43. Classification of connected compact and complex reductive groups

43.1. Connected compact Lie groups. We are now ready to classify connected compact Lie groups. We start with the following exercise.

Exercise 43.1. Show that if K^c is a compact Lie group then $\mathfrak{k} := \operatorname{Lie}(K^c)_{\mathbb{C}}$ is a reductive Lie algebra.

Hint. First use integration over K^c to show that \mathfrak{k} has a K^c -invariant positive definite Hermitian form. Then show that if I is an ideal in \mathfrak{k} then its orthogonal complement I^{\perp} is also an ideal.

Now we can proceed. We already know many examples of compact connected Lie groups - namely tori $(S^1)^r$ and also groups G_{ad}^c where $G_{ad} = \operatorname{Aut}(\mathfrak{g})^\circ$ for a semisimple Lie algebra \mathfrak{g} . We can also consider products $(S^1)^r \times G_{ad}^c$. Exercise 44.8 shows that the Lie algebra of any compact Lie group is isomorphic to one of such a product, so this should be an exhaustive list up to taking coverings and quotients by finite central subgroups. It thus remains to understand the nature of these coverings, which reduces to understanding $\pi_1(G_{ad}^c)$. So our next task is to compute this group. In particular, we will show that it is finite.

So let \mathfrak{g} be a semisimple complex Lie algebra and G the corresponding simply connected complex Lie group (the universal cover of G_{ad}). Let Z be the kernel of the covering map $G \to G_{ad}$, which is also $\pi_1(G_{ad})$ and the center of G. The finite dimensional representations of G are the same as those of \mathfrak{g} , so the irreducible ones are L_λ , $\lambda \in P_+$. The center Z acts by a certain character $\chi_\lambda : Z \to \mathbb{C}^{\times}$ on each L_λ . Since $L_{\lambda+\mu}$ is contained in $L_\lambda \otimes L_\mu$, we have $\chi_{\lambda+\mu} = \chi_\lambda \chi_\mu$, so χ uniquely extends to a homomorphism $\chi : P \to \operatorname{Hom}(Z, \mathbb{C}^{\times})$. Also, by definition $\chi_\theta = 1$ (since the maximal root θ is the highest weight of the adjoint representation on which Z acts trivially).

Now, by Exercise 30.15, if $\lambda(h_i)$ are sufficiently large then for every root α of \mathfrak{g} we have $L_{\lambda+\alpha} \subset L_{\lambda} \otimes \mathfrak{g}$. Thus $\chi_{\lambda+\alpha} = \chi_{\lambda}$, hence $\chi_{\alpha} = 1$. So χ is trivial on the root lattice Q, i.e., defines a homomorphism $P/Q \to \operatorname{Hom}(Z, \mathbb{C}^{\times})$, or, equivalently, $Z \to P^{\vee}/Q^{\vee}$.

Note that the same argument works for G_{ad}^c , its universal cover G^c , and its center Z^c instead of G_{ad} , G, Z.

Proposition 43.2. A representation L_{λ} of \mathfrak{g} of highest weight $\lambda \in P_+$ lifts to a representation of G_{ad} (or, equivalently, G_{ad}^c) if and only if $\lambda \in P_+ \cap Q$.

Proof. We have just shown that if $\lambda \in P_+ \cap Q$ then L_{λ} lifts. The converse follows from Proposition 36.12 applied to $V = \mathfrak{g}$.

Now we can proceed with the classification of semisimple compact connected Lie groups. We begin with the following lemma from topology (see e.g. [M], Supplementary exercises to Chapter 13, p.500, Exercise 4).

Lemma 43.3. If X is a connected compact manifold then the fundamental group $\pi_1(X)$ is finitely generated.

Proof. (sketch) Cover X by small balls, pick a finite subcover, connect the centers. We get a finite graph whose fundamental group maps surjectively to $\pi_1(X)$.

Theorem 43.4. Let \mathfrak{g} be a semisimple complex Lie algebra and G_{ad}^c the corresponding adjoint compact group. Then $\pi_1(G_{ad}^c) = P^{\vee}/Q^{\vee}$. Thus the universal cover G^c of G_{ad}^c is a compact Lie group.

Proof. Let G_*^c be a finite cover of G_{ad}^c , and $Z_{G_*^c} \subset G_*^c$ be the kernel of the projection $G_*^c \to G_{ad}^c$. Then finite dimensional irreducible representations of G_*^c are a subset of finite dimensional irreducible representations of \mathfrak{g} , labeled by a subset $P_+(G_*^c) \subset P_+$ containing $P_+ \cap Q$ (as by Proposition 43.2 these are highest weights of representations of G_{ad}^c). Let $P(G_*^c) \subset P$ be generated by $P_+(G_*^c)$. Let χ_{λ} be the character by which $Z_{G_*^c}$ acts on the irreducible representation L_{λ} of G_*^c . By Proposition 43.2, χ defines an injective homomorphism $\xi : P(G_*^c)/Q \to Z_{G_*^c}^{\vee}$. Since G_*^c is compact, by the Peter-Weyl theorem this homomorphism is surjective, hence is an isomorphism.

It remains to show that $\pi_1(G_{ad}^c)$ is finite (then we can take G_*^c to be the universal cover of G_{ad}^c , in which case $P(G_*^c) = P$, so we get $P/Q \cong Z^{\vee}$, hence $Z = \pi_1(G_{ad}) \cong P^{\vee}/Q^{\vee}$). To this end, note that by Lemma 43.3, $\pi_1(G_{ad}^c)$ is a finitely generated abelian group. Take a subgroup of finite index N in $\pi_1(G_{ad}^c)$ and let G_*^c be the corresponding cover. As we have shown, then $N = |Z_{G_*^c}| \leq |P(G_*^c)/Q| \leq |P/Q|$. But for finitely generated abelian groups this implies that the group is finite. \Box

This immediately implies the following corollary.

Corollary 43.5. (i) If \mathfrak{g} is a simple complex Lie algebra then the simply connected Lie group G^c corresponding to the Lie algebra \mathfrak{g}^c is compact, and its center is P^{\vee}/Q^{\vee} , which also equals $\pi_1(G^c_{ad})$.

(ii) Let $\Gamma \subset P^{\vee}/Q^{\vee}$ be a subgroup. Then the irreducible representations of G/Γ are L_{λ} such that λ defines the trivial character of Γ .

(iii) Let G_i^c be the simply connected compact Lie group corresponding to a simple summand \mathfrak{g}_i of a semisimple Lie algebra $\mathfrak{g} = \bigoplus_{i=1}^n \mathfrak{g}_i$. Then any connected Lie group with Lie algebra \mathfrak{g}^c is compact and has the form $(\prod_{i=1}^{n} G_{i}^{c})/Z$, where $Z = \pi_{1}(G^{c})$ is a subgroup of $\prod_{i} Z_{i}$, and $Z_{i} = P_{i}^{\vee}/Q_{i}^{\vee}$ are the centers of G_{i}^{c} . Moreover, every semisimple connected compact Lie group has this form.

In particular, it follows that simply connected semisimple compact Lie groups are of the form $\prod_{i=1}^{n} G_{i}^{c}$, where G_{i}^{c} are simply connected and simple.²¹

Corollary 43.6. Any connected compact Lie group is the quotient of $T \times C$ by a finite central subgroup, where $T = (S^1)^m$ is a torus and C is compact, semisimple and simply connected.

Proof. Let L be such a group, \mathfrak{l} its Lie algebra. It is reductive, so we can uniquely decompose \mathfrak{l} as $\mathfrak{t} \oplus \mathfrak{c}$ where \mathfrak{t} is the center and \mathfrak{c} is semisimple. Let $T, C \subset L$ be the connected Lie subgroups corresponding to $\mathfrak{t}, \mathfrak{c}$. It is clear that $\operatorname{Lie}\overline{T} = \mathfrak{t} = \operatorname{Lie}T$, so T is closed, hence compact, hence a torus. Also C is compact, so also closed, with $\operatorname{Lie}C = \mathfrak{c}$. Thus we have a surjective homomorphism $T \times C \to L$ whose kernel is finite, as desired.

43.2. Polar decomposition. Now let us study the structure of the Lie subgroup $G_{\mathrm{ad},\theta} \subset G_{\mathrm{ad}}$ corresponding to the real form $\mathfrak{g}_{\theta} \subset \mathfrak{g}$ of a semisimple complex Lie algebra \mathfrak{g} , namely, the group of fixed points of the antiholomorphic involution $\omega_{\theta} = \omega \circ \theta$ in G_{ad} . It is clear that this subgroup is closed ($\operatorname{Lie}\overline{G_{\mathrm{ad},\theta}} = \mathfrak{g}_{\theta} = \operatorname{Lie}\overline{G_{\mathrm{ad},\theta}}$), but it may be disconnected: e.g. if $\mathfrak{g}_{\theta} = \mathfrak{sl}_2(\mathbb{R})$ then $G_{\mathrm{ad}} = PGL_2(\mathbb{C})$, so $G_{\mathrm{ad},\theta} = PGL_2(\mathbb{R})$, the quotient of $GL_2(\mathbb{R})$ by scalars, which has two components. However, the results below apply mutatis mutandis to the connected group $G_{\mathrm{ad},\theta}^{\circ}$.

Let $K^c \subset G_{\mathrm{ad},\theta}$ be the subgroup of elements acting on \mathfrak{g} by unitary operators); namely, K^c is the set of fixed points of ω_{θ} on G_{ad}^c .²² This a closed (possibly disconnected) subgroup of G_{ad}^c since $\mathrm{Lie}\overline{K^c} = \mathfrak{k}^c =$ $\mathrm{Lie}K^c$, hence it is compact. Also let $P_{\theta} := \exp(\mathfrak{p}_{\theta}) \subset G_{\mathrm{ad},\theta}$ (note that it is not a subgroup!). Since \mathfrak{p}_{θ} acts on \mathfrak{g} by Hermitian operators, the exponential map $\exp : \mathfrak{p}_{\theta} \to P_{\theta}$ is a diffeomorphism, so $P_{\theta} \subset G_{\mathrm{ad},\theta}$ is a closed embedded submanifold (the set of elements acting on \mathfrak{g} by positive Hermitian operators).

²¹We say that a connected Lie group G is **simple** if so is its Lie algebra. Thus this does not quite mean that G is simple as an abstract group: it may have a finite center (e.g., G = SU(2) or $SL_2(\mathbb{C})$). For this reason such "simple" groups are sometimes called **almost simple**. However, the corresponding adjoint group G_{ad} is indeed simple as an abstract group.

²²Of course, the group K^c depends on θ , but for simplicity we will not indicate this dependence in the notation.

Theorem 43.7. (Polar decomposition for $G_{ad,\theta}$) The multiplication map $\mu : K^c \times P_{\theta} \to G_{ad,\theta}$ is a diffeomorphism. Thus $G_{ad,\theta} \cong K^c \times \mathbb{R}^{\dim \mathfrak{p}}$ as a manifold (in particular, $G_{ad,\theta}$ is homotopy equivalent to K^c).

Proof. Recall that every invertible complex matrix A can be uniquely written as a product $A = U_A R_A$, where $U = U_A$ is a unitary matrix and $R = R_A$ a positive Hermitian matrix, namely $R = (A^{\dagger}A)^{1/2}$, $U = A(A^{\dagger}A)^{-1/2}$ (the classical polar decomposition). Let us consider this decomposition for $g \in G_{\mathrm{ad},\theta} \subset \mathrm{Aut}(\mathfrak{g}) \subset GL(\mathfrak{g})$. Since $g^{\dagger}g$ is an automorphism of \mathfrak{g} with positive eigenvalues, so is $(g^{\dagger}g)^{1/2} = R_g$, so $R_g \in P_{\theta}$ (a positive self-adjoint element in $G_{\mathrm{ad},\theta}$). Also since U_g is unitary, it belongs to K^c . Thus the regular map $g \mapsto (U_g, R_g)$ is the inverse to μ (using the uniqueness of the polar decomposition). \Box

In particular, applying Theorem 43.7 to complex Lie groups, we get

Corollary 43.8. The multiplication map defines a diffeomorphism

$$G_{\mathrm{ad}}^c \times \mathbf{P} \cong G_{\mathrm{ad}}$$

where **P** is the set of elements of G_{ad} acting on \mathfrak{g} by positive Hermitian operators. In particular, $\pi_1(G_{ad}) = \pi_1(G_{ad}^c) = P^{\vee}/Q^{\vee}$.

Corollary 43.9. If G is a semisimple complex Lie group then the center Z of G is contained in G^c , i.e., coincides with the center Z^c of G^c . Thus the restriction of finite dimensional representations from G to G^c is an equivalence of categories.

This also implies that by taking coverings the polar decomposition applies verbatim to the real form $G_{\theta} = G^{\omega_{\theta}} \subset G$ of any connected complex semisimple Lie group G instead of G_{ad} . We note, however, that if G is simply connected, then G_{θ}° need not be. In fact, its fundamental group could be infinite. The simplest example is $G = SL_2(\mathbb{C})$, then for the split form $G_{\theta} = SL_2(\mathbb{R})$, which as we showed is homotopy equivalent to $SO(2) = S^1$, i.e. its fundamental group is \mathbb{Z} .

Example 43.10. 1. For $G_{\theta} = SL_n(\mathbb{C})$ we have $K^c = SU(n)$ and P_{θ} is the set of positive Hermitian matrices of determinant 1, so the polar decomposition in this case is the usual polar decomposition of complex matrices.

2. For $G_{\theta} = SL_n(\mathbb{R})$ we have $K^c = SO(n)$ and P_{θ} is the set of positive symmetric matrices of determinant 1, so the polar decomposition in this case is the usual polar decomposition of real matrices.

43.3. Connected complex reductive groups.

Definition 43.11. A connected complex Lie group G is **reductive** if it is of the form $((\mathbb{C}^{\times})^r \times G_{ss})/Z$ where G_{ss} is semisimple and Z is a finite central subgroup. A complex Lie group G is reductive if G° is reductive and G/G° is finite.

Example 43.12. $GL_n(\mathbb{C}) = (\mathbb{C}^{\times} \times SL_n(\mathbb{C}))/\mu_n$ is reductive.

It is clear that the Lie algebra LieG of any complex reductive Lie group G is reductive, and any complex reductive Lie algebra is the Lie algebra of a connected complex reductive Lie group. However, a simply connected complex Lie group with a reductive Lie algebra need not be reductive (e.g. $G = \mathbb{C}$).

If $G = ((\mathbb{C}^{\times})^r \times G_{ss})/Z$ is a connected complex reductive Lie group then by Corollary 43.9, $Z \subset (S^1)^r \times G_{ss}^c \subset (\mathbb{C}^{\times})^r \times G_{ss}$, so we can define the compact subgroup $G^c \subset G$ by $G^c := ((S^1)^r \times G_{ss}^c)/Z$. Then it is easy to see that restriction of finite dimensional representations from G to G^c is an equivalence, so representations of G are completely reducible. The irreducible representations are parametrized by collections $(n_1, ..., n_r, \lambda), \lambda \in P_+(G_{ss}), n_i \in \mathbb{Z}$, which define the trivial character of Z.

43.4. Linear groups. A connected Lie group G (real or complex) is called linear if it can be realized as a Lie subgroup of $GL_n(\mathbb{R})$, respectively $GL_n(\mathbb{C})$. We have seen that any complex semisimple group is linear. However, for real semisimple groups this is not so (e.g. the universal cover of $SL_2(\mathbb{R})$ is not linear, see Exercise 11.20). In fact, we see that we can characterize connected real semisimple linear groups as follows.

Proposition 43.13. Suppose \mathfrak{g}_{θ} is a real form of a semisimple complex Lie algebra \mathfrak{g} , G a connected complex Lie group with Lie algebra \mathfrak{g} , and $G_{\theta} = G^{\omega_{\theta}}$. Then $G_{\theta}, G^{\circ}_{\theta}$ are linear groups. Moreover, every connected real semisimple linear Lie group is of the form G°_{θ}

Exercise 43.14. Classify simply connected real semisimple **linear** Lie groups.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.