
43. Classification of connected compact and complex
reductive groups

43.1. Connected compact Lie groups. We are now ready to classify
connected compact Lie groups. We start with the following exercise.

Exercise 43.1. Show that if Kc is a compact Lie group then k :=
Lie(Kc)C is a reductive Lie algebra.

Hint. First use integration over Kc to show that k has a Kc-invariant
positive definite Hermitian form. Then show that if I is an ideal in k
then its orthogonal complement I⊥ is also an ideal.

Now we can proceed. We already know many examples of compact
connected Lie groups - namely tori (S1)r and also groups Gc

ad where
Gad = Aut(g)◦ for a semisimple Lie algebra g. We can also consider
products (S1)r × Gc

ad. Exercise 44.8 shows that the Lie algebra of
any compact Lie group is isomorphic to one of such a product, so this
should be an exhaustive list up to taking coverings and quotients by
finite central subgroups. It thus remains to understand the nature of
these coverings, which reduces to understanding π1(Gc

ad). So our next
task is to compute this group. In particular, we will show that it is
finite.

So let g be a semisimple complex Lie algebra andG the corresponding
simply connected complex Lie group (the universal cover of Gad). Let
Z be the kernel of the covering map G → Gad, which is also π1(Gad)
and the center of G. The finite dimensional representations of G are
the same as those of g, so the irreducible ones are Lλ, λ ∈ P+. The
center Z acts by a certain character χλ : Z → C× on each Lλ. Since
Lλ+µ is contained in Lλ ⊗ Lµ, we have χλ+µ = χλχµ, so χ uniquely
extends to a homomorphism χ : P → Hom(Z,C×). Also, by definition
χθ = 1 (since the maximal root θ is the highest weight of the adjoint
representation on which Z acts trivially).

Now, by Exercise 30.15, if λ(hi) are sufficiently large then for every
root α of g we have Lλ+α ⊂ Lλ ⊗ g. Thus χλ+α = χλ, hence χα = 1.
So χ is trivial on the root lattice Q, i.e., defines a homomorphism
P/Q→ Hom(Z,C×), or, equivalently, Z → P∨/Q∨.

Note that the same argument works for Gc
ad, its universal cover Gc,

and its center Zc instead of Gad, G, Z.

Proposition 43.2. A representation Lλ of g of highest weight λ ∈ P+

lifts to a representation of Gad (or, equivalently, Gc
ad) if and only if

λ ∈ P+ ∩Q.

Proof. We have just shown that if λ ∈ P+ ∩ Q then Lλ lifts. The
converse follows from Proposition 36.12 applied to V = g. �

229



Now we can proceed with the classification of semisimple compact
connected Lie groups. We begin with the following lemma from topol-
ogy (see e.g. [M], Supplementary exercises to Chapter 13, p.500, Exer-
cise 4).

Lemma 43.3. If X is a connected compact manifold then the funda-
mental group π1(X) is finitely generated.

Proof. (sketch) Cover X by small balls, pick a finite subcover, connect
the centers. We get a finite graph whose fundamental group maps
surjectively to π1(X). �

Theorem 43.4. Let g be a semisimple complex Lie algebra and Gc
ad the

corresponding adjoint compact group. Then π1(Gc
ad) = P∨/Q∨. Thus

the universal cover Gc of Gc
ad is a compact Lie group.

Proof. Let Gc
∗ be a finite cover of Gc

ad, and ZGc∗ ⊂ Gc
∗ be the kernel of

the projection Gc
∗ → Gc

ad. Then finite dimensional irreducible repre-
sentations of Gc

∗ are a subset of finite dimensional irreducible represen-
tations of g, labeled by a subset P+(Gc

∗) ⊂ P+ containing P+∩Q (as by
Proposition 43.2 these are highest weights of representations of Gc

ad).
Let P (Gc

∗) ⊂ P be generated by P+(Gc
∗). Let χλ be the character by

which ZGc∗ acts on the irreducible representation Lλ of Gc
∗. By Propo-

sition 43.2, χ defines an injective homomorphism ξ : P (Gc
∗)/Q→ Z∨Gc∗ .

Since Gc
∗ is compact, by the Peter-Weyl theorem this homomorphism

is surjective, hence is an isomorphism.
It remains to show that π1(Gc

ad) is finite (then we can take Gc
∗ to

be the universal cover of Gc
ad, in which case P (Gc

∗) = P , so we get
P/Q ∼= Z∨, hence Z = π1(Gad) ∼= P∨/Q∨). To this end, note that
by Lemma 43.3, π1(Gc

ad) is a finitely generated abelian group. Take a
subgroup of finite index N in π1(Gc

ad) and let Gc
∗ be the corresponding

cover. As we have shown, then N = |ZGc∗ | ≤ |P (Gc
∗)/Q| ≤ |P/Q|.

But for finitely generated abelian groups this implies that the group is
finite. �

This immediately implies the following corollary.

Corollary 43.5. (i) If g is a simple complex Lie algebra then the simply
connected Lie group Gc corresponding to the Lie algebra gc is compact,
and its center is P∨/Q∨, which also equals π1(Gc

ad).
(ii) Let Γ ⊂ P∨/Q∨ be a subgroup. Then the irreducible representa-

tions of G/Γ are Lλ such that λ defines the trivial character of Γ.
(iii) Let Gc

i be the simply connected compact Lie group corresponding
to a simple summand gi of a semisimple Lie algebra g = ⊕ni=1gi. Then
any connected Lie group with Lie algebra gc is compact and has the
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form (
∏n

i=1 G
c
i)/Z, where Z = π1(Gc) is a subgroup of

∏
i Zi, and Zi =

P∨i /Q
∨
i are the centers of Gc

i . Moreover, every semisimple connected
compact Lie group has this form.

In particular, it follows that simply connected semisimple compact
Lie groups are of the form

∏n
i=1 G

c
i , where Gc

i are simply connected and
simple.21

Corollary 43.6. Any connected compact Lie group is the quotient of
T × C by a finite central subgroup, where T = (S1)m is a torus and C
is compact, semisimple and simply connected.

Proof. Let L be such a group, l its Lie algebra. It is reductive, so we can
uniquely decompose l as t⊕ c where t is the center and c is semisimple.
Let T,C ⊂ L be the connected Lie subgroups corresponding to t, c. It
is clear that LieT = t = LieT , so T is closed, hence compact, hence
a torus. Also C is compact, so also closed, with LieC = c. Thus we
have a surjective homomorphism T × C → L whose kernel is finite, as
desired. �

43.2. Polar decomposition. Now let us study the structure of the
Lie subgroup Gad,θ ⊂ Gad corresponding to the real form gθ ⊂ g of a
semisimple complex Lie algebra g, namely, the group of fixed points of
the antiholomorphic involution ωθ = ω ◦ θ in Gad. It is clear that this
subgroup is closed (LieGad,θ = gθ = LieGad,θ), but it may be discon-
nected: e.g. if gθ = sl2(R) then Gad = PGL2(C), so Gad,θ = PGL2(R),
the quotient of GL2(R) by scalars, which has two components. How-
ever, the results below apply mutatis mutandis to the connected group
G◦ad,θ.

Let Kc ⊂ Gad,θ be the subgroup of elements acting on g by unitary
operators); namely, Kc is the set of fixed points of ωθ on Gc

ad.22 This
a closed (possibly disconnected) subgroup of Gc

ad since LieKc = kc =
LieKc, hence it is compact. Also let Pθ := exp(pθ) ⊂ Gad,θ (note that
it is not a subgroup!). Since pθ acts on g by Hermitian operators, the
exponential map exp : pθ → Pθ is a diffeomorphism, so Pθ ⊂ Gad,θ

is a closed embedded submanifold (the set of elements acting on g by
positive Hermitian operators).

21We say that a connected Lie group G is simple if so is its Lie algebra. Thus
this does not quite mean that G is simple as an abstract group: it may have a
finite center (e.g., G = SU(2) or SL2(C)). For this reason such “simple” groups
are sometimes called almost simple. However, the corresponding adjoint group
Gad is indeed simple as an abstract group.

22Of course, the group Kc depends on θ, but for simplicity we will not indicate
this dependence in the notation.
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Theorem 43.7. (Polar decomposition for Gad,θ) The multiplication
map µ : Kc×Pθ → Gad,θ is a diffeomorphism. Thus Gad,θ

∼= Kc×Rdim p

as a manifold (in particular, Gad,θ is homotopy equivalent to Kc).

Proof. Recall that every invertible complex matrix A can be uniquely
written as a product A = UARA, where U = UA is a unitary matrix
and R = RA a positive Hermitian matrix, namely R = (A†A)1/2, U =
A(A†A)−1/2 (the classical polar decomposition). Let us consider this
decomposition for g ∈ Gad,θ ⊂ Aut(g) ⊂ GL(g). Since g†g is an
automorphism of g with positive eigenvalues, so is (g†g)1/2 = Rg, so
Rg ∈ Pθ (a positive self-adjoint element in Gad,θ). Also since Ug is
unitary, it belongs to Kc. Thus the regular map g 7→ (Ug, Rg) is the
inverse to µ (using the uniqueness of the polar decomposition). �

In particular, applying Theorem 43.7 to complex Lie groups, we get

Corollary 43.8. The multiplication map defines a diffeomorphism

Gc
ad ×P ∼= Gad,

where P is the set of elements of Gad acting on g by positive Hermitian
operators. In particular, π1(Gad) = π1(Gc

ad) = P∨/Q∨.

Corollary 43.9. If G is a semisimple complex Lie group then the cen-
ter Z of G is contained in Gc, i.e., coincides with the center Zc of Gc.
Thus the restriction of finite dimensional representations from G to Gc

is an equivalence of categories.

This also implies that by taking coverings the polar decomposition
applies verbatim to the real form Gθ = Gωθ ⊂ G of any connected
complex semisimple Lie groupG instead ofGad. We note, however, that
if G is simply connected, then G◦θ need not be. In fact, its fundamental
group could be infinite. The simplest example is G = SL2(C), then
for the split form Gθ = SL2(R), which as we showed is homotopy
equivalent to SO(2) = S1, i.e. its fundamental group is Z.

Example 43.10. 1. For Gθ = SLn(C) we have Kc = SU(n) and Pθ
is the set of positive Hermitian matrices of determinant 1, so the polar
decomposition in this case is the usual polar decomposition of complex
matrices.

2. For Gθ = SLn(R) we have Kc = SO(n) and Pθ is the set of posi-
tive symmetric matrices of determinant 1, so the polar decomposition
in this case is the usual polar decomposition of real matrices.

43.3. Connected complex reductive groups.
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Definition 43.11. A connected complex Lie group G is reductive if
it is of the form ((C×)r × Gss)/Z where Gss is semisimple and Z is a
finite central subgroup. A complex Lie group G is reductive if G◦ is
reductive and G/G◦ is finite.

Example 43.12. GLn(C) = (C× × SLn(C))/µn is reductive.

It is clear that the Lie algebra LieG of any complex reductive Lie
group G is reductive, and any complex reductive Lie algebra is the Lie
algebra of a connected complex reductive Lie group. However, a simply
connected complex Lie group with a reductive Lie algebra need not be
reductive (e.g. G = C).

If G = ((C×)r ×Gss)/Z is a connected complex reductive Lie group
then by Corollary 43.9, Z ⊂ (S1)r × Gc

ss ⊂ (C×)r × Gss, so we can
define the compact subgroup Gc ⊂ G by Gc := ((S1)r ×Gc

ss)/Z. Then
it is easy to see that restriction of finite dimensional representations
from G to Gc is an equivalence, so representations of G are completely
reducible. The irreducible representations are parametrized by col-
lections (n1, ..., nr, λ), λ ∈ P+(Gss), ni ∈ Z, which define the trivial
character of Z.

43.4. Linear groups. A connected Lie group G (real or complex) is
called linear if it can be realized as a Lie subgroup of GLn(R), re-
spectively GLn(C). We have seen that any complex semisimple group
is linear. However, for real semisimple groups this is not so (e.g. the
universal cover of SL2(R) is not linear, see Exercise 11.20). In fact, we
see that we can characterize connected real semisimple linear groups
as follows.

Proposition 43.13. Suppose gθ is a real form of a semisimple complex
Lie algebra g, G a connected complex Lie group with Lie algebra g, and
Gθ = Gωθ . Then Gθ, G

◦
θ are linear groups. Moreover, every connected

real semisimple linear Lie group is of the form G◦θ

Exercise 43.14. Classify simply connected real semisimple linear Lie
groups.
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