
34. Integration on manifolds

34.1. Integration of top differential forms on oriented mani-
folds. An important operation with top degree differential forms is
integration. Namely, if ω is a differential n-form on an open set
U ⊂ Rn (with the usual orientation), ω = f(x1, ..., xn)dx1 ∧ ... ∧ dxn,
then we can set ∫

U

ω :=

∫
U

f(x1, ..., xn)dx1...dxn.

(provided this integral is absolutely convergent). This, however, is
not completely canonical: if we change coordinates (so that U maps
diffeomorphically to U ′), the change of variable formula in a multiple
integral tells us that∫
U

f(x1, ..., xn)dx1∧...∧dxn =

∫
U ′
f(x1(y), ..., xn(y))

∣∣∣∣ det
(
∂xi
∂yj

) ∣∣∣∣dy1∧...∧dyn,

while the transformation law for ω is the same but without the ab-
solute value. This shows that our definition is invariant only under
orientation preserving transformations of coordinates, i.e., ones whose

Jacobian det
(
∂xi
∂yj

)
is positive. Consequently, we will only be able to

define integration of top differential forms on oriented manifolds,
i.e., ones equipped with an atlas of charts in which transition maps
have a positive Jacobian; such an atlas defines an orientation on M .
To fix an orientation, we just need to say which local coordinate sys-
tems (or bases of tangent spaces) are right-handed, and do so in a
consistent way. But this cannot always be done globally (the classic
counterexamples are Möbius strip and Klein bottle).

Now let us proceed to define integration of a continuous top form
ω over an oriented manifold M . For this pick an atlas of local charts
{Ui, i ∈ I} on M and pick a partition of unity {fs} subordinate to this
cover, which is possible by Proposition 33.4. First assume that ω is
nonnegative, i.e., ω(v1, ..., vn) ≥ 0 for a right-handed basis vi of any
tangent space of M . Then define

(34.1)

∫
M

ω :=
∑
s

∫
Ui(s)

fi(s)ω

where in each Ui we use a right-handed coordinate system to compute
the corresponding integral. This makes sense (as a nonnegative real
number or +∞), and is also independent of the choice of a partition of
unity. Indeed, it is easy to see that for two atlases {Ui}, {Vj} and two
partitions of unity {fs}, {gt} the answer is the same, by comparing both
to the answer for the atlas {Ui ∩ Vj} and partition of unity {fsgt}. In
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fact, this makes sense for any measurable ω (i.e., given by a measurable
function in every local chart) if we use Lebesgue integration.

Now, if ω is not necessarily nonnegative, we may define the nonneg-
ative form |ω| which is ω at points where ω is nonnegative and −ω
otherwise. Then, if ∫

M

|ω| <∞,

we can define
∫
M
ω by the same formula (34.1) which will now be a

not necessarily positive but absolutely convergent series (a finite sum
in the compact case).

Importantly, the same definition works for manifolds M with bound-
ary ∂M (an n − 1-manifold); the only difference is that at boundary
points the manifold locally looks like Rn+ (the space of vectors with
nonnegative last coordinate) rather than Rn. Note that the boundary
of an oriented manifold carries a canonical orientation as well (a ba-
sis of Tp∂M is right-handed if adding to it a vector looking inside M
produces a right-handed basis of TpM).

Remark 34.1. If the manifold M is non-orientable, we cannot inte-
grate top differential forms on M . However, we can integrate densities
on M , which are sections of the line bundle | ∧n T ∗M |, the absolute
value of the orientation bundle. This bundle is defined by transition
functions |gij(x)|, where gij(x) are the transition functions of ∧nT ∗M .
Thus its sections, called densities on M , transform under changes of
coordinates according to the rule

f(x1, ..., xn)|dx1∧...∧dxn| = f(x1(y), ..., xn(y))| det
(
∂xi
∂yj

)
|·|dy1∧...∧dyn|,

i.e., exactly the one needed for the integral to be defined canonically.
This procedure actually makes sense for any manifold, and in the ori-
ented case reduces to integration of top forms described above.

Using partitions of unity, it is not hard to show that the bundle
| ∧n T ∗M | is trivial (check it!). A positive smooth section of this bun-
dle (i.e., positive in every chart) therefore exists and is nothing but a
positive smooth measure on M , and any two such measures differ by
multiplication by a positive smooth function. Moreover, given such a
measure µ and a measurable function f on M such that

∫
M
|f |dµ <∞

(i.e., f ∈ L1(M,µ)), we can define
∫
M
fdµ as usual.

34.2. Nonvanishing forms. Let us say that a top degree continuous
differential form ω on M is non-vanishing if for any x ∈ M , ωx ∈
∧nT ∗xM is nonzero. In this case, ω defines an orientation on M by
declaring a basis v1, ..., vn of TxM right-handed if ω(v1, ..., vn) > 0
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(in particular, there are no non-vanishing top forms on non-orientable
manifolds). Thus we can integrate top differential forms on M , and in
particular ω defines a positive measure µ = µω on M , namely

µ(U) =

∫
U

ω

for an open set U ⊂ M (this integral may be +∞, but is finite if U
is a small enough neighborhood of any point x ∈ M). Thus we can
integrate functions on M with respect to this measure:∫

M

fdµ =

∫
M

fω.

This, of course, only makes sense if f is measurable and
∫
M
|f |dµ <∞,

i.e., if f ∈ L1(M,µ). Note also that if λ ∈ R× then µλω = |λ|µω.

Example 34.2. If M is an open set in Rn with the usual orientation
and ω = dx1∧...∧dxn then

∫
M
ω =

∫
M
dx1...dxn is just the volume ofM .

For this reason top differential forms are often called volume forms,
especially when they are non-vanishing and thus define an orientation
and a measure on M , and in the latter case

∫
M
ω, if finite, is called the

volume of M with respect to ω.

Proposition 34.3. If M is compact and ω is non-vanishing then M
has finite volume under the measure µ = µω, and every bounded mea-
surable (in particular, any continuous) function on M is in L1(M,µ).

Proof. For each x ∈ M choose a neighborhood Ux of x such that
µ(Ux) <∞. The collection of sets Ux forms an open cover of M , so it
has a finite subcover U1, ..., UN , and µ(M) ≤ µ(U1) + ...+µ(UN) <∞.
Then

∫
M
|f |dµ ≤ µ(M)sup|f | <∞ for bounded measurable f . �

34.3. Stokes formula. A central result about integration of differen-
tial forms is

Theorem 34.4. (Stokes formula) If M is an n-dimensional oriented
manifold with boundary and ω a differential n− 1-form on M of class
C1 then ∫

M

dω =

∫
∂M

ω.

In particular, if M is closed (has no boundary) then
∫
M
dω = 0, and

if ω is closed (dω = 0) then
∫
∂M

ω = 0.
When M is an interval in R, this reduces to the fundamental theorem

of calculus. If M is a region in R2, this reduces to Green’s formula. If
M is a surface in R3, this reduces to the classical Stokes formula from
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vector calculus. Finally, if M is a region in R3 then this reduces to the
Gauss formula (Divergence theorem).

The proof of the Stokes formula is not difficult. Namely, by writing
ω as

∑
s fsω for some partition of unity, it suffices to prove the formula

for M being a box in Rn, which easily follows from the fundamental
theorem of calculus.

34.4. Integration on Lie groups. Now let G be a real Lie group of
dimension n. In this case given any ξ ∈ ∧ng∗, we can extend it to a
left-invariant skew-symmetric tensor field (i.e., top differential form) ωξ
on G. Also, if ξ 6= 0 then ω = ωξ is non-vanishing and thus defines an
orientation and a left-invariant positive measure µω on G. Note that ξ
is unique up to scaling by a real number λ ∈ R×. So, since µλω = |λ|µω,
we see that µω is defined uniquely up to scaling by positive numbers.
This measure is called the left-invariant Haar measure and we’ll
denote it just by µL (assuming that the normalization has been chosen
somehow).

In a similar way we can define the right invariant Haar measure
µR on G. One may ask if these measures coincide (or, rather, are
proportional, since they are defined only up to normalization). This
question is answered by the following proposition.

Given a 1-dimensional real representation V of a group G, let |V |
be the representation of G on the same space with ρ|V |(g) = |ρV (g)|,
where ρ : G→ Aut(V ) = R×.

Proposition 34.5. µL = µR if and only if | ∧n g∗| (or, equivalently,
| ∧n g|) is a trivial representation of G.

Proof. It is clear that µL = µR if and only if the left-invariant top
volume form ω on G is also right invariant up to sign. This is equivalent
to saying that ω is conjugation invariant up to sign, i.e., that ω1 ∈
∧ng∗ is invariant up to sign under the action of G. This implies the
statement. �

If µL = µR then G is called unimodular. In this case we have
a bi-invariant Haar measure µ = µL = µR on G (under some
normalization).

In particular, we see that if G has no nontrivial continuous characters
G→ R× then it is unimodular.

Example 34.6. IfG is a discrete countable group thenG is unimodular
and µ is the counting measure: µ(U) = |U | (number of elements in U).

Exercise 34.7. (i) Let us say that a finite dimensional real Lie algebra
g of dimension n is unimodular if ∧ng is a trivial representation of g.
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Show that a connected Lie group G is unimodular if and only if so is
LieG.

(ii) Show that a perfect Lie algebra (such that g = [g, g]) is unimod-
ular. In particular, a semisimple Lie algebra is unimodular.

(iii) Show that a nilpotent (in particular, abelian) Lie algebra is
unimodular.

(iv) Show that if g1, g2 are unimodular then so is g1 ⊕ g2. Deduce
that a reductive Lie algebra is unimodular.

(v) Show that the Lie algebra of upper triangular matrices of size n
is not unimodular for n > 1. Give an example of a Lie algebra g and
ideal I such that I and g/I are unimodular but g is not.

(vi) Give an example of a non-unimodular Lie group G such that its
connected component of the identity G◦ is unimodular (try groups of
the form Z n R).

For a unimodular Lie group G, we will sometimes denote the integral
of a function f with respect to the Haar measure by∫

G

f(g)dg.

Proposition 34.8. A compact Lie group is unimodular.

Proof. The representation of G on | ∧n g∗| defines a continuous homo-
morphism ρ : G → R+. Since G is compact, the image ρ(G) of ρ is
a compact subgroup of R+. But the only such subgroup is the trivial
group. This implies the statement. �

Thus, on a compact Lie group we have a (bi-invariant) Haar measure
µ. Moreover, in this case

∫
G
dµ = Volume(G) < ∞, so we have a

canonical normalization of µ by the condition that it is a probability
measure: ∫

G

dµ = 1.

E.g., for finite groups this normalization is the averaging measure,
which is |G|−1 times the counting measure. This is the normalization
we will use if G is compact.
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