
40. Forms of semisimple Lie algebras over an arbitrary field

40.1. Automorophisms of semisimple Lie algebras. We showed
in Corollary 17.10 that for a complex semisimple g, the group Aut(g)
is a Lie group with Lie algebra g. We also showed in Theorem 20.10
that its connected component of the identity Aut(g)◦ acts transitively
on the set of Cartan subalgebras in g. This group is called the adjoint
group attached to g, and we will denote it by Gad.

Let h ⊂ g be a Cartan subalgebra, and H ⊂ Gad be the correspond-
ing connected Lie subgroup. This subgroup can be viewed as the group
of linear operators g → g which act by 1 on h and by eα(x), x ∈ h, on
each gα. Thus the exponential map h → H defines an isomorphism
h/2πiP∨ ∼= H. The group H is called the maximal torus of Gad

corresponding to h.

Proposition 40.1. The normalizer N(H) of H in Gad coincides with
the stabilizer of h and contains H as a normal subgroup, so that N(H)/H
is naturally isomorphic to the Weyl group W .

Proof. First note that since SL2(C) is simply connected, for any simple
root αi we have a homomorphism ηi : SL2(C) → Gad which identifies
Lie(SL2(C)) with the sl2-subalgebra of g corresponding to this simple
root. Let

(40.1) Si := ηi

((
0 1
−1 0

))
.

Given w ∈ W , pick a decomposition w = si1 ...sin , and let w̃ :=
Si1 ...Sin ∈ Gad.19 Note that w̃ acts on h by w. So if w = w1w2 ∈ W
then w̃ = w̃1w̃2h, where h preserves the root decomposition and acts
trivially on h. Thus if h|gαj = exp(bj) then h = exp(

∑
j bjω

∨
j ) ∈ H.

So the elements w̃ and H generate a subgroup N ⊂ N(H) of Gad such
that N/H ∼= W .

It remains to show that N(H) = N . To this end, for x ∈ N(H),
let α′i = x(αi). Then α′i form a system of simple roots, so there exists
w ∈ W such that w(α′i) = αp(i), where p is some permutation. Then
w̃x(αi) = αp(i). So w̃x defines a Dynkin diagram automorphism of g.
Since this automorphism is defined by an element of Gad, it stabilizes all
fundamental representations, so p = id, hence w̃x ∈ H, as claimed. �

In particular, we see that H is a maximal commutative subgroup of
Gad, hence the terminology “maximal torus”.

19The element w̃ in general depends on the decomposition of w as a product of
simple reflections. One can show it does not if we take only reduced decompositions,
but we will not need this.
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Remark 40.2. Note that in general N(H) is not isomorphic to WnH:
it can be a non-split extension of W by H.

Another obvious subgroup of Aut(g) is the finite group Aut(D) of
automorphisms of the Dynkin diagram of g, which just permutes the
generators ei, fi, hi in the Serre presentation. Thus we have a natural
homomorphism

ξ : Aut(D)nGad → Aut(g),

which is the identity map on the connected components of 1. This
homomorphism is clearly injective, since the center of Gad is trivial and
any nontrivial element of Aut(D) nontrivially permutes fundamental
representations of g.

Proposition 40.3. ξ is an isomorphism.

Proof. Our job is to show that ξ is surjective, i.e. for a ∈ Aut(g) show
that a ∈ Imξ. By Theorem 20.10, we may assume without loss of
generality that a preserves a Cartan subalgebra h ⊂ g (indeed, this
can be arranged by multiplying by an element of Gad, since Gad acts
transitively on Cartan subalgebras of g). Then by multiplying by an
element of Aut(D) ·N(H) we can make sure that a acts trivially on h
and gαi . Then a = 1, which implies the proposition. �

40.2. Forms of semisimple Lie algebras. We have classified semisim-
ple Lie algebras over C, but what about other fields (say of character-
istic zero), notably R (the case relevant to the theory of Lie groups)?

To address this question, note that the Serre presentation of a semisim-
ple Lie algebra is defined over Q, so it defines a Lie algebra of the same
dimension over any such field, by imposing the same generators and
relations. Such a Lie algebra is called split. So for example, over
an algebraically closed field of characteristic zero, any semisimple Lie
algebra is automatically split.

Now let g be a semisimple Lie algebra over a field K of characteristic
zero which splits over a Galois extension L of K, i.e., g ⊗K L = gL is
split (corresponds to a Dynkin diagram via Serre’s presentation). Can
we classify such g?

To this end, let Γ = Gal(L/K) be the Galois group of L over K and
observe that we can recover g as the subalgebra of invariants gΓ

L. So
g is determined by the action of Γ on the split semisimple Lie algebra
gL. Note that this action is twisted-linear, i.e., additive and g(λx) =
g(λ)g(x) for x ∈ gL, λ ∈ L, g ∈ Γ. The simplest example of such an
action is the action ρ0(g) which preserves all the generators ei, fi, hi
and just acts on the scalars, which corresponds to the split form of g.
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So any twisted-linear action ρ can be written as

ρ(g) = η(g)ρ0(g)

for some map

η : Γ→ Aut(gL).

In order that ρ be a homomorphism, we need

η(gh)ρ0(gh) = η(g)ρ0(g)η(h)ρ0(h),

which is equivalent to

η(gh) = η(g) · g(η(h)).

In other words, η is a 1-cocycle. We will denote the Lie algebra
attached to such cocycle η by gη.

It remains to determine when gη1 is isomorphic to gη2 . This will
happen exactly when the corresponding representations ρ1 and ρ2 are
isomorphic, i.e., there is a ∈ Aut(gL) such that ρ1(g)a = aρ2(g), i.e.,

η1(g)ρ0(g)a = aη2(g)ρ0(g),

or

η1(g) = aη2(g)g(a)−1.

Two 1-cocycles related in this way are called cohomologous (obvi-
ously, an equivalence relation), and the set of equivalence classes of co-
homologous cocycles is called the first Galois cohomology of Γ with
coefficients in Aut(gL) and denoted by H1(Γ,Aut(gL)). Note that this
is cohomology with coefficients in a nonabelian group, so it is just a set
and not a group.

So we obtain

Proposition 40.4. Semisimple Lie algebras g over K with fixed gL
are classified by the first Galois cohomology H1(Γ,Aut(gL)).

Remark 40.5. There is nothing special about semisimplicity or about
Lie algebras here – this works for any kind of linear algebraic structures,
such as associative algebras, algebraic varieties, schemes, etc.

40.3. Real forms of a semisimple Lie algebra. Let us now make
this classification more concrete in the case K = R, L = C, which is
relevant to classification of real semisimple Lie groups. In this case,
Γ = Z/2 generated by complex conjugation and, as we have shown,
Aut(gL) = Aut(D) n Gad, where D is the Dynkin diagram of g and
Gad is the corresponding connected adjoint complex Lie group. Also
since we always have η(1) = 1, the cocycle η is determined by the
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element s = η(−1) ∈ Aut(D) n Gad. Moreover, s must satisfy the
cocycle condition

ss = 1

and the corresponding real Lie algebra, up to isomorphism, depends
only on the cohomology class of s, which is the equivalence class modulo
transformations s 7→ asa−1. We thus obtain the following theorem.

Theorem 40.6. Real semisimple Lie algebras whose complexification
is g (i.e., real forms of g) are classified by s ∈ Aut(D) n Gad such
that ss = 1 modulo equivalence s 7→ asa−1, a ∈ Aut(g), where complex
conjugation acts trivially on Aut(D).

We denote the real form of g corresponding to s by g(s). Namely,
g(s) = {x ∈ g : x = s(x)}. For example, g(1) is the split form, consisting
of real x ∈ g, i.e., such that x = x.

Alternatively, one may define the antilinear involution σs(x) =

s(x), and g(s) is the set of fixed points of σs in g.
In particular, such s defines an element s0 ∈ Aut(D) such that

s2
0 = 1. Note that the conjugacy class of s0 is invariant under equiva-

lences. The element s0 permutes connected components of D, preserv-
ing some and matching others into pairs. Thus every semisimple real
Lie algebra is a direct sum of simple ones, and each simple one either
has a connected Dynkin diagram D (i.e., the complexified Lie algebra
g is still simple) or consists of two identical components (i.e., the com-
plexified Lie algebra is g = a ⊕ a for some simple complex a). In the
latter case s = (g, g−1)s0 where s0 is the transposition and g ∈ Aut(a),
so s is cohomologous to s0 by taking a = (g, 1). Thus in this case
g(s) = g(s0) = a, a complex simple Lie algebra regarded as a real Lie
algebra.

It remains to consider the case when D is connected, i.e., g is simple.

Definition 40.7. (i) A real form g(s) of a complex simple Lie algebra
g is said to be inner to g(s′) if s′ = gs up to equivalence, where g ∈ Gad

(i.e., s and s′ differ by an inner automorphism). The inner class of
g(s) is the collection of all real forms inner to g(s). In particular, an
inner form is a form inner to the split form.

(ii) g(s) is called quasi-split if s = s0 ∈ Aut(D) (modulo equiva-
lence).

So in particular any real form is inner to a unique quasi-split form,
and a real form that is both inner and quasi-split is split.

Exercise 40.8. Let gR be a real semisimple Lie algebra and hR ⊂ gR
a Cartan subalgebra (the centralizer of a regular semisimple element
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of gR). Let h ⊂ g be their complexifications, and H ⊂ Gad the cor-
responding complex Lie groups. Let K be the kernel of the natural
map of Galois cohomology sets H1(Z/2, N(H)) → H1(Z/2, Gad) (i.e.,
the preimage of the unit element), where Z/2 acts on Gad by complex
conjugation associated to the real form gR of g.

(i) Show that conjugacy classes of Cartan subalgebras in gR are bi-
jectively labeled by elements of K, with the unit element corresponding
to hR.

(ii) Show that K is a finite set.20

20For classical Lie algebras the set K will be computed explicitly in Exercise
44.18. The explicit answer is known for exceptional Lie algebras as well, but we
will not discuss it here.
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