30. Fundamental and minuscule weights

30.1. Minuscule weights. Let \mathfrak{g} be a simple complex Lie algebra. Minuscule weights for \mathfrak{g} are highest weights for which irreducible representations are especially simple.

Definition 30.1. A dominant integral weight ω for \mathfrak{g} is called **minuscule** if $(\omega, \beta) \leq 1$ for all positive coroots β .

Equivalently, $|(\omega, \beta)| \leq 1$ for any coroot β .

Obviously, $\omega = 0$ is minuscule, but there may exist other minuscule weights. For example, for $\mathfrak{g} = \mathfrak{sl}_n$, all fundamental weights are minuscule, since $(\omega_i, \mathbf{e}_j - \mathbf{e}_k) = 0$ if $j, k \leq i$ or j, k > i and $(\omega_i, \mathbf{e}_j - \mathbf{e}_k) = 1$ if $j \leq i < k$.

It is easy to see that any minuscule weight $\omega \neq 0$ is fundamental. Indeed, we can have $(\omega, \alpha_i^{\vee}) = 1$ only for one *i*, and for all other simple coroots this inner product must be zero. Otherwise we will have $(\omega, \theta^{\vee}) \geq 2$, where θ^{\vee} is the maximal coroot (the maximal root of the dual root system R^{\vee}).¹³

On the other hand, not all fundamental weights are minuscule. In fact, we will see that the simple Lie algebras of types G_2 , F_4 and E_8 do not have any nonzero minuscule weights. To formulate a criterion for a fundamental weight to be minuscule, recall that $\theta^{\vee} = \sum_i m_i \alpha_i^{\vee}$, where $m_i = (\omega_i, \theta^{\vee})$ are strictly positive integers.

Lemma 30.2. A fundamental weight ω_i is minuscule if and only if $m_i = 1$.

Proof. The definition of minuscule means that $m_i \leq 1$. On the other hand, if $m_i = 1$ then given a positive coroot $\beta = \sum_j n_j \alpha_j^{\vee}$, we have $n_j \leq m_j$, in particular $n_i \leq 1$, so ω_i is minuscule.

Lemma 30.3. Let $\omega \in Q$ and $|(\omega, \beta)| \leq 1$ for all coroots β . Then $\omega = 0$.

Proof. Assume the contrary. Choose a counterexample $\omega = \sum_{i} m_i \alpha_i$ so that $\sum_{i} |m_i|$ is minimal possible. We have

$$(\omega, \omega) = \sum_{i} m_i(\omega, \alpha_i) > 0.$$

¹³The maximal coroot θ^{\vee} should not be confused with the coroot $\tilde{\theta}^{\vee}$ corresponding to the maximal root θ (highest weight of the adjoint representation) under a *W*-invariant identification $\mathfrak{h}^* \cong \mathfrak{h}$. In the non-simply-laced case they are not even proportional: e.g., for the root system B_2 , $\theta^{\vee} = (1,1)$ while $\tilde{\theta}^{\vee} = (2,0)$. This may be confusing since according to the general coroot notation, $\tilde{\theta}^{\vee}$ should be denoted by θ^{\vee} .

So there exists j such that m_j and $(\omega, \alpha_j^{\vee})$ are nonzero and have the same sign. Replacing ω with $-\omega$ if needed, we may assume that both are positive, then $(\omega, \alpha_j^{\vee}) = 1$. Then $s_j \omega = \omega - \alpha_j = \sum_j m'_i \alpha_i$ where $m'_j = m_j - 1$ and $m'_i = m_i$ for all $i \neq j$ is another counterexample. But we have $\sum_i |m'_i| = \sum_i |m_i| - 1$, a contradiction.

Why are minuscule weights interesting? It is because of the following result.

Proposition 30.4. The following conditions on a dominant integral weight ω are equivalent:

(1) ω is minuscule;

(2) all weights of the representation L_{ω} belong to the orbit $W\omega$;

(3) if λ is a dominant integral weight such that $\omega - \lambda \in Q_+$ then $\lambda = \omega$.

Proof. Let us prove that (1) implies (3). If $\omega = 0$, there is nothing to prove, since then $-\lambda \in Q_+$, so $(\lambda, \rho) \leq 0$, hence $\lambda = 0$. So suppose that $\omega = \omega_i$ is minuscule. We have $\omega_i - \lambda = \sum_k m_k \alpha_k$ with $m_k \geq 0$. If $m_k = 0$ for some $k \neq i$ then the problem reduces to smaller rank by deleting the vertex k from the Dynkin diagram. So we may assume $m_k > 0$ for all $k \neq i$. Let β be a positive coroot. Then

$$(\omega_i - \lambda, \beta) = (\omega_i, \beta) - (\lambda, \beta) \le (\omega_i, \beta) \le 1$$

and if α_i^{\vee} does not occur in β then it is ≤ 0 . So in particular we have $(\omega_i - \lambda, \alpha_j^{\vee}) \leq 0$ if $j \neq i$. If also $(\omega_i - \lambda, \alpha_i^{\vee}) \leq 0$ then $(\omega_i - \lambda, \omega_i - \lambda) \leq 0$, so $\omega_i = \lambda$, as claimed. Thus we may assume that $(\omega_i - \lambda, \alpha_i^{\vee}) = 1$, i.e., $m_i > 0$, so $m_j > 0$ for all j. Thus, $(\omega_i - \lambda, \theta^{\vee}) \geq 1$ (as θ^{\vee} is a dominant coweight). Hence $(\lambda, \theta^{\vee}) \leq 0$, i.e., $\lambda = 0$, as θ^{\vee} contains all α_j^{\vee} with positive coefficients. Thus $\omega_i \in Q$. But this is impossible by Lemma 30.3.

To see that (3) implies (2), note that if μ is any weight of L_{ω} then for some $w \in W$ the weight $\lambda = w\mu$ is dominant and $\omega - \lambda \in Q_+$, so $\lambda = \omega$ and $\mu = w^{-1}\omega$.

Finally, we show that (2) implies (1). Assume (2) holds. If ω is not minuscule then there is a positive root α such that $(\omega, \alpha^{\vee}) > 1$, hence $2(\omega, \alpha) > (\alpha, \alpha)$. Then $\omega - \alpha$ is a weight of L_{ω} (the weight of the nonzero vector $f_{\alpha}v_{\omega}$), and it is not W-conjugate to ω , as

$$(\omega - \alpha, \omega - \alpha) = (\omega, \omega) - 2(\omega, \alpha) + (\alpha, \alpha) < (\omega, \omega).$$

This immediately implies

Corollary 30.5. The character of L_{ω} with minuscule ω is

$$\chi_{\omega} = \sum_{\gamma \in W\omega} e^{\gamma}.$$

Proposition 30.6. $\omega \in P_+$ is minuscule if and only if the restriction of L_{ω} to any root \mathfrak{sl}_2 -subalgebra of \mathfrak{g} is the direct sum of 1-dimensional and 2-dimensional representations.

Proof. Let ω be minuscule and $v \in L_{\omega}$ be a weight vector which is a highest weight vector for $(\mathfrak{sl}_2)_{\alpha}$. Then $h_{\alpha}v = (w\omega, \alpha^{\vee})v = (\omega, w^{-1}\alpha^{\vee})v$ for some $w \in W$. Thus $h_{\alpha}v = 0$ or $h_{\alpha}v = v$, as claimed.

On the other hand, if ω is not minuscule then there is a positive root α such that $(\omega, \alpha^{\vee}) = m > 1$. So $h_{\alpha}v_{\omega} = mv_{\omega}$ and v_{ω} generates the irreducible m + 1-dimensional representation of $(\mathfrak{sl}_2)_{\alpha}$.

30.2. Tensor product with a minuscule representation.

Corollary 30.7. If ω is minuscule then for any dominant integral weight λ of \mathfrak{g} we have

$$L_{\omega} \otimes L_{\lambda} = \bigoplus_{\gamma \in W\omega} L_{\lambda + \gamma},$$

where if $\lambda + \gamma$ is not dominant then we agree that $L_{\lambda+\gamma} = 0$.

Proof. By the Weyl character formula and Corollary 30.5, the character of $L_{\omega} \otimes L_{\lambda}$ is

$$\chi_{L_{\omega}\otimes L_{\lambda}} = \frac{\sum_{\mu\in W\omega}\sum_{w\in W}(-1)^{\ell(w)}e^{w(\lambda+\rho)+\mu}}{\prod_{\alpha\in R_{+}}(e^{\alpha/2}-e^{-\alpha/2})} = \frac{\sum_{\gamma\in W\omega}\sum_{w\in W}(-1)^{\ell(w)}e^{w(\lambda+\gamma+\rho)}}{\prod_{\alpha\in R_{+}}(e^{\alpha/2}-e^{-\alpha/2})}.$$

If $\lambda + \gamma \notin P_+$ then for some *i* we have $(\lambda + \gamma, \alpha_i^{\vee}) < 0$. But $(\gamma, \alpha_i^{\vee}) \geq -1$. So $(\lambda + \gamma, \alpha_i^{\vee}) = -1$ and thus $(\lambda + \gamma + \rho, \alpha_i^{\vee}) = 0$. So for such γ , for any $w \in W$ the summand for w cancels with the summand for ws_i . Thus we get

$$\chi_{L_{\omega}\otimes L_{\lambda}} = \frac{\sum_{\gamma\in W\omega:\lambda+\gamma\in P_{+}}\sum_{w\in W}(-1)^{\ell(w)}e^{w(\lambda+\gamma+\rho)}}{\prod_{\alpha\in R_{+}}(e^{\alpha/2}-e^{-\alpha/2})} = \sum_{\gamma\in W\omega:\lambda+\gamma\in P_{+}}\chi_{L_{\lambda+\gamma}}.$$

Example 30.8. 1. Let V be the vector representation of GL_n . Then for a partition λ , $V \otimes L_{\lambda} = \bigoplus_{\mu \in \lambda + \Box} L_{\mu}$, where μ runs over all partitions obtained by adding one **addable** box to the Young diagram of λ , i.e., such that it remains a Young diagram. For example,

$$V \otimes S^{(3,3,2,1)}V = S^{(4,3,2,1)}V \oplus S^{(3,3,3,1)}V \oplus S^{(3,3,2,2)}V \oplus S^{(3,3,2,1,1)}V.$$
159

2. More generally, $\wedge^m V \otimes L_{\lambda} = \bigoplus_{\mu \in \lambda + m \square} L_{\mu}$, where we sum over partitions obtained by adding *m* addable boxes to different rows of the Young diagram of λ (going from top to bottom), i.e. a collection of *m* boxes in different rows after adding which we still have a Young diagram. This follows immediately from Corollary 30.7. For example,

 $\wedge^2 V \otimes S^{(3,1)}V = S^{(4,2)}V \oplus S^{(4,1,1)}V \oplus S^{(3,2,1)}V \oplus S^{(3,1,1,1)}V.$

Proposition 30.9. (i) Let λ be a partition of N. Then we have

$$\mathbb{C}S_{N+1}\otimes_{\mathbb{C}S_N}\pi_{\lambda}=\bigoplus_{\mu\in\lambda+\square}\pi_{\mu}.$$

(ii) Let μ be a partition of N + 1. Then we have

$$\pi_{\mu}|_{S_N} = \bigoplus_{\lambda \in \mu - \Box} \pi_{\mu}.$$

Here in (ii) we sum over all ways to delete a **removable box** from the Young diagram of μ , i.e., such that the remaining collection of boxes is still a Young diagram.

Proof. (i) Let V be a vector space of sufficiently large dimension. Using Frobenius reciprocity and Schur-Weyl duality, we have

 $\operatorname{Hom}_{S_{N+1}}(\mathbb{C}S_{N+1}\otimes_{\mathbb{C}S_N}\pi_{\lambda}, V^{\otimes N+1}) = \operatorname{Hom}_{S_N}(\pi_{\lambda}, V \otimes V^{\otimes N}) = V \otimes S^{\lambda}V.$ On the other hand, again by the Schur-Weyl duality,

$$\operatorname{Hom}_{S_{N+1}}(\bigoplus_{\mu\in\lambda+\Box}\pi_{\mu}, V^{\otimes N+1}) = \bigoplus_{\mu\in\lambda+\Box}S^{\mu}V.$$

So the statement follows from Example 30.8(1).

(ii) follows from (i) and Frobenius reciprocity.

Let λ^{\dagger} be the **conjugate partition** to λ , which consists of the boxes (j, i) where $(i, j) \in \lambda$. In other words, the Young diagram of λ^{\dagger} is obtained by transposing the Young diagram of λ . For example, $(3, 3, 2, 1)^{\dagger} = (4, 3, 2)$.

Corollary 30.10. Let \mathbb{C}_{-} be the sign representation of S_N . Then

 $\pi_{\lambda} \otimes \mathbb{C}_{-} \cong \pi_{\lambda^{\dagger}}.$

Proof. We argue by induction in $N = |\lambda|$, with obvious base N = 1. Suppose the statement is known for N and let us prove it for N + 1. Given a partition ν of N + 1, let λ be obtained from ν by deleting a removable box (i, j). Note that we have a natural isomorphism

$$\xi: (\mathbb{C}S_{N+1} \otimes_{\mathbb{C}S_N} \pi_{\lambda}) \otimes \mathbb{C}_- \to \mathbb{C}S_{N+1} \otimes_{\mathbb{C}S_N} (\pi_{\lambda} \otimes \mathbb{C}_-) = \mathbb{C}S_{N+1} \otimes_{\mathbb{C}S_N} \pi_{\lambda^{\dagger}}$$

$$160$$

This can be written as an isomorphism

$$\bigoplus_{\mu\in\lambda+\square}\pi_{\mu}\otimes\mathbb{C}_{-}\cong\bigoplus_{\eta\in\lambda^{\dagger}+\square}\pi_{\eta}.$$

Suppose $\pi_{\nu} \otimes \mathbb{C}_{-} = \pi_{\bar{\nu}}$. Then $\bar{\nu} \in \lambda^{\dagger} + \Box$. But by Exercise 27.9, π_{ν} is the eigenspace of the Jucys-Murphy element $\mathbf{c} \in \mathbb{C}S_{N+1}$ in $\mathbb{C}S_{N+1} \otimes_{\mathbb{C}S_N} \pi_{\lambda}$ with eigenvalue $c(\nu)$ (as $c(\mu)$ are all distinct for $\mu \in \lambda + \Box$). Hence the eigenvalue of \mathbf{c} on $\pi_{\bar{\nu}}$ is $-c(\nu)$. This implies that $\bar{\nu} = \nu^{\dagger}$, which justifies the induction step.

Proposition 30.11. (Skew Howe duality) Let V, W be complex vector spaces. Show that

$$\wedge^n (V \otimes W) \cong \bigoplus_{\lambda: |\lambda|=n} S^{\lambda} V \otimes S^{\lambda^{\dagger}} W$$

as $GL(V) \times GL(W)$ -modules.

Exercise 30.12. Prove Proposition 30.11.

Hint: Repeat the proof of the usual Howe duality (Subsection 29.2), using Corollary 30.10.

Exercise 30.13. Compute characters and dimensions of irreducible representations $L_{a+b,b,0}$ of $SL_3(\mathbb{C})$, where $a, b \ge 0$. Compute the weight multiplicities and draw the weights on the hexagonal lattice for $a + b \le 3$, indicating the multiplicities. What are the special features of the case b = 0?

Hint. The best way to do this exercise is to compute the characters recursively, using that $V \otimes L_{a+b,b,0} = L_{a+b+1,b,0} \oplus L_{a+b,b+1,0} \oplus L_{a+b-1,b-1,0}$ (if a = 0, the second summand drops out and if b = 0 then the third one drops out), by the "addable boxes" rule. This allows one to express the characters for b + 1 in terms of the characters for b and b - 1. And we know the characters of $L_{a,0,0}$ - they are the complete symmetric functions h_a .

Exercise 30.14. Compute the decomposition of $\wedge^m V \otimes S^k V$, $\wedge^m V \otimes \wedge^k V$, $S^2(\wedge^m V)$, $\wedge^2(\wedge^m V)$ into irreducible representations of GL(V).

Exercise 30.15. Let \mathfrak{g} be a finite dimensional simple complex Lie algebra, and V a finite dimensional representation of \mathfrak{g} . Given a homomorphism $\Phi: L_{\lambda} \to V \otimes L_{\mu}$, let $\langle \Phi \rangle := (\mathrm{Id} \otimes v_{\mu}^*, \Phi v_{\lambda}) \in V$, where v_{λ} is a highest weight vector of L_{λ} and v_{μ}^* the lowest weight vector of L_{μ}^* . In other words, we have

$$\Phi v_{\lambda} = \langle \Phi \rangle \otimes v_{\mu} + \text{lower terms}$$
¹⁶¹

where the lower terms have lower weight than μ in the second component.

(i) Show that $\langle \Phi \rangle$ has weight $\lambda - \mu$.

(ii) Show that $f_i^{(\lambda,\alpha_i^{\vee})+1}\langle\Phi\rangle = 0$ for all i.

(iii) Let $V[\nu]_{\lambda}$ be the subspace of vectors $v \in V[\nu]$ of weight ν which satisfy the equalities $f_i^{(\lambda,\alpha_i^{\vee})+1}v = 0$ for all *i*. Show that the map $\Phi \mapsto \langle \Phi \rangle$ defines an isomorphism of vector spaces $\operatorname{Hom}_{\mathfrak{g}}(L_{\lambda}, V \otimes L_{\mu}) \cong$ $V[\lambda - \mu]_{\lambda}$.

Hint. Let M_{λ} be the Verma module with highest weight λ , and $\overline{M}_{-\mu}$ be the **lowest weight** Verma module with lowest weight $-\mu$, i.e., generated by a vector $v_{-\mu}$ with defining relations $hv_{-\mu} = -\mu(h)v_{-\mu}$ for $h \in \mathfrak{h}$ and $f_i v_{-\mu} = 0$. Show first that the map $\Phi \mapsto \langle \Phi \rangle$ defines an isomorphism $\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes \overline{M}_{-\mu}^*) \cong V[\lambda - \mu]$. Next, show that $\Phi \in \operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes \overline{M}_{-\mu}^*)$ factors through L_{λ} iff $\langle \Phi \rangle \in V[\lambda - \mu]_{\lambda}$, i.e., $f_i^{(\lambda,\alpha_i^{\vee})+1} \langle \Phi \rangle = 0$ (for this, use that $e_j f_i^{(\lambda,\alpha_i^{\vee})+1} v_{\lambda} = 0$, and that the kernel of $M_{\lambda} \to L_{\lambda}$ is generated by the vectors $f_i^{(\lambda,\alpha_i^{\vee})+1} v_{\lambda}$). This implies that the above map defines an isomorphism $\operatorname{Hom}_{\mathfrak{g}}(L_{\lambda}, V \otimes \overline{M}_{-\mu}^*) \cong$ $V[\lambda - \mu]_{\lambda}$. Finally, show that every homomorphism $L_{\lambda} \to V \otimes \overline{M}_{-\mu}^*$ in fact lands in $V \otimes L_{\mu} \subset V \otimes \overline{M}_{-\mu}^*$.

(iv) Let V be the vector representation of $SL_n(\mathbb{C})$. Determine the weight subspaces of S^mV , and compute the decomposition of $S^mV \otimes L_{\mu}$ into irreducibles for all μ (use (iii)).

(v) For any \mathfrak{g} , compute the decomposition of $\mathfrak{g} \otimes L_{\mu}$, where \mathfrak{g} is the adjoint representation of \mathfrak{g} (again use (iii)).

In both (iv) and (v) you should express the answer in terms of the numbers k_i such that $\mu = \sum_i k_i \omega_i$ and the Cartan matrix entries.

Proposition 30.16. Every coset in P/Q contains a unique minuscule weight. This gives a bijection between P/Q and minuscule weights. So the number of minuscule weights equals det A, where A is the Cartan matrix.

Proof. Let $C := a + Q \in P/Q$ be a coset, and consider the intersection $C \cap P_+$. Let $\omega \in C \cap P_+$ be an element with smallest (ω, ρ^{\vee}) . If λ is a dominant weight of L_{ω} then $\lambda \in C \cap P_+$, so $(\lambda, \rho^{\vee}) \ge (\omega, \rho^{\vee})$, hence $(\omega - \lambda, \rho^{\vee}) \le 0$. But $\omega - \lambda \in Q_+$, so $\lambda = \omega$. Thus ω is minuscule. On the other hand, if $\omega_1, \omega_2 \in C$ are minuscule and distinct then $\omega_1 - \omega_2 \in Q$, so by Lemma 30.3, there is a coroot β such that $(\omega_1 - \omega_2, \beta) \ge 2$. So $(\omega_1, \beta) = 1$ and $(\omega_2, \beta) = -1$. The first identity implies $\beta > 0$ and the second one $\beta < 0$, a contradiction.

30.3. Fundamental weights of classical Lie algebras. Let us now determine the fundamental weights of classical Lie algebras of types B_n, C_n, D_n .

Type C_n . Then $\mathfrak{g} = \mathfrak{sp}_{2n}$. The positive roots are $\mathbf{e}_i \pm \mathbf{e}_j$, $2\mathbf{e}_i$, the simple roots $\alpha_1 = \mathbf{e}_1 - \mathbf{e}_2, ..., \alpha_n = 2\mathbf{e}_n$, so $\alpha_i^{\vee} = \alpha_i$ for $i \neq n$ and $\alpha_n^{\vee} = \mathbf{e}_n$. So $\omega_i = (1, ..., 1, 0, ..., 0)$ (*i* ones) for $1 \leq i \leq n$.

Type B_n . Then $\mathfrak{g} = \mathfrak{so}_{2n+1}$, so we have the same story as for C_n except $\alpha_n = \mathbf{e}_n$ and $\alpha_n^{\vee} = 2\mathbf{e}_n$, so we have the same ω_i for i < n but $\omega_n = (\frac{1}{2}, ..., \frac{1}{2})$.

Type D_n . Then $\mathfrak{g} = \mathfrak{so}_{2n}$, so the positive roots are $\mathbf{e}_i \pm \mathbf{e}_j$, the simple roots $\alpha_1 = \mathbf{e}_1 - \mathbf{e}_2, ..., \alpha_{n-2} = \mathbf{e}_{n-2} - \mathbf{e}_{n-1}, \alpha_{n-1} = \mathbf{e}_{n-1} - \mathbf{e}_n, \alpha_n = \mathbf{e}_{n-1} + \mathbf{e}_n$. So $\omega_i = (1, ..., 1, 0, ..., 0)$ (*i* ones) for i = 1, ..., n - 2, but $\omega_{n-1} = (\frac{1}{2}, ..., \frac{1}{2}, \frac{1}{2}), \omega_n = (\frac{1}{2}, ..., \frac{1}{2}, -\frac{1}{2})$.

30.4. Minuscule weights outside type A. Proposition 30.16 immediately tells us how many minuscule weights we have. For type A we saw that all fundamental weights are minuscule. For G_2, F_4, E_8 , det A = 1, so the only minuscule weight is 0. For type B_n we have det A = 2, so we should have one nonzero minuscule weight, and this is the weight $(\frac{1}{2}, ..., \frac{1}{2})$. The corresponding representation has weights $(\pm \frac{1}{2}, ..., \pm \frac{1}{2})$, so it has dimension 2^n . It is called the **spin representation**, denoted S.

For C_n we also have det A = 2, so we again have a unique nonzero minuscule weight. Namely, it is the weight (1, 0, ..., 0) (so the minuscule representation is the tautological representation of \mathfrak{sp}_{2n} , of dimension 2n). For D_n we have det A = 4, so we have three nontrivial minuscule representations, with highest weights $\omega_1, \omega_{n-1}, \omega_n$, of dimensions $2n, 2^{n-1}, 2^{n-1}$. The first one is the tautological representation and the remaining two are the **spin representations** S_+, S_- , whose weights are $(\pm \frac{1}{2}, ..., \pm \frac{1}{2})$ with even, respectively odd number of minuses.

For E_6 there are two nontrivial minuscule representations V, V^* of dimension 27. For E_7 there is just one of dimension 56. These dimensions are computed easily by counting elements in the corresponding Weyl group orbits.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.