elements Qrs :=∑N

i=1 x
r
iy
s
i where 1 ≤ r + s ≤ N .

Exercise 27.9. Let λ = (λ1, ..., λn) be a partition. Let us fill the
Young diagram of λ with numbers, placing c(i, j) := i − j in the j-th
box in the i-th row. Thus the number written in each box depends only
of its position (i, j); it is called the content of this box. The content
of λ is the sum c(λ) of contents of all its boxes:

c(λ) =
∑

(i,j)∈λ

c(i, j).

(i) Show that

c(λ) =
n∑
i=1

λi(λi − 2i+ 1)

2
.

(ii) Let c =
∑

1≤i<j≤N(ij) ∈ CSN be the Jucys-Murphy element

(the sum of all transpositions). Show that c is a central element of CSN
which acts on the irreducible representation πλ of SN by the scalar c(λ).
(Hint: Consider the action of c on V ⊗N and use Schur-Weyl duality
to relate it to the diagonal action of the quadratic Casimir of gln).
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