
36. Proof of the Peter-Weyl theorem

36.1. Compact operators and the Hilbert-Schmidt theorem.
To prove the Peter-Weyl theorem, we will use the Hilbert-Schmidt the-
orem – the spectral theorem for compact self-adjoint operators in a
Hilbert space.

Recall that a bounded operator A : H → H on a Hilbert space H
is a linear operator such that for some C ≥ 0 we have ||Av|| ≤ C||v||,
v ∈ H. The smallest constant C with this property is called the norm
of A and denoted ||A||. Recall also that A is compact if there is a
sequence of finite rank operators An : H → H such that ||An−A|| → 0
as n → ∞. In other words, the space K(H) of compact operators on
H is the closure of the space Kf (H) of finite rank operators under the
norm A 7→ ||A|| on the space of bounded operators B(H).

Lemma 36.1. If A is compact then it maps bounded sets to pre-
compact sets (i.e., ones whose closure is compact). In other words,
for every bounded sequence vn ∈ H, the sequence Avn has a conver-
gent subsequence.14

Proof. Let vn ∈ H, ||vn|| ≤ 1. Pick a sequence of finite rank operators
An such that ||An −A|| < 1

n
. Let v1

n be a subsequence of vn such that
A1v

1
n is convergent. Let v2

n be a subsequence of v1
n such that A2v

2
n is

convergent, and so on. Finally, let wn = vnn. Note that

||Avki − Avkj || ≤ ||Akvki − Akvkj ||+ ||A− Ak|| · ||vki − vkj ||

≤ ||Akvki − Akvkj ||+ 2
k
− εk.

for some εk > 0. Since Akv
k
i , i ≥ 1 is convergent, it is a Cauchy

sequence, so there is Mk such that for i, j ≥Mk, ||Akvki −Akvkj || < εk,
hence

||Avki − Avkj || < 2
k
.

But wn is a subsequence of vkn starting from the k-th term. So there
is Nk such that

||Awi − Awj|| < 2
k
, i, j ≥ Nk.

In other words, the sequence Awn is Cauchy. Hence it is convergent,
as desired. �

Proposition 36.2. Let M be a compact manifold with positive smooth
probability measure dx and K(x,y) a continuous function on M ×M .
Then the operator

(Aψ)(y) :=

∫
M

K(x,y)ψ(x)dx.

14The converse statement also holds, but we will not need it.
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on L2(M) is compact.

Proof. By using a partition of unity, the problem can be reduced to
the case when M is replaced by the hypercube [0, 1]n. Let us split it
in mn pixels of sidelength 1

m
and approximate K(x,y) by its maximal

value on each of the m2n pixels in [0, 1]2n. Denote the corresponding
approximation by Km(x,y) and the corresponding operator by Am; it
has rank ≤ mn. Let εm := sup|K−Km|, then ||A−Am|| ≤ εm. Finally,
by Cantor’s theorem,15 K is uniformly continuous, which implies that
εm → 0 as m→∞, hence the statement. �

Recall that a bounded operator A is self-adjoint if (Av,w) =
(v, Aw) for v,w ∈ H.

Theorem 36.3. (Hilbert-Schmidt) Let A : H → H be a compact self-
adjoint operator. Then there is an orthogonal decomposition

H = KerA⊕
⊕̂

λ
Hλ,

where λ runs over non-zero eigenvalues of A, and A|Hλ = λ · Id. More-
over, the spaces Hλ are finite dimensional and the eigenvalues λ are
real and either form a finite set or a sequence going to 0.

Note that for finite rank operators, this obviously reduces to the
standard theorem in linear algebra: a self-adjoint (Hermitian) operator
on a finite dimensional space V with a positive Hermitian form has an
orthogonal eigenbasis, and its eigenvalues are real.

Proof. We first prove the theorem for the operator A2. Let β :=
||A||2 = sup||v||=1(A2v,v) ≥ 0. We may assume without loss of general-
ity that β 6= 0. Let An be a sequence of self-adjoint finite rank operators
converging to A, and let βn = ||An||2, which is also the maximal eigen-
value of A2

n. We have βn → β. Let vn be a sequence of unit vectors
in H such that A2

nvn = βnvn. By Lemma 36.1, the sequence A2vn
has a convergent subsequence, so passing to this subsequence we may
assume that A2vn is convergent to some w ∈ H. Hence A2

nvn → w,
so vn → β−1w. Thus A2w = βw. We can now replace H with the
orthogonal complement of w and iterate this procedure.

As a result we’ll get a sequence of numbers β1 > β2 > .... > 0,
which is either finite (in which case the theorem is obvious) or tends
to 0 (by compactness of A2), and the corresponding sequence of finite
dimensional orthogonal eigenspaces Hβk (also by compactness of A2).
Let v be a vector orthogonal to all Hβk . Then ||Av||2 ≤ βk||v||2 for all

15Cantor’s theorem says that any continuous function on a compact set X is
uniformly continuous.
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k, so if βk is an infinite sequence going to 0, it follows that Av = 0, as
desired.

Now, we have H = KerA2⊕
⊕̂

nHβn , and A preserves this decompo-
sition, acting by 0 on KerA2 and with eigenvalues ±

√
βn on Hβn . This

implies the theorem. �

36.2. Proof of the Peter-Weyl theorem. Let G be a compact Lie
group and hN a delta-like sequence around 1 on G. By replacing hN(x)
with 1

2
(hN(x) + hN(x−1)), we may assume that hN is invariant under

inversion. Define the convolution operators BN on L2(G) by

(BNψ)(y) =

∫
G

hN(x)ψ(x−1y)dx =

∫
G

hN(yz−1)ψ(z)dz.

By Proposition 36.2, these operators are compact (as the kernelK(y, z) :=
hN(yz−1) is continuous). Moreover, they are clearly self-adjoint (as
hN(x) = hN(x−1) and hN is real) and commute with right translations
by G. So by the Hilbert-Schmidt theorem, we have the corresponding
spectral decomposition

L2(G) = KerBN ⊕
⊕̂

λ
HN,λ

invariant under right translations. Since HN,λ are finite dimensional
and invariant under right translations, they are contained in L2

alg(G)

(this is the key step of the proof). Thus the closure L2
alg(G) contains

the image of BN . So for any ψ ∈ L2(G) we can find ψN ∈ L2
alg(G) such

that ||BNψ − ψN || < 1
N

.
Now let ψ ∈ C(G). By Cantor’s theorem, ψ is uniformly continuous.

It follows that BNψ uniformly converges to ψ as N → ∞ (check it!).
Thus

||ψ − ψN || ≤ ||ψ −BNψ||+ ||BNψ − ψN || < ||ψ −BNψ||+ 1
N
→ 0

as N → ∞. So L2
alg(G) contains C(G). But C(G) is dense in L2(G)

(namely, by using a partition of unity this reduces to the case of a box

in Rn, where it is well known). Thus L2
alg(G) = L2(G). This completes

the proof of the Peter-Weyl theorem.

36.3. Existence of faithful representations.

Lemma 36.4. Let G be a compact Lie group and G = G0 ⊃ G1 ⊃ ...
be a nested sequence of closed subgroups without repetitions. Then this
sequence is finite.
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Proof. Assume the contrary, i.e. that it is infinite. The dimensions
must stabilize, so we may assume that dimGn are all the same. Then
K = G◦n is independent on n, and we have a nested sequence

G0/K ⊃ G1/K ⊃ ...

of finite groups, without repetitions. But such a sequence can’t have
length bigger than |G0/K|, contradiction. �

Corollary 36.5. Any compact Lie group has a faithful finite dimen-
sional representation, so it is isomorphic to a closed subgroup of the
unitary group U(n).

Proof. Pick a nontrivial finite dimensional representation V1 of G = G0,
and let G1 be the kernel of this representation. Now pick another
representation V2 of G which is nontrivial as a G1-representation, and
let G2 be the kernel of V2 in G1, and so on. By Lemma 36.4, at
some point we will have a subgroup Gk ⊂ G such that every finite
dimensional representation of G is trivial when restricted to Gk. But
then by the Peter-Weyl theorem, Gk acts trivially on L2(G), so Gk = 1.
Thus V1 ⊕ ...⊕ Vk is a faithful G-representation. �

Remark 36.6. Conversely, any closed subgroup of U(n) is a compact
Lie group, see Exercise 36.13 below.

Remark 36.7. Corollary 36.5 is false for non-compact Lie groups,
even for connected ones. For example, let G be the universal cover of
SL2(R) (it has fiber Z = π1(SL2(R))). Indeed, any finite dimensional
continuous representation V of G is smooth, so gives a finite dimen-
sional representation of the Lie algebra sl2(R), hence of sl2(C), which
is therefore a direct sum of Ln. So V exponentiates to SL2(C), and
thus its restriction to sl2(R) exponentiates to SL2(R), so is not faithful
for G.

Exercise 36.8. Show that any compact Lie group admits a structure
of a metric space such that the metric is invariant under left and right
translations.

36.4. Density in continuous functions. In fact, we can now prove
an even stronger version of the Peter-Weyl theorem. For this note that
L2

alg(G) is a unital algebra.

Theorem 36.9. The algebra L2
alg(G) is dense in the algebra of contin-

uous functions C(G) in the supremum norm

||f || = max
g∈G
|f(g)|.
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Proof. Consider the closure A of L2
alg(G) inside C(G) (under the supre-

mum norm). Then A is a closed subalgebra invariant under complex
conjugation, and by Corollary 36.5 it separates points on G. Therefore,
by the Stone-Weierstrass theorem, A = C(G). �

Remark 36.10. If G = S1, this is the usual theorem of uniform ap-
proximation of continuous functions on the circle by trigonometric poly-
nomials. If we restrict to even functions, this will be just the usual
Weierstrass theorem on approximation of continuous functions on an
interval by polynomials.

Corollary 36.11. Let A ⊂ L2
alg(G) be a left-invariant subalgebra stable

under complex conjugation and separating points on G. Then A =
L2

alg(G).

Proof. By the Stone-Weierstrass theorem, A is dense in C(G) in uni-
form metric, hence in L2(G) in the Hilbert norm. Thus for every ir-
reducible representation V of G, HomG(V,A) must be dense in the
space HomG(V, L2(G)left) = V ∗. So HomG(V,A) = V ∗, hence A =
L2

alg(G). �

Let us call a finite dimensional representation V of a group G uni-
modular if ∧dimV V ∼= C is the trivial representation.

Proposition 36.12. Let V be a faithful finite dimensional representa-
tion of a compact Lie group G. Then:

(i) If V is unimodular then the subalgebra A ⊂ C(G) generated by
matrix coefficients f(ρV (g)v), v ∈ V , f ∈ V ∗, coincides with L2

alg(G).
(ii) If Y an irreducible finite dimensional representation of G, then

for some n,m, the representation Y is contained as a direct summand
in V ⊗n ⊗ V ∗⊗m. Moreover, if V is unimodular then one may take
m = 0.

Proof. (i) Let d := dim(V ). It is clear that A ⊂ L2
alg(G) is G-invariant

and A separates points on G, since V is faithful. Also G is a closed
subgroup of SU(V ) ⊂ V ⊗ V ∗, and for a unitary matrix with determi-
nant 1 one has g† = g−1 = ∧d−1g. Thus A is invariant under complex
conjugation. So by Corollary 36.11 A = L2

alg(G).
(ii) It suffices to establish the unimodular case since in general we

may replace V with the unimodular representation V ⊕V ∗. But then by
(i), L2

alg(G) is a quotient of S(V ⊗V ∗), which implies the statement. �

Exercise 36.13. In this exercise you will show that a closed subgroup
of a Lie group G is a closed Lie subgroup (Theorem 3.13).

Clearly, it suffices to assume that G is connected. Let g = LieG and
H ⊂ G be a closed subgroup.
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(i) Let h be the set of vectors a ∈ g such that there is a sequence
hn ∈ H, hn → 1, and nonzero real numbers cn such that

cn log hn → a, n→∞.
This is clearly a subset of g invariant under scalar multiplication (since
we can rescale cn). Show that h consists of all a ∈ g for which the
1-parameter subgroup exp(ta) is contained in H. (Consider the ele-

ments h
[cn]
n , where [c] is the floor of c).

(ii) Show that h is a subspace of g. (For a, b ∈ h consider the elements
hN := exp( a

N
) exp( b

N
) to show that a+ b ∈ h).

(iii) Show that h is a Lie subalgebra of g. (For a, b ∈ h consider the
elements

hN := exp( a
N

) exp( b
N

) exp(− a
N

) exp(− b
N

)

to show that [a, b] ∈ h).
(iv) Let H0 ⊂ G be the connected Lie subgroup with Lie algebra h.

Given a sequence hN ∈ H, hN → 1, show that hN ∈ H0 for N � 1.
To this end, pick a transverse slice S ⊂ G to H0 near 1, and write
hN = sNhN,0, where hN,0 ∈ H0, sN ∈ S. Look at the asymptotics of
log sN as N →∞, and deduce that sN = 1 for large enough N .

(v) Conclude that G/H is a manifold, and S defines a local chart
on this manifold near 1. Deduce that H is a closed Lie subgroup of G,
and H0 = H◦.
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