
44. Maximal tori in compact groups, Cartan decomposition

44.1. Maximal tori in connected compact Lie groups. Let g be
a complex semisimple Lie algebra, gc its compact form, G a connected
Lie group with Lie algebra g, Gc ⊂ G its compact part (the connected
Lie subgroup with Lie algebra gc), as above.

A Cartan subalgebra hc ⊂ gc is a maximal commutative Lie subal-
gebra (note that it automatically consists of semisimple elements since
all elements of gc are semisimple). In other words, it is a subspace such
that hc ⊗R C is a Cartan subalgebra of g.

Recall that all Cartan subalgebras of g are conjugate, even if equipped
with a system of simple roots (Theorem 20.10). Namely, given two such
subalgebras (h,Π) and (h′,Π′), there is g ∈ G such that Adg(h,Π) =
(h′,Π′). It turns out that the same result holds for gc.

Lemma 44.1. Any two Cartan subalgebras in gc equipped with systems
of simple roots are conjugate under Gc.

Proof. Given (hc,Π) and (hc
′
,Π′), there is g ∈ G such that Adg(h

c,Π) =
(hc
′
,Π′). Then we also have Adg(h

c,Π) = (hc
′
,Π′), where g := ω(g). So

g−1g commutes with hc and preserves Π, i.e., gh = g, h ∈ H : exp(hcC).
Writing g = kp, where k ∈ Gc, p ∈ P, we have kp−1h = kp, so h = p2.
Since p is positive, p = h1/2, so it commutes with hc and preserves Π,
thus Adk(h

c,Π) = (hc
′
,Π′), as claimed. �

Note that for every Cartan subalgebra hc ⊂ gc, Hc = exp(hc) ⊂ Gc

is a torus, which is clearly a maximal torus (as the complexified Lie
algebra of a larger torus would be a larger commutative subalgebra
than hc). Conversely, if Hc ⊂ Gc is a maximal torus then Lie(Hc)
can be included in a Cartan subalgebra, hence it is itself a Cartan
subalgebra. So we have a bijection between Cartan subalgebras in gc

and maximal tori in Gc. Similarly, there is a bijection between Cartan
subalgebras in g and maximal tori in G.

This implies

Corollary 44.2. Any two maximal tori in G or Gc equipped with sys-
tems of simple roots are conjugate.

We also have

Theorem 44.3. Every element of a connected compact Lie group K is
contained in a maximal torus, and all maximal tori in K are conjugate
(even when equipped with systems of simple roots).

Proof. We may assume without loss of generality that K is semisimple,
i.e., K = Gc for a connected semisimple complex Lie group G, which
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implies the second statement. To prove the first statement, let K ′ ⊂ K
be the set of elements contained in a maximal torus. Fix a maximal
torus T ⊂ K and consider the map f : K × T → K given by f(k, t) =
ktk−1, whose image is K ′. This implies that K ′ is compact, hence
closed, so K \K ′ is open.

On the other hand, recall from Subsection 20.1 that a generic x ∈ gc

is regular, meaning that its centralizer zx has dimension ≤ rank(g),
in which case it must have dimension exactly rank(g) and be a Cartan
subalgebra. It is clear that every regular element x is contained in
a unique maximal torus, namely exp(zx), so the elements of K \ K ′
are all non-regular. But the set of non-regular elements is defined by
polynomial equations in Adx (the minors of Adx of codimension rank(g)
all vanish), so K \K ′ must be empty (as it is an open set contained in
the set of solutions of nontrivial polynomial equations in Adx). �

Corollary 44.4. The exponential map exp : gc → Gc is surjective.

Exercise 44.5. Is the exponential map surjective for the group SL2(C)?

44.2. Semisimple and unipotent elements. Let G be a connected
reductive complex Lie group. An element g ∈ G is called semisimple
if it acts in every finite dimensional representation of G by a semisimple
(=diagonalizable) operator, and unipotent if it acts in every finite di-
mensional representation of G by a unipotent operator (all eigenvalues
are 1).

Exercise 44.6. Let Y be a faithful finite dimensional representation
of G (it exists by Corollary 36.5). Show that g ∈ G is semisimple if
and only if it acts semisimply on Y , and unipotent if and only if it acts
unipotently on Y .

Hint: Use Proposition 36.12.

Exercise 44.7. Show that if G is semisimple then the exponential
map defines a homeomorphism between the set of nilpotent elements
in g = LieG and the set of unipotent elements in G.

Exercise 44.8. Let Z be the center of a connected complex reductive
group G.

(i) Show that the homomorphism π : G → G/Z defines a bijection
between unipotent elements of G and G/Z.

(ii) Show that the set of semisimple elements of G is the preimage
under π of the set of semisimple elements of G/Z.

Proposition 44.9. (Jordan decomposition in G). Every element
g ∈ G has a unique factorization g = gsgu, where gs ∈ G is semisimple,
gu ∈ G is unipotent and gsgu = gugs.
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Exercise 44.10. Prove Proposition 44.9.
Hint. Use Exercise 44.8 to reduce to the case when G = Gad is

a semisimple adjoint group. In this case, write Adg as su, where s
is a semisimple and u a unipotent operator with su = us (Jordan
decomposition for matrices). Show that s = Adgs and u = Adgu for
some commuting gs, gu ∈ Gad. Then establish uniqueness using the
uniqueness of Jordan decomposition of matrices.

44.3. Maximal abelian subspaces of pθ. Let G be a connected com-
plex semisimple group, Gθ ⊂ G a real form, gθ ⊂ g their Lie algebras.
We have the polar decomposition Gθ = KcPθ and the additive version
gθ = kc ⊕ pθ, with pθ = ipc. Also gc = kc ⊕ pc.

Proposition 44.11. (i) Let a be a maximal abelian subspace of pθ.
Then the centralizer z of a in gc has the form m ⊕ a, where m is a
reductive Lie algebra contained in kc. Moreover, if t is a Cartan subal-
gebra of m then t⊕ ia is a Cartan subalgebra of gc and t⊕a is a Cartan
subalgebra of gθ.

(ii) If a ∈ a is sufficiently generic then the centralizer of a in pθ is
a.

(iii) For any p ∈ pθ there exists k ∈ Kc such that Adk(p) ∈ a.
(iv) All maximal abelian subspaces of pθ are conjugate by Kc.

Proof. (i) Let x ∈ gc, [x, a] = 0. Write x = x+ + x−, x+ ∈ kc, x− ∈ pc.
Then [x±, a] = 0, thus x− ∈ a by maximality of a. So x ∈ kc⊕ a. Thus
z = m⊕a where m ⊂ kc is a reductive Lie algebra. Moreover, if t ⊂ m is
a Cartan subalgebra then t⊕ ia is a maximal abelian subalgebra of gc,
hence is a Cartan subalgebra. Similarly, t ⊕ a is a Cartan subalgebra
of gθ.

(ii) Consider the group Ta := exp(ia) ⊂ Gc. It is clear from (i)
that this is a compact torus. Thus for a generic enough a ∈ a, the
1-parameter subgroup eita is dense in Ta. So if p ∈ pθ and [p, a] = 0
then eita commutes with p, hence so do Ta and a. So by maximality of
a we have p ∈ a.

(iii) Let a ∈ a be generic enough as in (ii). Then by (ii), Adk(p) ∈ a
if and only if [Adk(p), a] = 0.

Consider the function f : Kc → R given by f(b) := (Adb(p), a). This
function is continuous, so attains a maximum on the compact groupKc.
Suppose k is a maximum point of f . Let p0 := Adk(p). Differentiating
f at k, we get ([x, p0], a) = 0 for all x ∈ kc. Thus (x, [p0, a]) = 0 for all
x ∈ kc. But [p0, a] ∈ kc and the inner product on kc is nondegenerate.
Thus [p0, a] = 0, as desired.

(iv) Let a, a′ be maximal abelian subspaces of pθ. Pick a generic
element p ∈ a′ as in (ii). By (iii) we can find k ∈ Kc such that
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Adk(p) = a ∈ a. Moreover, a is generic in Adk(a
′). So for every b ∈ a

we have [b,Adk(a
′)] = 0 (as [b, a] = 0). By maximality of a′ this implies

that b ∈ Adk(a
′), i.e., a ⊂ Adk(a

′). Thus dim a ≤ dim a′. Switching
a, a′, we also get dim a′ ≤ dim a, hence dim a = dim a′ and a = Adk(a

′),
as claimed. �

44.4. The Cartan decomposition of semisimple linear groups.
Let a ⊂ pθ be a maximal abelian subspace and A = exp(a) ⊂ Pθ ⊂ Gθ.
This is a subgroup isomorphic to Rn, where n = dim a.

Theorem 44.12. (The Cartan decomposition) We have Gθ = KcAKc.
In other words, every element g ∈ Gθ has a factorization g = k1ak2,
k1, k2 ∈ Kc, a ∈ A.23

Proof. Recall that we have the polar decomposition Gθ = KcPθ. Thus
it suffices to show that every Kc-orbit on Pθ intersects A. To do so,
take Y ∈ Pθ and let y = log Y ∈ pθ. By Proposition 44.11 there is
k ∈ Kc such that Adk(y) ∈ a. Then Adk(Y ) ∈ A, as claimed. �

Remark 44.13. Theorem 44.12 has a straightforward generalization
to reductive groups.

Example 44.14. 1. For Gθ = GLn(C), Theorem 44.12 reduces to a
classical theorem in linear algebra: any invertible complex matrix can
be written as U1DU2, where U1, U2 are unitary and D is diagonal with
positive entries.

2. Similarly, for Gθ = GLn(R), Theorem 44.12 says that any invert-
ible real matrix can be written as O1DO2, where O1, O2 are orthogonal
and D is diagonal with positive entries.

44.5. Maximal compact subgroups.

Theorem 44.15. (E. Cartan) Let Gθ be a real form of a connected
semisimple complex group G. Then any compact subgroup L of Gθ is
conjugate to a subgroup of Kc by an element of Pθ. Also every com-
pact subgroup of Gθ is contained in a maximal one. Thus all maximal
compact subgroups of Gθ are conjugate (to Kc).

Proof. We give a simplified version of Cartan’s proof, due to G. D.
Mostow.

First note that Kc is a maximal compact subgroup of Gθ. Indeed, if
K ⊃ Kc is a compact subgroup then the polar decomposition implies
that K = Kc ·(Pθ∩K). But if Y ∈ Pθ∩K and Y 6= 1 then the sequence
Y n ∈ K has no convergent subsequence (which is clear by looking at
the eigenvalues of Y n on gθ. Thus K = Kc.

23This factorization is not unique.
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It remains to prove that every compact subgroup L ⊂ Gθ can be
conjugated into Kc by an element of Pθ. The idea of proof is to define
an L-invariant continuous real-valued function f on Pθ and show that
it has a unique minimum Y using a convexity argument. Then the
required conjugating element is obtained as Y −

1
2 .

So let us proceed with this plan. Recall that we have a decomposition
of the Lie algebra gθ := Lie(Gθ) given by gθ = kc ⊕ pθ, which is the
eigenspace decomposition of θ, and that the Killing form B = Bg is
positive on pθ, negative on kc, and θ-invariant. Thus we have a positive
definite inner product on the real vector space gθ given by

Bθ(x, y) := −B(x, θ(y)).

Denote by A† the adjoint operator to A ∈ End(gθ) under this inner
product. Then A := Adg is orthogonal (A† = A−1) for g ∈ Kc, while
for g ∈ Pθ it is self-adjoint (A† = A), unimodular and positive definite
as its eigenvalues are positive). So if g = kp with k ∈ Kc, p ∈ Pθ then
g = kp−1, hence

(44.1) Ad†g = Ad†kp = Ad†pAd†k = AdpAd−1
k = Adpk−1 = Adg−1.

Let

S :=

∫
L

Ad†hAdhdh ∈ End(gθ).

Then S is a self-adjoint positive definite operator. So it admits an
orthonormal eigenbasis vi with eigenvalues λi > 0. Let λmin be the
smallest of these eigenvalues.

Consider the function f : Pθ → R given by

f(X) := Tr(AdX · S) =
∑
i

λiBθ(AdXvi, vi).

So, since AdX is positive definite, we have

(44.2) f(X) ≥ λminTr(AdX).

Note also that the group Gθ acts on Pθ by g ◦ X = gXg−1, and by
(44.1) the function f is L-invariant.

Recall that for any R > 0 the set of unimodular positive symmetric
matrices A with Tr(A) ≤ R is compact, since so is its subset of diagonal
matrices, and any such matrix can be diagonalized by an orthogonal
transformation. Since AdX is a positive self-adjoint operator on gθ
with respect to Bθ, it follows from (44.2) that the set of X ∈ Pθ with
f(X) ≤ R is compact. This implies that f , being continuous, attains
a minimum on Pθ. Suppose it attains a minimum at the point Y =
exp(y), y ∈ pθ.

238



Proposition 44.16. This minimum point is unique.

Proof. Suppose Z = exp(z), z ∈ pθ is another minimum point. Con-
sider the Cartan decomposition of the element exp(− z

2
) exp(y

2
) ∈ Gθ:

exp( z
2
) exp(−y

2
) = k exp(x

2
),

k ∈ Kc, x ∈ pθ. It follows that

exp(x
2
) = exp(−y

2
) exp( z

2
)k = k−1 exp( z

2
) exp(−y

2
),

so multiplying, we get

exp(x) = exp(−y
2
) exp(z) exp(−y

2
)

and thus

(44.3) exp(z) = exp(y
2
) exp(x) exp(y

2
).

Consider the function

F (t) = f(exp(y
2
) exp(tx) exp(y

2
)), t ∈ R.

This function has a global minimum at t = 0, and also at t = 1 in view
of (44.3). Thus the function F is not strictly convex. On the other
hand, we have the following lemma.

Lemma 44.17. Let a,M be symmetric real matrices such that M is
positive definite. Then the function

φ(t) := Tr(exp(ta)M), t ∈ R
is convex, and is strictly convex if a 6= 0.

Proof. Conjugating a,M simultaneously by an orthogonal matrix, we
may assume that a is diagonal, with diagonal entries ai. Then we have

φ(t) :=
∑
i

Mii exp(tai).

Since M is positive definite, Mii > 0 and the statement follows. �

Using Lemma 44.17 for a := adx and M := exp(ady
2

)S exp(ady
2

) and
the fact that F (t) is not strictly convex, we get that adx = 0, hence
x = 0 (as g is semisimple) and y = z, as claimed. �

Now, since the function f has a unique minimum point and is L-
invariant, this minimum point must also be L-invariant. Thus we have
h exp(y) = exp(y)h for all h ∈ L. It follows that

exp(−y
2
)h exp(y

2
) = exp(y

2
)h exp(−y

2
) = exp(−y

2
)h exp(y

2
).

Thus the element p := exp(−y
2
) = Y −

1
2 conjugates L into Kc. �
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44.6. Cartan subalgebras in real semisimple Lie algebras. We
have seen that Cartan subalgebras in a complex semisimple Lie algebra
are conjugate, but this is not so for real semisimple Lie algebras, as
demonstrated by the following exercise.

Exercise 44.18. (i) Let g = sln(R). For 0 ≤ m ≤ n
2
, let hm be the

space of matrices of the form

A =
m⊕
i=1

(
ai bi
−bi ai

)
⊕ diag(c1, ..., cn−2m)

such that Tr(A) = 0. Show that hm is a Cartan subalgebra of g and
that hm is not conjugate to hn when m 6= n (look at eigenvalues of
elements of hm in the vector representation). Conclude that Lemma
44.1 does not necessarily hold for non-compact forms of g.

(ii) Show that every Cartan subalgebra in g is conjugate to one of
the form hm for some m.

(iii) Classify Cartan subalgebras in other classical real simple Lie
algebras (up to conjugacy).

Let us say that a semisimple element of gθ is split if it acts on gθ
with real eigenvalues, and say that a commutative Lie subalgebra of gθ
is a split subalgebra if it consists of split elements. An invariant of a
Cartan subalgebra h ⊂ gθ under conjugation is the dimension s(h) of
the largest split subalgebra of h (consisting of all split elements of h).
For example, a split real form gθ has a split Cartan subalgebra with
s(h) = r = rank(g), and conversely, a real form that admits a split
Cartan subalgebra is split. Also, in Exercise 44.18, s(hm) = n− 1−m.

Let us say that h is maximally split if s(h) is the largest possible,
and maximally compact if s(h) is the smallest possible. For example,
in Exercise 44.18, h0 is maximally split and h[n/2] is maximally compact
(where [n/2] is the floor of n/2). Also, a split Cartan subalgebra is
maximally split and a compact one (i.e., one for which exp(h) is a
compact torus) is maximally compact, if they exist. Finally, the Cartan
subalgebra hc+ ⊕ ihc−, where hc+, h

c
− are as in the proof of Proposition

41.7, is maximally compact.
Note that s(h) may also be interpreted as the signature of the Killing

form restricted to h, which equals (s(h), r − s(h)).

Theorem 44.19. (i) A θ-stable Cartan subalgebra h ⊂ gθ is maximally
split iff h− := h ∩ pθ is a maximal abelian subspace in pθ.

(ii) A θ-stable Cartan subalgebra h ⊂ gθ is maximally compact iff
h+ := h ∩ kc is a Cartan subalgebra in kc, and in this case s(h) =
rank(g)− rank(k).
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(iii) Any two maximally split θ-stable Cartan subalgebras are conju-
gate by Kc.

(iv) Any two maximally compact θ-stable Cartan subalgebras are con-
jugate by Kc.

(v) Any Cartan subalgebra in gθ is conjugate to a θ-stable one by an
element of Gθ (or, equivalently, Pθ).

Proof. (i) It is clear that if h− is a maximal abelian subspace of pθ then
h is maximally split, since by Proposition 44.11 any abelian subspace
of pθ can be conjugated into h−. Conversely, if h is maximally split,
suppose that a ∈ pθ, a /∈ h− with [a, h−] = 0. Then h′− = h− ⊕Ra, and
let h′ be a Cartan subalgebra of gθ containing h′−. Then s(h′) > s(h),
a contradiction.

(ii) It is clear that if h+ is a Cartan subalgebra of kc then h is maxi-
mally compact. Also given a Cartan subalgebra h+ ⊂ kc, take a Cartan
subalgebra h of gθ containing h+. Then s(h) ≤ rank(g)− rank(k). This
implies that for any maximally compact h, we have that h ∩ kc is a
Cartan subalgebra in kc, and s(h) = rank(g)− rank(k).

(iii) Let h, h′ be maximally split θ-stable Cartan subalgebras in gθ.
Then h−, h

′
− are maximal abelian subspaces of pθ. So they are conjugate

by Kc by Proposition 44.11, thus we may assume that h− = h′−. Let
Zc
− be the centralizer of h− in Kc. It is a compact group, and it is

clear that h+, h
′
+ ⊂ Lie(Zc

−) are Cartan subalgebras. Hence they are
conjugate by an element of Zc

−, as desired.
(iv) Let h, h′ be maximally compact θ-stable Cartan subalgebras in

gθ. Then h+, h
′
+ are Cartan subalgebras of kc, so they are conjugate by

Kc and we may assume that h+ = h′+. Let Z+ be the centralizer of h+

in Gθ and z+ = Lie(Z+). This is a θ-stable reductive subalgebra of gθ
containing h, h′ whose center contains h+. Thus h−, h

′
− ⊂ Lie(Z+)/h+

are θ-stable split Cartan subalgebras, so they are conjugate by Zc
+ :=

Z+ ∩Kc owing to (iii). This implies the statement.
(v) The proof is by induction in the rank r of gθ, with obvious base

r = 0. Suppose the statement is known for rank < r and let us prove it
for rank r. Let h ⊂ gθ be a Cartan subalgebra. We have h = h+ ⊕ h−
where h+, h− are the subspaces of elements with imaginary and real
eigenvalues on the adjoint representation, respectively. The Lie group
H+ = exp(h+) is a compact torus, so it is contained in a maximal
compact subgroup. Hence by Theorem 44.15 H+ is conjugate to a
subgroup of Kc. We may thus assume that h+ ⊂ kc.

As in (iv), let Z+ ⊂ Gθ be the centralizer of h+ and z+ = Lie(Z+).
It suffices to show that h is conjugate to a θ-stable Cartan subalgebra
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under Z+. This is equivalent to saying that h− is conjugate to a θ-
stable Cartan subalgebra of z+/h+ under Z+/H+. So if h+ 6= 0 then
the statement follows by the induction assumption, since the rank of
z+/h+ is smaller than r. On the other hand, if h+ = 0 then h is split,
so gθ is split. In this case, let h0 be the standard Cartan subalgebra of
gθ. Fixing systems of simple roots Π for h and Π0 for h0, there exists
an isomorphism φ : (gθ, h,Π)→ (gθ, h0,Π0) which is given by an inner
automorphism of gθ, i.e., an element g ∈ Gad,θ, which completes the
induction step and the proof. �

44.7. Integral form of the Weyl character formula.

Proposition 44.20. Let f be a conjugation-invariant continuous func-
tion on a compact connected Lie group K with a maximal torus T ⊂ K
and Haar probability measure dk. Then∫

K

f(k)dk =
1

|W |

∫
T

f(t)|∆(t)|2dt,

where ∆(t) is the Weyl denominator,24

∆(t) = ρ(t)−1
∏
α∈R+

(α(t)− 1).

Proof. Since characters of irreducible representations span a dense sub-
space in the space of conjugation-invariant continuous functions on K,
it suffices to check this for f = χλ, the character of the irreducible
representation Lλ. Then the left hand side is δ0λ by orthogonality of
characters. On the other hand, the Weyl character formula implies
that the right hand side also equals δ0λ. �

Example 44.21. Let f be a conjugation-invariant continuous function
on U(n). Then ∫

U(n)

f(k)dk =

1

(2π)nn!

∫
|z1|=...=|zn|=1

f(diag(z1, ..., zn))
∏
m<j

|zm − zj|2dθ1....dθn

where zj = eiθj .

Thus we see that the orthogonality of characters can be written as

1

|W |

∫
T

χλ(t)χµ(t)|∆(t)|2dt = δλ,µ.

24Note that the function ρ(t) may be multivalued, but its branches differ from
each other by a root of unity, so the function |∆(t)| is well defined. Namely,
|∆(t)| = |∆0(t)| where ∆0(t) =

∏
α∈R+(α(t)− 1).
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Exercise 44.22. (i) Let k = LieK with Cartan subalgebra t and f
be a compactly supported K-invariant continuous function on k. Show
that ∫

k

f(a)da =
1

|W |

∫
t

f(u)|∆rat(u)|2du,

where ∆rat(u) =
∏

α∈R+
α(u) is the rational version of the Weyl de-

nominator.
(ii) Write explicitly the identity you get if you set f(a) := eBk(a,a)

(compute the Gaussian integral on the left hand side).
Hint. In Proposition 44.20, make a change of variable k = exp(εa),

t = eεu for small ε > 0 and then send ε to zero.
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