29. Representations of $G L_{n}$, III

29.1. Schur polynomials and characters of representations of the symmetric group. Using Schur-Weyl duality and the character formula for representations of $G L_{n}$, we can obtain information about characters of the symmetric group. Namely, it follows from the Weyl character formula that the characters of representations of $G L_{n}$ are given by the formula

$$
s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) x_{\sigma(1)}^{\lambda_{1}+N-1} \ldots x_{\sigma(n)}^{\lambda_{n}}}{\prod_{i<j}\left(x_{i}-x_{j}\right)}=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+N-j}\right)}{\prod_{i<j}\left(x_{i}-x_{j}\right)} .
$$

These symmetric polynomials are called Schur polynomials. For example, the character of $S^{m} V$ is
the m-th complete symmetric function, and the character of $\wedge^{m} V$ is

$$
s_{\left(1^{m}\right)}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq j_{1}<\ldots<j_{m} \leq n} x_{j_{1}} \ldots x_{j_{m}}=e_{m}\left(x_{1}, \ldots, x_{m}\right),
$$

the m-th elementary symmetric function.
Let us now compute the trace in $V^{\otimes N}$ of $x \otimes \sigma$, where $x=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$ is a diagonal matrix and $\sigma \in S_{N}$ a permutation. Let σ have m_{i} cycles of length i. Then we have

$$
\left.\operatorname{Tr}\right|_{V^{\otimes N}}(x \otimes \sigma)=\prod_{i}\left(x_{1}^{i}+\ldots+x_{n}^{i}\right)^{m_{i}} .
$$

On the other hand, using Schur-Weyl duality, we get

$$
\left.\operatorname{Tr}\right|_{V^{\otimes N}}(x \otimes \sigma)=\sum_{\lambda} \chi_{\lambda}(\sigma) s_{\lambda}(x),
$$

where $\chi_{\lambda}(\sigma)=\left.\operatorname{Tr}\right|_{\pi_{\lambda}}(\sigma)$ is the character of the representation π_{λ} of S_{N}. Thus we have

$$
\sum_{\lambda} \chi_{\lambda}(\sigma) s_{\lambda}(x)=\prod_{i}\left(x_{1}^{i}+\ldots+x_{n}^{i}\right)^{m_{i}}
$$

Multiplying this by the discriminant, we get

$$
\sum_{\lambda} \chi_{\lambda}(\sigma) \operatorname{det}\left(x_{i}^{\lambda_{j}+N-j}\right)=\prod_{i<j}\left(x_{i}-x_{j}\right) \cdot \prod_{i}\left(x_{1}^{i}+\ldots+x_{n}^{i}\right)^{m_{i}} .
$$

Thus we get

Theorem 29.1. (Frobenius character formula) The character value $\chi_{\lambda}(\sigma)$ is the coefficient of $x_{1}^{\lambda_{1}+N-1} \ldots x_{N}^{\lambda_{N}}$ in the polynomial

$$
\prod_{i<j}\left(x_{i}-x_{j}\right) \cdot \prod_{i}\left(x_{1}^{i}+\ldots+x_{n}^{i}\right)^{m_{i}}
$$

Exercise 29.2. Let $V=\mathbb{C}^{2}$ be the 2-dimensional tautological representation of $G L_{2}(\mathbb{C})$. Decompose $V^{\otimes N}$ into a direct sum of irreducible representations of $G L_{2}(\mathbb{C}) \times S_{N}$ and compute the characters and dimensions of all the irreducible representations of $G L_{2}$ and S_{N} that occur.
29.2. Howe duality. Howe duality is another instance when we have a double centralizer property. Consider two finite dimensional complex vector spaces V, W, and consider the symmetric power $S^{n}(V \otimes W)$ as a representation of $G L(V) \times G L(W)$.

Theorem 29.3. (Howe duality) We have a decomposition

$$
S^{n}(V \otimes W)=\oplus_{\lambda:|\lambda|=n} S^{\lambda} V \otimes S^{\lambda} W
$$

Note that if λ has more parts than $\operatorname{dim} V$ or $\operatorname{dim} W$ then the corresponding summand is zero.

Proof. We have

$$
S^{n}(V \otimes W)=\left((V \otimes W)^{\otimes n}\right)^{S_{n}}=\left(V^{\otimes n} \otimes W^{\otimes n}\right)^{S_{n}}
$$

So using the Schur-Weyl duality, we get

$$
\begin{gathered}
S^{n}(V \otimes W)=\left(\left(\oplus_{\lambda:|\lambda|=n} S^{\lambda} V \otimes \pi_{\lambda}\right) \otimes\left(\oplus_{\mu:|\mu|=n} S^{\mu} W \otimes \pi_{\mu}\right)\right)^{S_{n}}= \\
\oplus_{\lambda, \mu:|\lambda|=|\mu|=n} S^{\lambda} V \otimes S^{\mu} W \otimes\left(\pi_{\lambda} \otimes \pi_{\mu}\right)^{S_{n}} .
\end{gathered}
$$

But the character of π_{λ} is integer-valued, so $\pi_{\lambda}=\pi_{\lambda}^{*}$. Thus by Schur's lemma $\left(\pi_{\lambda} \otimes \pi_{\mu}\right)^{S_{n}}=\mathbb{C}^{\delta_{\lambda \mu}}$, and we get

$$
S^{n}(V \otimes W)=\oplus_{\lambda:|\lambda|=n} S^{\lambda} V \otimes S^{\lambda} W,
$$

as claimed.
Note that we never used that V, W were finite dimensional, so the statement is valid for any complex vector spaces V, W.

Corollary 29.4. (Cauchy identity) If $x=\left(x_{1}, \ldots, x_{r}\right)$ and $y=\left(y_{1}, \ldots, y_{s}\right)$ then one has

$$
\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) z^{|\lambda|}=\prod_{i=1}^{r} \prod_{j=1}^{s} \frac{1}{1-z x_{i} y_{j}}
$$

Proof.

Lemma 29.5. (Molien formula). Let $A: V \rightarrow V$ be a linear operator on a finite dimensional vector space V. Denote by $S^{n} A$ the induced linear operator $A^{\otimes n}$ on $S^{n} V$. Then

$$
\sum_{n=0}^{\infty} \operatorname{Tr}\left(S^{n} A\right) z^{n}=\frac{1}{\operatorname{det}(1-z A)}
$$

Proof. Let A have eigenvalues x_{1}, \ldots, x_{r}. Then the eigenvalues of $S^{n} A$ are all possible monomials in x_{i} of degree r. Thus $\operatorname{Tr}\left(S^{n} A\right)$ is the sum of these monomials, which is the complete symmetric function $h_{n}\left(x_{1}, \ldots, x_{r}\right)$. So

$$
\sum_{n=0}^{\infty} \operatorname{Tr}\left(S^{n} A\right) z^{n}=\sum_{n \geq 0} h_{n}\left(x_{1}, \ldots, x_{r}\right) z^{n}=\prod_{i=1}^{r} \frac{1}{1-z x_{i}}=\frac{1}{\operatorname{det}(1-z A)}
$$

Now let $X \in G L(V)$ with eigenvalues x_{1}, \ldots, x_{r} and $Y \in G L(W)$ with eigenvalues y_{1}, \ldots, y_{s}. Then by Howe duality

$$
\operatorname{Tr}\left(S^{n}(X \otimes Y)\right)=\sum_{\lambda:|\lambda|=n} s_{\lambda}(x) s_{\lambda}(y)
$$

On the other hand, by Molien's formula

$$
\sum_{n \geq 0} \operatorname{Tr}\left(S^{n}(X \otimes Y)\right) z^{n}=\frac{1}{\operatorname{det}(1-z(X \otimes Y))}=\prod_{i, j} \frac{1}{1-z x_{i} y_{j}}
$$

Comparing the two formulas, we obtain the statement.

MIT OpenCourseWare
https://ocw.mit.edu

18.755 Lie Groups and Lie Algebras II

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

