30. Fundamental and minuscule weights

30.1. Minuscule weights. Let \mathfrak{g} be a simple complex Lie algebra. Minuscule weights for \mathfrak{g} are highest weights for which irreducible representations are especially simple.

Definition 30.1. A dominant integral weight ω for \mathfrak{g} is called minuscule if $(\omega, \beta) \leq 1$ for all positive coroots β.

Equivalently, $|(\omega, \beta)| \leq 1$ for any coroot β.
Obviously, $\omega=0$ is minuscule, but there may exist other minuscule weights. For example, for $\mathfrak{g}=\mathfrak{s l}_{n}$, all fundamental weights are minuscule, since $\left(\omega_{i}, \mathbf{e}_{j}-\mathbf{e}_{k}\right)=0$ if $j, k \leq i$ or $j, k>i$ and $\left(\omega_{i}, \mathbf{e}_{j}-\mathbf{e}_{k}\right)=1$ if $j \leq i<k$.

It is easy to see that any minuscule weight $\omega \neq 0$ is fundamental. Indeed, we can have $\left(\omega, \alpha_{i}^{\vee}\right)=1$ only for one i, and for all other simple coroots this inner product must be zero. Otherwise we will have (ω, θ^{\vee}) ≥ 2, where θ^{\vee} is the maximal coroot (the maximal root of the dual root system $\left.R^{\vee}\right) .{ }^{13}$

On the other hand, not all fundamental weights are minuscule. In fact, we will see that the simple Lie algebras of types G_{2}, F_{4} and E_{8} do not have any nonzero minuscule weights. To formulate a criterion for a fundamental weight to be minuscule, recall that $\theta^{\vee}=\sum_{i} m_{i} \alpha_{i}^{\vee}$, where $m_{i}=\left(\omega_{i}, \theta^{\vee}\right)$ are strictly positive integers.

Lemma 30.2. A fundamental weight ω_{i} is minuscule if and only if $m_{i}=1$.

Proof. The definition of minuscule means that $m_{i} \leq 1$. On the other hand, if $m_{i}=1$ then given a positive coroot $\beta=\sum_{j} n_{j} \alpha_{j}^{\vee}$, we have $n_{j} \leq m_{j}$, in particular $n_{i} \leq 1$, so ω_{i} is minuscule.
Lemma 30.3. Let $\omega \in Q$ and $|(\omega, \beta)| \leq 1$ for all coroots β. Then $\omega=0$.

Proof. Assume the contrary. Choose a counterexample $\omega=\sum_{i} m_{i} \alpha_{i}$ so that $\sum_{i}\left|m_{i}\right|$ is minimal possible. We have

$$
(\omega, \omega)=\sum_{i} m_{i}\left(\omega, \alpha_{i}\right)>0 .
$$

[^0]So there exists j such that m_{j} and $\left(\omega, \alpha_{j}^{\vee}\right)$ are nonzero and have the same sign. Replacing ω with $-\omega$ if needed, we may assume that both are positive, then $\left(\omega, \alpha_{j}^{\vee}\right)=1$. Then $s_{j} \omega=\omega-\alpha_{j}=\sum_{j} m_{i}^{\prime} \alpha_{i}$ where $m_{j}^{\prime}=m_{j}-1$ and $m_{i}^{\prime}=m_{i}$ for all $i \neq j$ is another counterexample. But we have $\sum_{i}\left|m_{i}^{\prime}\right|=\sum_{i}\left|m_{i}\right|-1$, a contradiction.

Why are minuscule weights interesting? It is because of the following result.

Proposition 30.4. The following conditions on a dominant integral weight ω are equivalent:
(1) ω is minuscule;
(2) all weights of the representation L_{ω} belong to the orbit $W \omega$;
(3) if λ is a dominant integral weight such that $\omega-\lambda \in Q_{+}$then $\lambda=\omega$.

Proof. Let us prove that (1) implies (3). If $\omega=0$, there is nothing to prove, since then $-\lambda \in Q_{+}$, so $(\lambda, \rho) \leq 0$, hence $\lambda=0$. So suppose that $\omega=\omega_{i}$ is minuscule. We have $\omega_{i}-\lambda=\sum_{k} m_{k} \alpha_{k}$ with $m_{k} \geq 0$. If $m_{k}=0$ for some $k \neq i$ then the problem reduces to smaller rank by deleting the vertex k from the Dynkin diagram. So we may assume $m_{k}>0$ for all $k \neq i$. Let β be a positive coroot. Then

$$
\left(\omega_{i}-\lambda, \beta\right)=\left(\omega_{i}, \beta\right)-(\lambda, \beta) \leq\left(\omega_{i}, \beta\right) \leq 1
$$

and if α_{i}^{\vee} does not occur in β then it is ≤ 0. So in particular we have $\left(\omega_{i}-\lambda, \alpha_{j}^{\vee}\right) \leq 0$ if $j \neq i$. If also $\left(\omega_{i}-\lambda, \alpha_{i}^{\vee}\right) \leq 0$ then $\left(\omega_{i}-\lambda, \omega_{i}-\lambda\right) \leq 0$, so $\omega_{i}=\lambda$, as claimed. Thus we may assume that $\left(\omega_{i}-\lambda, \alpha_{i}^{\vee}\right)=1$, i.e., $m_{i}>0$, so $m_{j}>0$ for all j. Thus, $\left(\omega_{i}-\lambda, \theta^{\vee}\right) \geq 1$ (as θ^{\vee} is a dominant coweight). Hence $\left(\lambda, \theta^{\vee}\right) \leq 0$, i.e., $\lambda=0$, as θ^{\vee} contains all α_{j}^{\vee} with positive coefficients. Thus $\omega_{i} \in Q$. But this is impossible by Lemma 30.3 .

To see that (3) implies (2), note that if μ is any weight of L_{ω} then for some $w \in W$ the weight $\lambda=w \mu$ is dominant and $\omega-\lambda \in Q_{+}$, so $\lambda=\omega$ and $\mu=w^{-1} \omega$.

Finally, we show that (2) implies (1). Assume (2) holds. If ω is not minuscule then there is a positive root α such that $\left(\omega, \alpha^{\vee}\right)>1$, hence $2(\omega, \alpha)>(\alpha, \alpha)$. Then $\omega-\alpha$ is a weight of L_{ω} (the weight of the nonzero vector $f_{\alpha} v_{\omega}$), and it is not W-conjugate to ω, as

$$
(\omega-\alpha, \omega-\alpha)=(\omega, \omega)-2(\omega, \alpha)+(\alpha, \alpha)<(\omega, \omega) .
$$

This immediately implies

Corollary 30.5. The character of L_{ω} with minuscule ω is

$$
\chi_{\omega}=\sum_{\gamma \in W \omega} e^{\gamma} .
$$

Proposition 30.6. $\omega \in P_{+}$is minuscule if and only if the restriction of L_{ω} to any root $\mathfrak{s l}_{2}$-subalgebra of \mathfrak{g} is the direct sum of 1-dimensional and 2-dimensional representations.

Proof. Let ω be minuscule and $v \in L_{\omega}$ be a weight vector which is a highest weight vector for $\left(\mathfrak{s l}_{2}\right)_{\alpha}$. Then $h_{\alpha} v=\left(w \omega, \alpha^{\vee}\right) v=\left(\omega, w^{-1} \alpha^{\vee}\right) v$ for some $w \in W$. Thus $h_{\alpha} v=0$ or $h_{\alpha} v=v$, as claimed.

On the other hand, if ω is not minuscule then there is a positive root α such that $\left(\omega, \alpha^{\vee}\right)=m>1$. So $h_{\alpha} v_{\omega}=m v_{\omega}$ and v_{ω} generates the irreducible $m+1$-dimensional representation of $\left(\mathfrak{s l}_{2}\right)_{\alpha}$.

30.2. Tensor product with a minuscule representation.

Corollary 30.7. If ω is minuscule then for any dominant integral weight λ of \mathfrak{g} we have

$$
L_{\omega} \otimes L_{\lambda}=\oplus_{\gamma \in W \omega} L_{\lambda+\gamma},
$$

where if $\lambda+\gamma$ is not dominant then we agree that $L_{\lambda+\gamma}=0$.
Proof. By the Weyl character formula and Corollary 30.5, the character of $L_{\omega} \otimes L_{\lambda}$ is

$$
\begin{gathered}
\chi_{L_{\omega} \otimes L_{\lambda}}=\frac{\sum_{\mu \in W \omega} \sum_{w \in W}(-1)^{\ell(w)} e^{w(\lambda+\rho)+\mu}}{\prod_{\alpha \in R_{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)}= \\
\frac{\sum_{\gamma \in W \omega} \sum_{w \in W}(-1)^{\ell(w)} e^{w(\lambda+\gamma+\rho)}}{\prod_{\alpha \in R_{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)} .
\end{gathered}
$$

If $\lambda+\gamma \notin P_{+}$then for some i we have $\left(\lambda+\gamma, \alpha_{i}^{\vee}\right)<0$. But $\left(\gamma, \alpha_{i}^{\vee}\right) \geq-1$. So $\left(\lambda+\gamma, \alpha_{i}^{\vee}\right)=-1$ and thus $\left(\lambda+\gamma+\rho, \alpha_{i}^{\vee}\right)=0$. So for such γ, for any $w \in W$ the summand for w cancels with the summand for $w s_{i}$. Thus we get
$\chi_{L_{\omega} \otimes L_{\lambda}}=\frac{\sum_{\gamma \in W \omega: \lambda+\gamma \in P_{+}} \sum_{w \in W}(-1)^{\ell(w)} e^{w(\lambda+\gamma+\rho)}}{\prod_{\alpha \in R_{+}}\left(e^{\alpha / 2}-e^{-\alpha / 2}\right)}=\sum_{\gamma \in W \omega: \lambda+\gamma \in P_{+}} \chi_{L_{\lambda+\gamma}}$.

Example 30.8. 1. Let V be the vector representation of $G L_{n}$. Then for a partition $\lambda, V \otimes L_{\lambda}=\bigoplus_{\mu \in \lambda+\square} L_{\mu}$, where μ runs over all partitions obtained by adding one addable box to the Young diagram of λ, i.e., such that it remains a Young diagram. For example,

$$
V \otimes S^{(3,3,2,1)} V=S^{(4,3,2,1)} V \oplus S_{159}^{(3,3,3,1)} V \oplus S^{(3,3,2,2)} V \oplus S^{(3,3,2,1,1)} V
$$

2. More generally, $\wedge^{m} V \otimes L_{\lambda}=\bigoplus_{\mu \in \lambda+m \square} L_{\mu}$, where we sum over partitions obtained by adding m addable boxes to different rows of the Young diagram of λ (going from top to bottom), i.e. a collection of m boxes in different rows after adding which we still have a Young diagram. This follows immediately from Corollary 30.7. For example,

$$
\wedge^{2} V \otimes S^{(3,1)} V=S^{(4,2)} V \oplus S^{(4,1,1)} V \oplus S^{(3,2,1)} V \oplus S^{(3,1,1,1)} V
$$

Proposition 30.9. (i) Let λ be a partition of N. Then we have

$$
\mathbb{C} S_{N+1} \otimes_{\mathbb{C} S_{N}} \pi_{\lambda}=\bigoplus_{\mu \in \lambda+\square} \pi_{\mu}
$$

(ii) Let μ be a partition of $N+1$. Then we have

$$
\left.\pi_{\mu}\right|_{S_{N}}=\bigoplus_{\lambda \in \mu-\square} \pi_{\mu}
$$

Here in (ii) we sum over all ways to delete a removable box from the Young diagram of μ, i.e., such that the remaining collection of boxes is still a Young diagram.

Proof. (i) Let V be a vector space of sufficiently large dimension. Using Frobenius reciprocity and Schur-Weyl duality, we have
$\operatorname{Hom}_{S_{N+1}}\left(\mathbb{C} S_{N+1} \otimes \mathbb{C}_{N} \pi_{\lambda}, V^{\otimes N+1}\right)=\operatorname{Hom}_{S_{N}}\left(\pi_{\lambda}, V \otimes V^{\otimes N}\right)=V \otimes S^{\lambda} V$.
On the other hand, again by the Schur-Weyl duality,

$$
\operatorname{Hom}_{S_{N+1}}\left(\bigoplus_{\mu \in \lambda+\square} \pi_{\mu}, V^{\otimes N+1}\right)=\bigoplus_{\mu \in \lambda+\square} S^{\mu} V
$$

So the statement follows from Example 30.8(1).
(ii) follows from (i) and Frobenius reciprocity.

Let λ^{\dagger} be the conjugate partition to λ, which consists of the boxes (j, i) where $(i, j) \in \lambda$. In other words, the Young diagram of λ^{\dagger} is obtained by transposing the Young diagram of λ. For example, $(3,3,2,1)^{\dagger}=(4,3,2)$.
Corollary 30.10. Let \mathbb{C}_{-}be the sign representation of S_{N}. Then

$$
\pi_{\lambda} \otimes \mathbb{C}_{-} \cong \pi_{\lambda^{\dagger}}
$$

Proof. We argue by induction in $N=|\lambda|$, with obvious base $N=1$. Suppose the statement is known for N and let us prove it for $N+1$. Given a partition ν of $N+1$, let λ be obtained from ν by deleting a removable box (i, j). Note that we have a natural isomorphism

$$
\xi:\left(\mathbb{C} S_{N+1} \otimes_{\mathbb{C} S_{N}} \pi_{\lambda}\right) \otimes \mathbb{C}_{-} \rightarrow \mathbb{C} S_{N+1} \otimes_{\mathbb{C} S_{N}}\left(\pi_{\lambda} \otimes \mathbb{C}_{-}\right)=\mathbb{C} S_{N+1} \otimes_{\mathbb{C} S_{N}} \pi_{\lambda^{\dagger}}
$$

This can be written as an isomorphism

$$
\bigoplus_{\mu \in \lambda+\square} \pi_{\mu} \otimes \mathbb{C}_{-} \cong \bigoplus_{\eta \in \lambda^{\dagger}+\square} \pi_{\eta} .
$$

Suppose $\pi_{\nu} \otimes \mathbb{C}_{-}=\pi_{\bar{\nu}}$. Then $\bar{\nu} \in \lambda^{\dagger}+\square$. But by Exercise 27.9, π_{ν} is the eigenspace of the Jucys-Murphy element $\mathbf{c} \in \mathbb{C} S_{N+1}$ in $\mathbb{C} S_{N+1} \otimes_{\mathbb{C} S_{N}} \pi_{\lambda}$ with eigenvalue $c(\nu)$ (as $c(\mu)$ are all distinct for $\mu \in \lambda+\square$). Hence the eigenvalue of \mathbf{c} on $\pi_{\bar{\nu}}$ is $-c(\nu)$. This implies that $\bar{\nu}=\nu^{\dagger}$, which justifies the induction step.

Proposition 30.11. (Skew Howe duality) Let V, W be complex vector spaces. Show that

$$
\wedge^{n}(V \otimes W) \cong \bigoplus_{\lambda:|\lambda|=n} S^{\lambda} V \otimes S^{\lambda^{\dagger}} W
$$

as $G L(V) \times G L(W)$-modules.
Exercise 30.12. Prove Proposition 30.11.
Hint: Repeat the proof of the usual Howe duality (Subsection 29.2), using Corollary 30.10.

Exercise 30.13. Compute characters and dimensions of irreducible representations $L_{a+b, b, 0}$ of $S L_{3}(\mathbb{C})$, where $a, b \geq 0$. Compute the weight multiplicities and draw the weights on the hexagonal lattice for $a+b \leq 3$, indicating the multiplicities. What are the special features of the case $b=0$?

Hint. The best way to do this exercise is to compute the characters recursively, using that $V \otimes L_{a+b, b, 0}=L_{a+b+1, b, 0} \oplus L_{a+b, b+1,0} \oplus L_{a+b-1, b-1,0}$ (if $a=0$, the second summand drops out and if $b=0$ then the third one drops out), by the "addable boxes" rule. This allows one to express the characters for $b+1$ in terms of the characters for b and $b-1$. And we know the characters of $L_{a, 0,0}$ - they are the complete symmetric functions h_{a}.

Exercise 30.14. Compute the decomposition of $\wedge^{m} V \otimes S^{k} V$, $\wedge^{m} V \otimes \wedge^{k} V, S^{2}\left(\wedge^{m} V\right), \wedge^{2}\left(\wedge^{m} V\right)$ into irreducible representations of $G L(V)$.

Exercise 30.15. Let \mathfrak{g} be a finite dimensional simple complex Lie algebra, and V a finite dimensional representation of \mathfrak{g}. Given a homomorphism $\Phi: L_{\lambda} \rightarrow V \otimes L_{\mu}$, let $\langle\Phi\rangle:=\left(\operatorname{Id} \otimes v_{\mu}^{*}, \Phi v_{\lambda}\right) \in V$, where v_{λ} is a highest weight vector of L_{λ} and v_{μ}^{*} the lowest weight vector of L_{μ}^{*}. In other words, we have

$$
\Phi v_{\lambda}=\langle\Phi\rangle \otimes \underset{161}{v_{\mu}+\text { lower terms }}
$$

where the lower terms have lower weight than μ in the second component.
(i) Show that $\langle\Phi\rangle$ has weight $\lambda-\mu$.
(ii) Show that $f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1}\langle\Phi\rangle=0$ for all i.
(iii) Let $V[\nu]_{\lambda}$ be the subspace of vectors $v \in V[\nu]$ of weight ν which satisfy the equalities $f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1} v=0$ for all i. Show that the map $\Phi \mapsto\langle\Phi\rangle$ defines an isomorphism of vector spaces $\operatorname{Hom}_{\mathfrak{g}}\left(L_{\lambda}, V \otimes L_{\mu}\right) \cong$ $V[\lambda-\mu]_{\lambda}$.

Hint. Let M_{λ} be the Verma module with highest weight λ, and $\bar{M}_{-\mu}$ be the lowest weight Verma module with lowest weight $-\mu$, i.e., generated by a vector $v_{-\mu}$ with defining relations $h v_{-\mu}=-\mu(h) v_{-\mu}$ for $h \in \mathfrak{h}$ and $f_{i} v_{-\mu}=0$. Show first that the map $\Phi \mapsto\langle\Phi\rangle$ defines an isomorphism $\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, V \otimes \bar{M}_{-\mu}^{*}\right) \cong V[\lambda-\mu]$. Next, show that $\Phi \in \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, V \otimes \bar{M}_{-\mu}^{*}\right)$ factors through L_{λ} iff $\langle\Phi\rangle \in V[\lambda-\mu]_{\lambda}$, i.e., $f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1}\langle\Phi\rangle=0$ (for this, use that $e_{j} f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1} v_{\lambda}=0$, and that the kernel of $M_{\lambda} \rightarrow L_{\lambda}$ is generated by the vectors $\left.f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1} v_{\lambda}\right)$. This implies that the above map defines an isomorphism $\operatorname{Hom}_{\mathfrak{g}}\left(L_{\lambda}, V \otimes \bar{M}_{-\mu}^{*}\right) \cong$ $V[\lambda-\mu]_{\lambda}$. Finally, show that every homomorphism $L_{\lambda} \rightarrow V \otimes \bar{M}_{-\mu}^{*}$ in fact lands in $V \otimes L_{\mu} \subset V \otimes \bar{M}_{-\mu}^{*}$.
(iv) Let V be the vector representation of $S L_{n}(\mathbb{C})$. Determine the weight subspaces of $S^{m} V$, and compute the decomposition of $S^{m} V \otimes L_{\mu}$ into irreducibles for all μ (use (iii)).
(v) For any \mathfrak{g}, compute the decomposition of $\mathfrak{g} \otimes L_{\mu}$, where \mathfrak{g} is the adjoint representation of \mathfrak{g} (again use (iii)).

In both (iv) and (v) you should express the answer in terms of the numbers k_{i} such that $\mu=\sum_{i} k_{i} \omega_{i}$ and the Cartan matrix entries.

Proposition 30.16. Every coset in P / Q contains a unique minuscule weight. This gives a bijection between P / Q and minuscule weights. So the number of minuscule weights equals $\operatorname{det} A$, where A is the Cartan matrix.

Proof. Let $C:=a+Q \in P / Q$ be a coset, and consider the intersection $C \cap P_{+}$. Let $\omega \in C \cap P_{+}$be an element with smallest $\left(\omega, \rho^{\vee}\right)$. If λ is a dominant weight of L_{ω} then $\lambda \in C \cap P_{+}$, so $\left(\lambda, \rho^{\vee}\right) \geq\left(\omega, \rho^{\vee}\right)$, hence $\left(\omega-\lambda, \rho^{\vee}\right) \leq 0$. But $\omega-\lambda \in Q_{+}$, so $\lambda=\omega$. Thus ω is minuscule. On the other hand, if $\omega_{1}, \omega_{2} \in C$ are minuscule and distinct then $\omega_{1}-\omega_{2} \in Q$, so by Lemma 30.3 , there is a coroot β such that $\left(\omega_{1}-\omega_{2}, \beta\right) \geq 2$. So $\left(\omega_{1}, \beta\right)=1$ and $\left(\omega_{2}, \beta\right)=-1$. The first identity implies $\beta>0$ and the second one $\beta<0$, a contradiction.
30.3. Fundamental weights of classical Lie algebras. Let us now determine the fundamental weights of classical Lie algebras of types B_{n}, C_{n}, D_{n}.

Type C_{n}. Then $\mathfrak{g}=\mathfrak{s p}_{2 n}$. The positive roots are $\mathbf{e}_{i} \pm \mathbf{e}_{j}, 2 \mathbf{e}_{i}$, the simple roots $\alpha_{1}=\mathbf{e}_{1}-\mathbf{e}_{2}, \ldots, \alpha_{n}=2 \mathbf{e}_{n}$, so $\alpha_{i}^{\vee}=\alpha_{i}$ for $i \neq n$ and $\alpha_{n}^{\vee}=\mathbf{e}_{n}$. So $\omega_{i}=(1, \ldots, 1,0, \ldots, 0)(i$ ones) for $1 \leq i \leq n$.

Type B_{n}. Then $\mathfrak{g}=\mathfrak{s o}_{2 n+1}$, so we have the same story as for C_{n} except $\alpha_{n}=\mathbf{e}_{n}$ and $\alpha_{n}^{\vee}=2 \mathbf{e}_{n}$, so we have the same ω_{i} for $i<n$ but $\omega_{n}=\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$.

Type D_{n}. Then $\mathfrak{g}=\mathfrak{s o}_{2 n}$, so the positive roots are $\mathbf{e}_{i} \pm \mathbf{e}_{j}$, the simple roots $\alpha_{1}=\mathbf{e}_{1}-\mathbf{e}_{2}, \ldots, \alpha_{n-2}=\mathbf{e}_{n-2}-\mathbf{e}_{n-1}, \alpha_{n-1}=\mathbf{e}_{n-1}-\mathbf{e}_{n}$, $\alpha_{n}=\mathbf{e}_{n-1}+\mathbf{e}_{n}$. So $\omega_{i}=(1, \ldots, 1,0, \ldots, 0)(i$ ones $)$ for $i=1, \ldots, n-2$, but $\omega_{n-1}=\left(\frac{1}{2}, \ldots, \frac{1}{2}, \frac{1}{2}\right)$, $\omega_{n}=\left(\frac{1}{2}, \ldots, \frac{1}{2},-\frac{1}{2}\right)$.
30.4. Minuscule weights outside type A. Proposition 30.16 immediately tells us how many minuscule weights we have. For type A we saw that all fundamental weights are minuscule. For G_{2}, F_{4}, E_{8}, $\operatorname{det} A=1$, so the only minuscule weight is 0 . For type B_{n} we have $\operatorname{det} A=2$, so we should have one nonzero minuscule weight, and this is the weight $\left(\frac{1}{2}, \ldots, \frac{1}{2}\right)$. The corresponding representation has weights $\left(\pm \frac{1}{2}, \ldots, \pm \frac{1}{2}\right)$, so it has dimension 2^{n}. It is called the spin representation, denoted S.

For C_{n} we also have $\operatorname{det} A=2$, so we again have a unique nonzero minuscule weight. Namely, it is the weight $(1,0, \ldots, 0)$ (so the minuscule representation is the tautological representation of $\mathfrak{s p}_{2 n}$, of dimension $2 n)$. For D_{n} we have $\operatorname{det} A=4$, so we have three nontrivial minuscule representations, with highest weights $\omega_{1}, \omega_{n-1}, \omega_{n}$, of dimensions $2 n, 2^{n-1}, 2^{n-1}$. The first one is the tautological representation and the remaining two are the spin representations S_{+}, S_{-}, whose weights are $\left(\pm \frac{1}{2}, \ldots, \pm \frac{1}{2}\right)$ with even, respectively odd number of minuses.

For E_{6} there are two nontrivial minuscule representations V, V^{*} of dimension 27. For E_{7} there is just one of dimension 56. These dimensions are computed easily by counting elements in the corresponding Weyl group orbits.

MIT OpenCourseWare
https://ocw.mit.edu

18.755 Lie Groups and Lie Algebras II

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{13}$ The maximal coroot θ^{\vee} should not be confused with the coroot $\widetilde{\theta}^{\vee}$ corresponding to the maximal root θ (highest weight of the adjoint representation) under a W-invariant identification $\mathfrak{h}^{*} \cong \mathfrak{h}$. In the non-simply-laced case they are not even proportional: e.g., for the root system $B_{2}, \theta^{\vee}=(1,1)$ while $\widetilde{\theta}^{\vee}=(2,0)$. This may be confusing since according to the general coroot notation, $\widetilde{\theta^{\vee}}$ should be denoted by θ^{\vee}.

