46. Topology of Lie groups and homogeneous spaces, II

46.1. The coproduct on the cohomology ring. To understand the algebra $R:=H^{\bullet}(G)=H^{\bullet}(G, \mathbb{C})$ better, note that the multiplication map $G \times G \rightarrow G$ induces the graded algebra homomorphism $\Delta: H^{\bullet}(G) \rightarrow H^{\bullet}(G \times G)=H^{\bullet}(G) \otimes H^{\bullet}(G)$, which is coassociative:

$$
(\Delta \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \Delta) \circ \Delta .
$$

(Note that the warning in Remark 45.11 about tensor product in the graded sense still applies here!) Such a map Δ is called a coproduct since it defines an algebra structure on the dual space R^{*} (see Subsection 12.3). We also have the augmentation map $\varepsilon: R \rightarrow \mathbb{C}$ such that

$$
(\varepsilon \otimes 1)(\Delta(x))=(1 \otimes \varepsilon)(\Delta(x))=x
$$

for all $x \in R$. Such a structure is called a graded bialgebra. ${ }^{26}$
Exercise 46.1. (Hopf theorem) Let R be a finite dimensional gradedcommutatitive bialgebra over a field \mathbf{k} of characteristic zero, and $R[0]=$ \mathbf{k} (where the grading is by nonnegative integers). Show that R is a free graded commutative algebra on some homogeneous generators of odd degrees, i.e., $R=\wedge_{\mathbf{k}}^{\mathbf{(}}\left(\xi_{1}, \ldots, \xi_{r}\right)$ with $\operatorname{deg} \xi_{i}=2 m_{i}+1$ for some nonnegative integers m_{i}. Thus $\operatorname{dim} R=2^{r}$.

Hint. Recall from Subsection 14.1 that an element $x \in R$ is primitive if $\Delta(x)=x \otimes 1+1 \otimes x$. Show that any homogeneous primitive x has odd degree (use that $\operatorname{dim} R<\infty$), thus $x^{2}=0$, and that R is generated by homogeneous primitive elements. Then show that linearly independent primitive elements in R cannot satisfy any nontrivial relation (take a relation of lowest degree, compute its coproduct and find a relation of even lower degree, getting a contradiction).

For more hints see [C], Subsection 2.4.
Let us now determine the number r. We have $2^{r}=\operatorname{dim}\left(\wedge^{\bullet} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$. But this dimension can be computed using the Weyl character formula. Namely, the character of $\wedge^{\bullet} \mathfrak{g}^{*}$ is

$$
\chi_{\wedge \cdot \mathfrak{g}^{*}}(t)=2^{\operatorname{rank}(\mathfrak{g})} \prod_{\alpha>0}(1+\alpha(t))\left(1+\alpha(t)^{-1}\right),
$$

where $T \subset G$ is a maximal torus and $t \in T$. So

$$
\operatorname{dim}\left(\wedge^{\bullet} \mathfrak{g}^{*}\right)^{\mathfrak{g}}=\frac{2^{\operatorname{rank}(\mathfrak{g})}}{|W|} \int_{T} \prod_{\alpha>0}\left(\alpha\left(t^{2}\right)-1\right)\left(1-\alpha\left(t^{-2}\right)\right) d t=2^{\mathrm{rank}(\mathfrak{g})}
$$

[^0]So $r=\operatorname{rank}(\mathfrak{g})$.
Thus we have

$$
H^{\bullet}(G)=H^{\bullet}(\mathfrak{g})=\left(\wedge^{\bullet} \mathfrak{g}^{*}\right)^{\mathfrak{g}}=\wedge^{\bullet}\left(\xi^{(1)}, \ldots, \xi^{(r)}\right)
$$

where $r=\operatorname{rank}(\mathfrak{g})$. and $\operatorname{deg}\left(\xi^{(i)}\right)=2 m_{i}+1$. Moreover, it suffices to consider the case when \mathfrak{g} is simple. What are the numbers m_{i} in this case?

Let us order m_{i} as follows: $m_{1} \leq m_{2} \leq \ldots \leq m_{r}$. We know that $r+2 \sum m_{i}=\operatorname{dim} \mathfrak{g}$, so $\sum_{i} m_{i}=\left|R_{+}\right|$. Also it is not hard to see that $m_{1}=1, m_{2}>1$:

Exercise 46.2. Show that for a simple Lie algebra \mathfrak{g} we have $\left(\wedge^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}=$ \mathbb{C}, spanned by the triple product $([x y], z)$.

Hint. Let $\omega \in\left(\wedge^{3} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$.

1. Show that

$$
\omega\left(e_{i},\left[f_{i}, h_{i}\right], h\right)+\omega\left(e_{i}, h_{i},\left[f_{i}, h\right]\right)=0
$$

for $h \in \mathfrak{h}$ and deduce that

$$
\omega\left(e_{i}, f_{i}, h\right)=\frac{1}{2} \alpha_{i}(h) \omega\left(e_{i}, f_{i}, h_{i}\right) .
$$

2. Take $y, z \in \mathfrak{h}$ and show that

$$
\omega\left(h_{i}, y, z\right)+\omega\left(f_{i},\left[e_{i}, y\right], z\right)+\omega\left(f_{i}, y,\left[e_{i}, z\right]\right)=0 .
$$

Deduce that $\omega(x, y, z)=0$ for $x, y, z \in \mathfrak{h}$. Conclude that ω is completely determined by $\omega\left(e_{\alpha}, e_{-\alpha}, h\right)$ for all roots α and $h \in \mathfrak{h}$. Use the Weyl group to reduce to $\omega\left(e_{i}, f_{i}, h\right)$ and then to $\omega\left(e_{i}, f_{i}, h_{i}\right)$.
3. Finally, use that

$$
\omega\left(\left[e_{i}, e_{j}\right], f_{i}, f_{j}\right)=\omega\left(e_{j}, f_{j}, h_{i}\right)=\omega\left(e_{i}, f_{i}, h_{j}\right)
$$

to show that all possible ω are proportional.
In particular, we see that for a simple compact connected Lie group G, one has $H^{3}(G, \mathbb{C}) \cong \mathbb{C}$. Thus, the sphere S^{n} admits a Lie group structure if and only if $n=0,1,3$.

Example 46.3. We get $m_{2}=2$ for $A_{2}, m_{2}=3$ for $B_{2}=C_{2}, m_{2}=5$ for G_{2}. Thus the Poincaré polynomials $P_{\mathfrak{g}}(q):=\sum_{n \geq 0} \operatorname{dim} H^{n}(G, \mathbb{C}) q^{n}$ for compact simple Lie groups of rank ≤ 2 are:

$$
\begin{gathered}
P_{A_{1}}(q)=1+q^{3}, P_{A_{2}}(q)=\left(1+q^{3}\right)\left(1+q^{5}\right), \\
P_{B_{2}}(q)=\left(1+q^{3}\right)\left(1+q^{7}\right), P_{G_{2}}(q)=\left(1+q^{3}\right)\left(1+q^{11}\right) .
\end{gathered}
$$

46.2. The cohomology ring of a simple compact connected Lie group. In fact, we have the following classical theorem, which we will not prove in general, but will prove below for type A and also in exercises for classical groups and G_{2}.

Theorem 46.4. Let G be a simple compact Lie group with complexified Lie algebra \mathfrak{g}. Then the numbers m_{i} are the exponents of \mathfrak{g} defined in Subsection 32.3. In other words, the degrees $2 m_{i}+1$ of generators of the cohomology ring are the dimensions of simple modules occurring in the decomposition of \mathfrak{g} over its principal $\mathfrak{s l}_{2}$-subalgebra. Thus the cohomology ring $H^{\bullet}(G, \mathbb{C})$ is the exterior algebra $\wedge \bullet\left(\xi_{2 m_{1}+1}, \ldots, \xi_{2 m_{r}+1}\right)$, where ξ_{j} has degree j.

A modern general proof of this theorem can be found in $[R]$.
Remark 46.5. The Poincaré polynomial $P_{\mathfrak{g}}(q)$ of $\left(\wedge^{\bullet} \mathfrak{g}^{*}\right)^{\mathfrak{g}}$ is given by the formula

$$
P_{\mathfrak{g}}(q)=\frac{(1+q)^{r}}{|W|} \int_{T} \prod_{\alpha \in R}(1+q \alpha(t)) \prod_{\alpha>0}\left(\alpha(t)^{\frac{1}{2}}-\alpha(t)^{-\frac{1}{2}}\right)^{2} .
$$

So Theorem 46.4 is equivalent to the statement that this integral equals $\prod_{i}\left(1+q^{2 m_{i}+1}\right)$.

We will prove Theorem 46.4 in the case of type A.
Corollary 46.6. For $\mathfrak{g}=\mathfrak{s l}_{n}$ we have $m_{i}=i$. Equivalently, the same is true for $\mathfrak{g}=\mathfrak{g l}_{n}$ if we add $m_{0}=0$.

Proof. Let $\mathfrak{g}=\mathfrak{g l}_{n}, V=\mathbb{C}^{n}$. We need to compute the Poincaré polynomial of $\wedge^{\bullet}\left(V \otimes V^{*}\right)^{\mathfrak{g}}$. The skew Howe duality (Proposition 30.11) implies that this Poincaré polynomial is

$$
P(q)=\sum_{\lambda=\lambda^{t}} q^{|\lambda|}
$$

where the summation is over λ with $\leq n$ parts. But there are exactly 2^{n} such symmetric partitions λ : they consist of a sequence of hooks $\left(k, 1^{k-1}\right)$ with decreasing values of k, with each of them either present or not. The degree of such a hook is $2 k-1$, which implies that

$$
\begin{equation*}
P_{\mathfrak{g} \mathbf{l}_{n}}(q)=(1+q)\left(1+q^{3}\right)\left(1+q^{5}\right) \ldots\left(1+q^{2 n-1}\right) . \tag{46.1}
\end{equation*}
$$

Thus we get that the cohomology $H^{\bullet}(U(n), \mathbb{C})=H^{\bullet}\left(G L_{n}(\mathbb{C}), \mathbb{C}\right)$ is $\wedge^{\bullet}\left(\xi_{1}, \xi_{3}, \ldots, \xi_{2 n-1}\right)$ (where subscripts are degrees) with Poincaré polynomial (46.1), and $H^{\bullet}(S U(n), \mathbb{C})=H^{\bullet}\left(S L_{n}(\mathbb{C}), \mathbb{C}\right)=\wedge^{\bullet}\left(\xi_{3}, \ldots, \xi_{2 n-1}\right)$ with Poincaré polynomial $\left(1+q^{3}\right)\left(1+q^{5}\right) \ldots\left(1+q^{2 n-1}\right)$.

In the next exercise and the following subsections we will use the notions of a cell complex and its cellular homology and cohomology with coefficients in any commutative ring, and the fact that if a manifold is equipped with a cell decomposition (i.e., represented as a disjoint union of cells) then its cellular cohomology with \mathbb{C}-coefficients (=dual to the cellular homology) is canonically isomorphic to the de Rham cohomology via the integration pairing (the de Rham theorem). More details can be found, for instance, in $[\mathrm{H}]$.
Exercise 46.7. (i) Give another proof of Theorem 46.4 for type A_{n-1} as follows. Use that $S U(n) / S U(n-1)=S^{2 n-1}$ to construct a cellular decomposition of $S U(n)$ into 2^{n-1} cells (use the decomposition of $S^{2 n-1}$ into a point and its complement). Then show that the differential in the corresponding cochain complex with \mathbb{C}-coefficients is zero (compare its dimension to the dimension of the cohomology). Derive Theorem 46.4 for $S U(n)$ by induction in n.
(ii) Use the same idea and the fact that $U(n, \mathbb{H}) / U(n-1, \mathbb{H})=S^{4 n-1}$ to establish Theorem 46.4 in type C_{n}. Conclude that the cohomology ring of $U(n, \mathbb{H})$ (and $\mathrm{Sp}_{2 n}(\mathbb{C})$) is $\wedge\left(\xi_{3}, \xi_{7}, \ldots, \xi_{4 n-1}\right)$ with Poincaré polynomial is $\left(1+q^{3}\right)\left(1+q^{7}\right) \ldots\left(1+q^{4 n-1}\right)$.
(iii) Show that these Poincaré polynomials are valid for cohomology of the same Lie groups with any coefficients. ${ }^{27}$
46.3. Cohomology of homogeneous spaces. Let G be a connected compact Lie group, $\mathfrak{g}=\operatorname{Lie}(G)_{\mathbb{C}}, K \subset G$ a closed subgroup, $\mathfrak{k}=$ $\operatorname{Lie}(K)_{\mathbb{C}}$, and consider the homogeneous space G / K. How to compute the cohomology $H^{\bullet}(G / K, \mathbb{C})$?

Since the group G acts on G / K, this cohomology is computed by the complex $\Omega^{\bullet}(G / K)^{G}=\left(\wedge^{\bullet}(\mathfrak{g} / \mathfrak{k})^{*}\right)^{K}$. Let us denote this complex by $C E^{\bullet}(\mathfrak{g}, K)$. It is called the relative Chevalley-Eilenberg complex.

For example, if $K=\Gamma$ is finite, this is just the Γ-invariant part of the usual Chevalley-Eilenberg complex. But Γ acts trivially on the cohomology, so we get $H^{\bullet}(G / \Gamma)=H^{\bullet}(G)$ (as already noted above).

But what happens if $\operatorname{dim} K>0$? Can we describe the differential in this complex algebraically as we did for $K=1$?

This question is answered by the following proposition. Let $\mathfrak{k} \subset \mathfrak{g}$ be a pair of Lie algebras (not necessarily finite dimensional, over any field). Denote by $C E^{i}(\mathfrak{g}, \mathfrak{k})$ the spaces $\left(\wedge^{\bullet}(\mathfrak{g} / \mathfrak{k})^{*}\right)^{\mathfrak{k}}$.
Proposition 46.8. $C E^{\bullet}(\mathfrak{g}, \mathfrak{k})$ is a subcomplex of $C E^{\bullet}(\mathfrak{g})$.

[^1]Exercise 46.9. Prove Proposition 46.8.
Definition 46.10. The complex $C E^{\bullet}(\mathfrak{g}, \mathfrak{k})$ is called the relative ChevalleyEilenberg complex, and its cohomology is called the relative Lie algebra cohomology, denoted by $H^{\bullet}(\mathfrak{g}, \mathfrak{k})$.

Now note that, going back to the setting of compact Lie groups, we have $C E^{\bullet}(\mathfrak{g}, K)=C E^{\bullet}(\mathfrak{g}, \mathfrak{k})^{K / K^{\circ}}$, so we obtain
Corollary 46.11. $H^{\bullet}(G / K, \mathbb{C}) \cong H^{\bullet}(\mathfrak{g}, \mathfrak{k})^{K / K^{\circ}}$ as algebras.
Thus, the computation of the cohomology of G / K reduces to the computation of the relative Lie algebra cohomology, which is again a purely algebraic problem.
Corollary 46.12. Suppose $z \in K$ is an element that acts by -1 on $\mathfrak{g} / \mathfrak{k}$. Then $\left(\wedge^{i}(\mathfrak{g} / \mathfrak{k})^{*}\right)^{K}=0$ for odd i. Hence the differential in $C E^{\bullet}(\mathfrak{g}, K)$ vanishes and thus $H^{\bullet}(G / K, \mathbb{C}) \cong\left(\wedge^{\bullet}(\mathfrak{g} / \mathfrak{k})^{*}\right)^{K}$, with cohomology present only in even degrees.
Exercise 46.13. The real Stiefel manifold $\mathrm{St}_{n, k}(\mathbb{R}), k<n$, is the manifold of all orthonormal k-tuples of vectors in \mathbb{R}^{n}. For example, $\mathrm{St}_{n, 1}(\mathbb{R})=S^{n-1}$ and $\mathrm{St}_{n, n-1}(\mathbb{R})=S O(n)$.
(i) Show that $\mathrm{St}_{n, k}(\mathbb{R})=S O(n) / S O(n-k)$ and hence $\operatorname{dim} \mathrm{St}_{n, k}(\mathbb{R})=$ $k(n-k)+\frac{k(k-1)}{2}$.
(ii) Show that for $n \geq 3$, the manifold $\mathrm{St}_{n, 2}(\mathbb{R})$ is a fiber bundle over S^{n-1} with fiber S^{n-2}. Conclude that $\mathrm{St}_{n, 2}(\mathbb{R})$ has a cell decomposition with four cells of dimensions $0, n-2, n-1,2 n-3$. Show that the boundary of the n-1-dimensional cell is zero if n is even and twice the $n-2$-dimensional cell if n is odd. Compute the cohomology groups of $\mathrm{St}_{n, 2}(\mathbb{R})$ with any coefficient ring. In particular, show that if n is odd then the cohomology groups with coefficients in any field of characteristic $\neq 2$ are the same as for the sphere $S^{2 n-3}$.
(iii) Use the relative Chevalley-Eilenberg complex to compute the cohomology $H^{*}\left(\mathrm{St}_{n, 2}(\mathbb{R}), \mathbb{C}\right)$ in another way. Compare to (ii).
Exercise 46.14. (i) Prove Theorem 46.4 for type B_{n} using the method of Exercise 46.7. Namely, use that $S O(2 n+1) / S O(2 n-1)=\mathrm{St}_{2 n+1,2}(\mathbb{R})$ and Exercise 46.13 (ii) or (iii). Conclude that the cohomology ring of $S O(2 n+1)$ (and $S O_{2 n+1}(\mathbb{C})$) over \mathbb{C} is $\wedge^{\bullet}\left(\xi_{3}, \xi_{7}, \ldots, \xi_{4 n-1}\right)$ with Poincaré polynomial is $\left(1+q^{3}\right)\left(1+q^{7}\right) \ldots\left(1+q^{4 n-1}\right)$.
(ii) Use the conclusion of (i) for B_{n-1} and that $S O(2 n) / S O(2 n-1)=$ $S^{2 n-1}$ to prove Theorem 46.4 for type D_{n} (again using the method of Exercise 46.7). Conclude that the cohomology ring of $S O(2 n)$ (and $S O_{2 n}(\mathbb{C})$) over \mathbb{C} is $\wedge^{\bullet}\left(\xi_{3}, \xi_{7}, \ldots, \xi_{4 n-5}, \eta_{2 n-1}\right)$ with Poincaré polynomial having the form $\left(1+q^{3}\right)\left(1+q^{7}\right) \underset{253}{\ldots\left(1+q^{4 n-5}\right)} \cdot\left(1+q^{2 n-1}\right)$.
(iii) Show that these Poincaré polynomials are valid for cohomology of the same Lie groups with coefficients in any ring containing $\frac{1}{2}$.

MIT OpenCourseWare
https://ocw.mit.edu

18.755 Lie Groups and Lie Algebras II

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{26}$ Moreover, we have an algebra homomorphism $S: R \rightarrow R$ induced by the inversion map $G \rightarrow G$ called the antipode. This makes R into what is called a graded Hopf algebra.

[^1]: ${ }^{27}$ A similar idea can be used to find the cohomology of $\operatorname{Spin}(n)$ (see Exercise 46.13 below) but it is a bit more complicated since there is no cell decomposition with zero boundary map, and thus any cell decomposition has strictly more than 2^{r} cells for sufficiently large n (as there is 2 -torsion in the integral cohomology).

