
42. Real forms of exceptional Lie algebras

42.1. Equivalence of Vogan diagrams. For exceptional Lie alge-
bras, it is convenient to make a more systematic use of Vogan dia-
grams (we could do this also for classical Lie algebras, but there we
can also do everything explicitly using linear algebra). Recall that any
real form comes from a certain Vogan diagram, but different Vogan
diagrams may be equivalent, i.e., define the same real form. So our job
is to describe this equivalence relation.

First consider the case of the compact inner class. In this case the
Vogan diagram is just the Dynkin diagram with black and white ver-
tices (i.e., no matched vertices). Moreover, the case of all white vertices
corresponds to the compact form, while the case when there are black
vertices to noncompact forms. So let us focus on the latter case. Thus
we have an element θ ∈ H ⊂ Gad such that θ 6= 1 but θ2 = 1, but we
are allowed to conjugate θ by elements of N(H), i.e., transform it by
elements of the Weyl group W . So how do simple reflections si act on
θ (in terms of its Vogan diagram)?

The Vogan diagram of θ is determined by the numbers αj(θ) = ±1:
if this number is 1 then j is white, and if it is −1 then j is black. Now,
we have

αj(si(θ)) = (siαj)(θ) = (αj − aijαi)(θ) = αj(θ)αi(θ)
−aij .

This equals αj(θ) unless αi(θ) = −1 and aij is odd. Thus we obtain
the following lemma.

Lemma 42.1. Suppose the Vogan diagram of θ contains a black vertex
i. Then changing the colors of all neighbors j of i such that aij is odd
gives an equivalent Vogan diagram.

The same lemma holds, with the same proof, in the case of another
inner class (which for exceptional Lie algebras is possible only for E6),
except we should ignore the vertices matched into pairs (so i and j
should be θ-stable vertices).

42.2. Classification of real forms. We are now ready to classify real
forms of exceptional Lie algebras.

1. Type G2. We have two color configurations up to equivalence:
◦◦ and (•◦, ◦•, ••). The first corresponds to the compact form Gc

2 and

the second to the split form Gspl
2 . It is easy to check that in the second

case k = sl2⊕ sl2 (indeed, it has dimension 6 and rank 2). So we don’t
have other real forms.

2. Type F4. Let α1, α2 be short roots and α3, α4 long roots. Then
all nonzero off-diagonal aij are odd except a23 = −2. So we may
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change the colors of the neighbors of any black vertex, except that if
the black vertex is 2 then we should not change the color of 3. By such
changes, we can bring the colors at 3, 4 into the form ◦◦ or ◦•, and
then bring the colors at 1, 2 to the form ◦◦ or •◦. So we are down to
four configurations:

◦ ◦ ◦◦, • ◦ ◦◦, ◦ ◦ ◦•, • ◦ ◦•

Moreover, the fourth case, • ◦ ◦•, is actually equivalent to the third
one, ◦ ◦ ◦•. This is seen from the chain of equivalences

◦ ◦ ◦• = ◦ ◦ •• = ◦ • •◦ = • ◦ •◦ = • • •• = • • ◦• = • ◦ ◦•

Thus we are left with three variants,

◦ ◦ ◦◦, • ◦ ◦◦, ◦ ◦ ◦ • .

The first configuration, ◦ ◦ ◦◦, corresponds to the compact form F c
4 .

In the second case, •◦◦◦, α(θ) = −1 exactly when the root α has half-
integer coordinates (recall that there are 16 such roots, see Subsection
23.3). Thus the Lie algebra k is comprised by the root subspaces for
roots with integer coordinates and the Cartan subagebra, i.e., k = so9

(type B4). Also in this case p = S, the spin representation of so9. This
is not the split form, since for the split form dim k should be 24 and
here it is 36. Let us denote this form F 1

4 .

Thus, the third case, ◦ ◦ ◦•, must be the split form, F spl
4 . We see

that k contains the 21-dimensional Lie algebra sp6 = C3 (generated by
the simple roots α1, α2, α3), so given that k has rank 4 and dimension
24, we have k = sp6 ⊕ sl2.

3. Type E6, split inner class. In this case in the Vogan diagram
two pairs of vertices are connected, so we can only color the two re-
maining vertices. So we have two equivalence classes of colorings – ◦◦
and (••, •◦, ◦•). Let us show that they correspond to two different real
forms. Consider first the ◦◦ case. In this case θ is simply the diagram
automorphism, so we have k = F4, as the Dynkin diagram of F4 is ob-
tained by folding the Dynkin diagram of E6 (check it!). This is not the
split form since dim k = 52, but for the split form it is 36; denote this
form by E1

6 . So the split form Espl
6 corresponds to the second equiv-

alence class (••, •◦, ◦•). One can show that in this case k = sp8, i.e.,
type C4 (check it!).

4. E6, E7, E8, compact inner class. In this case the Vogan dia-
gram has no arrows and just is the usual Dynkin diagram with vertices
colored black and white. One option is that all vertices are white, this
corresponds to the compact forms Ec

6, E
c
7, E

c
8 (θ = 1). If there is at

least one black vertex, then by using equivalence transformations we
226



can make sure that the nodal vertex is black. Then flipping the color
of its neighbors if needed, we can make sure that the vertex on the
shortest leg is also black. This allows us to change the color of the
nodal vertex whenever we want (as long as the vertex on the shortest
leg remains black).

We now want to unify the coloring of the long leg. We can bring the
long leg to the following normal forms:
E6: ◦◦, •◦ = •• = ◦•. But by flipping the colors on the neighbors of

the nodal vertex, we see that •◦ and ◦◦ are equivalent, so all patterns
are equivalent to ••.
E7: ◦ ◦ ◦, • ◦ ◦ = • • ◦ = ◦ • • = ◦ ◦ •, • ◦ • = • • • = ◦ • ◦. But by

flipping the colors on the neighbors of the nodal vertex, we see that all
patterns are equivalent to • • •.
E8: ◦ ◦ ◦◦, • ◦ ◦◦ = • • ◦◦ = ◦ • •◦ = ◦ ◦ •• = ◦ ◦ ◦•,

• ◦ ◦• = • ◦ •• = • • •◦ =

{
• ◦ •◦
◦ • ◦◦

= • • •• = • • ◦• = ◦ • •• =

{
◦ • ◦•
◦ ◦ •◦

.

But by flipping the colors on the neighbors of the nodal vertex, we see
that all patterns are equivalent to • • ••.

Thus we can always arrange all vertices on the long leg except pos-
sibly the neighbor of the node to be black, while the short leg and
the node also remain black. In addition, as seen from the pictures
above, in the cases E6 and E8 these two configurations are equivalent
by transformations inside the leg.

Now we can consider the configurations on the remaining leg (of
length 2). The equivalence classes are ◦◦ and •◦ = ◦• = ••.

So in the case of E6 and E8 we get just two cases. It turns out that
both for E6 and E8 these give two different real forms, one of which is
split in the case of E8.

Consider first the E6 case. One option is to take the Vogan diagram
with just one black vertex, at the end of the long leg:

◦ ◦ ◦ ◦ •
◦

Then k = so10 ⊕ so2 (as the black vertex corresponds to a minuscule
weight). We denote this real form by E2

6 . On the other hand, if there
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is only one black vertex on the short leg,

◦ ◦ ◦ ◦ ◦
•

then k contains sl6, so this real form is different (as sl6 is not a Lie
subalgebra of so10). It’s not difficult to show that in this case k =
sl6 ⊕ sl2. We denote this real form by E3

6 .
Now consider the E8 case. Again one option is the Vogan diagram

with just one black vertex, at the end of the long leg:

◦ ◦ ◦ ◦ ◦ ◦ •
◦

Then k contains E7, so this is not the split form since dim k ≥ 133 but
for the split form it should be 120. In fact, it is not hard to see that
k = E7 ⊕ sl2. We denote this real form by E1

8 . The second form is the

split one, Espl
8 . It can, for example, be obtained if we color black only

one vertex, at the end of the middle leg:

• ◦ ◦ ◦ ◦ ◦ ◦
◦

In fact, it’s not hard to show that the algebra k in this case is so16.
Finally, consider the E7 case. In this case we have four options, but

two of them end up being equivalent. Namely, we have

• ◦ • ◦ • •
• =

• • • • • •
◦ =

◦ • ◦ • • •
◦ =

◦ • • • ◦ •
◦ =

◦ ◦ • ◦ ◦ •
• =

◦ ◦ • ◦ • •
• .

So we are left with three cases, which all turn out different. The first
one is just one black vertex at the end of the long leg:

◦ ◦ ◦ ◦ ◦ •
◦

In this case k contains E6, so this is not the split form, as dim k ≥ 78
but for the split form it is 63. It is easy to see that k = E6 ⊕ so2 in
this case (the black vertex corresponds to the minuscule weight). We
denote this real form by E1

7 . The second option is a black vertex at the
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end of the middle leg:

• ◦ ◦ ◦ ◦ ◦
◦

Then k contains so12, of dimension 66, so again not the split form. One
can show that for this form k = so12⊕sl2. We denote it by E2

7 . Finally,

the split form Espl
7 is obtained when one colors black just the end of

the short leg:

◦ ◦ ◦ ◦ ◦ ◦
•

Then k contains sl7 and one can show that k = sl8.

Exercise 42.2. Work out the details of computation of k for real forms
of exceptional Lie algebras.

Exercise 42.3. Let g be the complex Lie algebra of type G2, and G the
corresponding Lie group. Let sl3 ⊂ g be the Lie subalgebra generated
by long root elements and SU(3) ⊂ Gc be the corresponding subgroup.
Show that Gc/SU(3) ∼= S6. Use this to construct embeddings Gc ↪→
SO(7) and Gc ↪→ Spin(7).

Hint. Consider the 7-dimensional irreducible representation of Gc.
Show that it is of real type (obtained by complexifying a real represen-
tation V ) and then consider the action of Gc on the set of unit vectors
in V under a positive invariant inner product. Then compute the Lie
algebra of the stabilizer and use that the sphere is simply connected.

Exercise 42.4. Keep the notation of Exercise 42.3. Show that one has
Spin(7)/Gc = S7 and SO(7)/Gc = RP7.

Hint. Let S be the spin representation of Spin(7). Use that it
is of real type (this can be deduced from Proposition 32.14) and then
consider the action of Spin(7) on vectors of norm 1 in SR. Compute the
Lie algebra of the stabilizer and use that the sphere is simply connected.

Remark 42.5. More generally, one can classify automorphisms of a
simple complex Lie algebra g of arbitrary finite order. This was done
by V. Kac using diagrams now known as Kac diagrams, see [OV],
Subsection 4.7. In particular, this approach can be applied to classify
automorphisms of order 2 which correspond to real forms of g, see [OV],
Subsection 5.5.
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