47. Topology of Lie groups and homogeneous spaces, III

47.1. **Grassmannians.** Let $G = U(m+n), K = U(n) \times U(m)$, so that G/K is the **Grassmannian** $G_{m+n,n}(\mathbb{C}) \cong G_{m+n,m}(\mathbb{C})$ (the manifold of *m*-dimensional or *n*-dimensional subspaces of \mathbb{C}^{m+n}). The element $z = I_n \oplus (-I_m)$ acts by -1 on $\mathfrak{g}/\mathfrak{k} = V \otimes W^* \oplus W \otimes V^*$, where V, W are the tautological representations of U(n) and U(m). So we get that the Grassmannian has cohomology only in even degrees, and

$$H^{2i}(\mathbf{G}_{m+n,m}(\mathbb{C})) = \wedge^{2i}(V \otimes W^* \oplus W \otimes V^*)^{U(n) \times U(m)}.$$

We can therefore use the skew Howe duality (Proposition 30.11) to see that

$$\dim H^{2i}(\mathbf{G}_{m+n,m}(\mathbb{C})) = N_i(n,m),$$

where $N_i(n, m)$ is the number of partitions $\lambda = (\lambda_1, ..., \lambda_k)$ whose Young diagrams has *i* boxes and fit into the rectangle $m \times n$ (i.e., such that $k \leq m, \lambda_1 \leq n$).

To compute $N_i(m, n)$, consider the generating function

$$f_{n,m}(q) = \sum_{i} N_i(n,m)q^i$$

Then, denoting by p_i the jumps $\lambda_i - \lambda_{i+1}$ of λ (with $p_0 = n - \lambda_1$), we have

$$\sum_{n \ge 0} f_{n,m}(q) z^n =$$

$$\sum_{p_0, p_1, \dots, p_m \ge 0} z^{p_0 + p_1 + \dots + p_m} q^{p_1 + 2p_2 + \dots + mp_m} = \prod_{j=0}^m \frac{1}{1 - q^j z}.$$

So the Betti numbers of Grassmannians are the coefficients of this series. For example, if m = 1 we get

$$\sum_{n\geq 0} f_{n,m}(q)z^n = \frac{1}{(1-z)(1-qz)} = \sum_n (1+q+\ldots+q^n)z^n.$$

So we recover the Poincaré polynomial $1 + q + ... + q^n$ of the complex projective space \mathbb{CP}^n . More precisely, this is the Poincaré polynomial evaluated at $q^{\frac{1}{2}}$, which is actually a polynomial in q since we have nontrivial cohomology only in even degrees.

The polynomials $f_{n,m}(q)$ are called the **Gaussian binomial coefficients** and they can be computed explicitly. Namely, we have

Proposition 47.1.

$$f_{m,n}(q) = \binom{m+n}{n}_q = \binom{m+n}{m}_q = \frac{[m+n]_q!}{[m]_q! [n]_q!},$$

where $[m]_q := \frac{q^m - 1}{q - 1}$ and $[m]_q! := [1]_q \dots [m]_q$.

Proof. This follows immediately from the q-binomial theorem³³

(47.1)
$$\sum_{n\geq 0} \binom{m+n}{n}_q z^n = \prod_{j=0}^m \frac{1}{1-q^j z}.$$

Exercise 47.2. Prove (47.1).

Hint. Let F(z) be the RHS of this identity. Write a q-difference equation expressing F(qz) in terms of F(z). Show that this equation has a unique solution such that F(0) = 1. Then prove that the LHS satisfies the same equation.

Exercise 47.3. Compute the Betti numbers of $G_{N,2}(\mathbb{C})$.

47.2. Schubert cells. There is actually a more geometric way to obtain the same result. This way is based on decomposing the Grassmannians into Schubert cells. Namely, let $F_i \subset \mathbb{C}^{m+n}$ be spanned by the first *i* basis vectors $e_1, ..., e_i$; thus

$$0 = F_0 \subset F_1 \subset \ldots \subset F_{m+n} = \mathbb{C}^{m+n}$$

Given an *m*-dimensional subspace $V \subset \mathbb{C}^{m+n}$, let ℓ_j be the smallest integer for which $\dim(F_{\ell_j} \cap V) = j$. Then

$$1 \le \ell_1 < \ell_2 < \dots < \ell_m \le m + n,$$

which defines a partition with parts

$$\lambda_1 = \ell_m - m, \lambda_2 = \ell_{m-1} - m + 1, \dots, \lambda_m = \ell_1 - 1$$

fitting in the $m \times n$ box. Let $S_{\lambda} \subset G_{m+n,m}(\mathbb{C})$ be the set of V giving such numbers λ_i .

Exercise 47.4. Show that S_{λ} is a locally closed embedded complex submanifold of the Grassmannian isomorphic to the affine space $\mathbb{C}^{|\lambda|}$ of dimension $|\lambda| = \sum_{i} \lambda_{i}$ (i.e., a closed embedded submanifold in an open subset of the Grassmannian).

Hint. Show that for $V \in S_{\lambda}$, the elements $f_k := e_{\ell_k}^*|_V$ form a basis of V^* . For $\ell_j + 1 \leq i \leq \ell_{j+1}$ (with $\ell_{m+1} := m + n$), show that $e_i^*|_V$ is a linear combination of f_k , $j+1 \leq k \leq m$, and denote the corresponding

$$\sum_{n \ge 0} \binom{m+n}{m} z^n = \frac{1}{(1-z)^{m+1}}.$$

 $^{^{33}}$ Note that setting q=1 in the q-binomial theorem, we get the familiar formula from calculus, often called the binomial theorem:

coefficients by $a_{ik}(V)$. Show that the assignment $V \mapsto (a_{ik}(V))$ is an isomorphism $S_{\lambda} \cong \mathbb{C}^{|\lambda|}$.

Definition 47.5. The subset S_{λ} of the Grassmannian is called the **Schubert cell** corresponding to λ .

So we see that $G_{m+n,m}(\mathbb{C})$ has a **cell decomposition** into a disjoint union of Schubert cells.

Now we can rederive the same formula for the Poincaré polynomial of the Grassmannian from the following well-known fact from algebraic topology:

Proposition 47.6. If X is a connected cell complex which only has even-dimensional cells, then the cohomology of X vanishes in odd degrees, and the groups $H^{2i}(X,\mathbb{Z})$ are free abelian groups of ranks $b_{2i}(X)$, where the Betti number $b_{2i}(X)$ is just the number of cells in X of dimension i. Moreover, X is simply connected.

Indeed, the boundary map in this cell complex has to be zero, and its fundamental group must be trivial, as it is a quotient of the fundamental group of the 1-skeleton of X, which is a single point (why?).

So we obtain an even stronger statement than before:

Corollary 47.7. $H^{2i}(\mathbf{G}_{m+n,n}(\mathbb{C}),\mathbb{Z})$ are free abelian groups of ranks given by coefficients of $\binom{m+n}{m}_q$, and the odd cohomology groups are zero. Moreover, Grassmannians are simply connected.

In particular, this gives Betti numbers over any field (including positive characteristric), not just \mathbb{C} .

47.3. Flag manifolds. The flag manifold $\mathcal{F}_n(\mathbb{C})$ is the space of all complete flags $0 = V_0 \subset V_1 \subset ... \subset V_n = \mathbb{C}^n$, where dim $V_i = i$. Note that the flag manifold is a homogeneous space: $\mathcal{F}_n = G/T$, where G = U(n) and $T = U(1)^n$ is a maximal torus in G. It can also be written as $G_{\mathbb{C}}/B$, where $G_{\mathbb{C}} = GL_n(\mathbb{C})$ and $B = B_n$ is the subgroup of upper triangular matrices.

We have fibrations $\pi : \mathcal{F}_n(\mathbb{C}) \to \mathbb{CP}^{n-1}$ sending $(V_1, ..., V_{n-1})$ to V_{n-1} , whose fiber is the space of flags in V_{n-1} , i.e., $\mathcal{F}_{n-1}(\mathbb{C})$. This shows, by induction, that flag manifolds can be decomposed into evendimensional cells isomorphic to \mathbb{C}^k .

More precisely, to define actual cells, we need to trivialize the fibration π over each cell in \mathbb{CP}^{n-1} . These cells are C_{in} , i = 1, ..., n, where C_{in} is the set of hyperplanes $E \subset \mathbb{C}^n$ defined by an equation $a_1x_1 + ... + a_nx_n = 0$ where the first nonzero coefficient is a_i (so $C_{in} \cong \mathbb{C}^{n-i}$). This means that for $(x_1, ..., x_n) \in E$, the coordinates

 $x_j, j \neq i$ can be chosen arbitrarily, and then x_i is uniquely determined. So we may identify E with \mathbb{C}^{n-1} by sending $(x_1, ..., x_n)$ to $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_n)$, which defines the required trivialization.

Thus we obtain a stratification of \mathcal{F}_n into cells C_w labeled by permutations $w \in S_n$, which we'll represent as orderings of 1, 2, ..., n. Namely, this stratification and labeling are defined by induction in n: for $w \in S_{n-1}$, $C_w \times C_{in} = C_{w'_i}$, where $w'_i \in S_n$ is obtained from w by inserting n in the *i*-th place (namely, $w'_i = w \circ (i, i + 1, ..., n)$). By analogy with the Grassmannian, the cells C_w are called **Schubert cells**.

It follows that the Betti numbers of \mathcal{F}_n vanish in odd degrees, and in even degrees are given by the generating function

$$\sum b_{2i}(\mathcal{F}_n)q^n = [n]_q! = (1+q)(1+q+q^2)\dots(1+q+\dots+q^{n-1}).$$

Moreover, it is easy to see that $\dim_{\mathbb{C}} C_w = \ell(w)$, so we get the identity

$$\sum_{w \in S_n} q^{\ell(w)} = [n]_q!$$

Finally, note that the group B_n of upper triangular matrices preserves each C_w . In fact, it is easy to check by induction in n that C_w are simply B_n -orbits on \mathcal{F}_n .

Remark 47.8. We have a map $\pi_m : \mathcal{F}_{m+n}(\mathbb{C}) \to \mathcal{G}_{m+n,m}(\mathbb{C})$ sending $(V_1, ..., V_{m+n-1})$ to V_m . This is a fibration with fiber $\mathcal{F}_m(\mathbb{C}) \times \mathcal{F}_n(\mathbb{C})$. This gives another proof of the formula for Betti numbers of the Grassmannian (Proposition 47.1).

We can also define the **partial flag manifold** $\mathcal{F}_S(\mathbb{C})$, where $S \subset [1, n-1]$ is a subset, namely the space of **partial flags** $(V_s, s \in S)$, $V_s \subset \mathbb{C}^n$, dim $V_s = s$, $V_s \subset V_t$ if s < t.

Exercise 47.9. Let $S = \{n_1, n_1 + n_2, ..., n_1 + ... + n_{k-1}\}$, and $n_k = n - n_1 - ... - n_{k-1}$. Show that the even Betti numbers of the partial flag manifold are the coefficients of the polynomial

$$P_S(q) := \frac{[n]_q!}{[n_1]_q!...[n_k]_q!}$$

called the **Gaussian multinomial coefficient** (and the odd Betti numbers vanish). Show that the partial flag manifold is simply connected.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.