47. Topology of Lie groups and homogeneous spaces, III

47.1. Grassmannians. Let $G=U(m+n), K=U(n) \times U(m)$, so that G / K is the Grassmannian $\mathrm{G}_{m+n, n}(\mathbb{C}) \cong \mathrm{G}_{m+n, m}(\mathbb{C})$ (the manifold of m-dimensional or n-dimensional subspaces of \mathbb{C}^{m+n}). The element $z=I_{n} \oplus\left(-I_{m}\right)$ acts by -1 on $\mathfrak{g} / \mathfrak{k}=V \otimes W^{*} \oplus W \otimes V^{*}$, where V, W are the tautological representations of $U(n)$ and $U(m)$. So we get that the Grassmannian has cohomology only in even degrees, and

$$
H^{2 i}\left(\mathrm{G}_{m+n, m}(\mathbb{C})\right)=\wedge^{2 i}\left(V \otimes W^{*} \oplus W \otimes V^{*}\right)^{U(n) \times U(m)}
$$

We can therefore use the skew Howe duality (Proposition 30.11) to see that

$$
\operatorname{dim} H^{2 i}\left(\mathrm{G}_{m+n, m}(\mathbb{C})\right)=N_{i}(n, m)
$$

where $N_{i}(n, m)$ is the number of partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ whose Young diagrams has i boxes and fit into the rectangle $m \times n$ (i.e., such that $\left.k \leq m, \lambda_{1} \leq n\right)$.

To compute $N_{i}(m, n)$, consider the generating function

$$
f_{n, m}(q)=\sum_{i} N_{i}(n, m) q^{i} .
$$

Then, denoting by p_{i} the jumps $\lambda_{i}-\lambda_{i+1}$ of λ (with $p_{0}=n-\lambda_{1}$), we have

$$
\begin{gathered}
\sum_{n \geq 0} f_{n, m}(q) z^{n}= \\
\sum_{p_{0}, p_{1}, \ldots, p_{m} \geq 0} z^{p_{0}+p_{1}+\ldots+p_{m}} q^{p_{1}+2 p_{2}+\ldots+m p_{m}}=\prod_{j=0}^{m} \frac{1}{1-q^{j} z} .
\end{gathered}
$$

So the Betti numbers of Grassmannians are the coefficients of this series. For example, if $m=1$ we get

$$
\sum_{n \geq 0} f_{n, m}(q) z^{n}=\frac{1}{(1-z)(1-q z)}=\sum_{n}\left(1+q+\ldots+q^{n}\right) z^{n}
$$

So we recover the Poincaré polynomial $1+q+\ldots+q^{n}$ of the complex projective space $\mathbb{C P}^{n}$. More precisely, this is the Poincaré polynomial evaluated at $q^{\frac{1}{2}}$, which is actually a polynomial in q since we have nontrivial cohomology only in even degrees.

The polynomials $f_{n, m}(q)$ are called the Gaussian binomial coefficients and they can be computed explicitly. Namely, we have

Proposition 47.1.

$$
f_{m, n}(q)=\binom{m+n}{n}_{q}=\binom{m+n}{m}_{q}=\frac{[m+n]_{q}!}{[m]_{q}![n]_{q}!}
$$

where $[m]_{q}:=\frac{q^{m}-1}{q-1}$ and $[m]_{q}!:=[1]_{q} \ldots[m]_{q}$.
Proof. This follows immediately from the q-binomial theorem ${ }^{28}$

$$
\begin{equation*}
\sum_{n \geq 0}\binom{m+n}{n}_{q} z^{n}=\prod_{j=0}^{m} \frac{1}{1-q^{j} z} \tag{47.1}
\end{equation*}
$$

Exercise 47.2. Prove (47.1).
Hint. Let $F(z)$ be the RHS of this identity. Write a q-difference equation expressing $F(q z)$ in terms of $F(z)$. Show that this equation has a unique solution such that $F(0)=1$. Then prove that the LHS satisfies the same equation.

Exercise 47.3. Compute the Betti numbers of $\mathrm{G}_{N, 2}(\mathbb{C})$.
47.2. Schubert cells. There is actually a more geometric way to obtain the same result. This way is based on decomposing the Grassmannians into Schubert cells. Namely, let $F_{i} \subset \mathbb{C}^{m+n}$ be spanned by the first i basis vectors e_{1}, \ldots, e_{i}; thus

$$
0=F_{0} \subset F_{1} \subset \ldots \subset F_{m+n}=\mathbb{C}^{m+n}
$$

Given an m-dimensional subspace $V \subset \mathbb{C}^{m+n}$, let ℓ_{j} be the smallest integer for which $\operatorname{dim}\left(F_{\ell_{j}} \cap V\right)=j$. Then

$$
1 \leq \ell_{1}<\ell_{2}<\ldots<\ell_{m} \leq m+n
$$

which defines a partition with parts

$$
\lambda_{1}=\ell_{m}-m, \lambda_{2}=\ell_{m-1}-m+1, \ldots, \lambda_{m}=\ell_{1}-1
$$

fitting in the $m \times n$ box. Let $S_{\lambda} \subset \mathrm{G}_{m+n, m}(\mathbb{C})$ be the set of V giving such numbers λ_{i}.

Exercise 47.4. Show that S_{λ} is a locally closed embedded complex submanifold of the Grassmannian isomorphic to the affine space $\mathbb{C}^{|\lambda|}$ of dimension $|\lambda|=\sum_{i} \lambda_{i}$ (i.e., a closed embedded submanifold in an open subset of the Grassmannian).

Hint. Show that for $V \in S_{\lambda}$, the elements $f_{k}:=\left.e_{\ell_{k}}^{*}\right|_{V}$ form a basis of V^{*}. For $\ell_{j}+1 \leq i \leq \ell_{j+1}$ (with $\ell_{m+1}:=m+n$), show that $\left.e_{i}^{*}\right|_{V}$ is a linear combination of $f_{k}, j+1 \leq k \leq m$, and denote the corresponding

[^0]coefficients by $a_{i k}(V)$. Show that the assignment $V \mapsto\left(a_{i k}(V)\right)$ is an isomorphism $S_{\lambda} \cong \mathbb{C}^{|\lambda|}$.
Definition 47.5. The subset S_{λ} of the Grassmannian is called the Schubert cell corresponding to λ.

So we see that $\mathrm{G}_{m+n, m}(\mathbb{C})$ has a cell decomposition into a disjoint union of Schubert cells.

Now we can rederive the same formula for the Poincaré polynomial of the Grassmannian from the following well-known fact from algebraic topology:

Proposition 47.6. If X is a connected cell complex which only has even-dimensional cells, then the cohomology of X vanishes in odd degrees, and the groups $H^{2 i}(X, \mathbb{Z})$ are free abelian groups of ranks $b_{2 i}(X)$, where the Betti number $b_{2 i}(X)$ is just the number of cells in X of dimension i. Moreover, X is simply connected.

Indeed, the boundary map in this cell complex has to be zero, and its fundamental group must be trivial, as it is a quotient of the fundamental group of the 1 -skeleton of X, which is a single point (why?).

So we obtain an even stronger statement than before:
Corollary 47.7. $H^{2 i}\left(\mathrm{G}_{m+n, n}(\mathbb{C}), \mathbb{Z}\right)$ are free abelian groups of ranks given by coefficients of $\binom{m+n}{m}_{q}$, and the odd cohomology groups are zero. Moreover, Grassmannians are simply connected.

In particular, this gives Betti numbers over any field (including positive characteristric), not just \mathbb{C}.
47.3. Flag manifolds. The flag manifold $\mathcal{F}_{n}(\mathbb{C})$ is the space of all complete flags $0=V_{0} \subset V_{1} \subset \ldots \subset V_{n}=\mathbb{C}^{n}$, where $\operatorname{dim} V_{i}=i$. Note that the flag manifold is a homogeneous space: $\mathcal{F}_{n}=G / T$, where $G=U(n)$ and $T=U(1)^{n}$ is a maximal torus in G. It can also be written as $G_{\mathbb{C}} / B$, where $G_{\mathbb{C}}=G L_{n}(\mathbb{C})$ and $B=B_{n}$ is the subgroup of upper triangular matrices.

We have fibrations $\pi: \mathcal{F}_{n}(\mathbb{C}) \rightarrow \mathbb{C P}^{n-1}$ sending $\left(V_{1}, \ldots, V_{n-1}\right)$ to V_{n-1}, whose fiber is the space of flags in V_{n-1}, i.e., $\mathcal{F}_{n-1}(\mathbb{C})$. This shows, by induction, that flag manifolds can be decomposed into evendimensional cells isomorphic to \mathbb{C}^{k}.

More precisely, to define actual cells, we need to trivialize the fibration π over each cell in $\mathbb{C P}^{n-1}$. These cells are $C_{i n}, i=1, \ldots, n$, where $C_{i n}$ is the set of hyperplanes $E \subset \mathbb{C}^{n}$ defined by an equation $a_{1} x_{1}+\ldots+a_{n} x_{n}=0$ where the first nonzero coefficient is a_{i} (so $C_{i n} \cong \mathbb{C}^{n-i}$). This means that for $\left(x_{1}, \ldots, x_{n}\right) \in E$, the coordinates
$x_{j}, j \neq i$ can be chosen arbitrarily, and then x_{i} is uniquely determined. So we may identify E with \mathbb{C}^{n-1} by sending $\left(x_{1}, \ldots, x_{n}\right)$ to $\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$, which defines the required trivialization.

Thus we obtain a stratification of \mathcal{F}_{n} into cells C_{w} labeled by permutations $w \in S_{n}$, which we'll represent as orderings of $1,2, \ldots, n$. Namely, this stratification and labeling are defined by induction in n : for $w \in S_{n-1}, C_{w} \times C_{i n}=C_{w_{i}^{\prime}}$, where $w_{i}^{\prime} \in S_{n}$ is obtained from w by inserting n in the i-th place (namely, $w_{i}^{\prime}=w \circ(i, i+1, \ldots, n)$). By analogy with the Grassmannian, the cells C_{w} are called Schubert cells.

It follows that the Betti numbers of \mathcal{F}_{n} vanish in odd degrees, and in even degrees are given by the generating function

$$
\sum b_{2 i}\left(\mathcal{F}_{n}\right) q^{n}=[n]_{q}!=(1+q)\left(1+q+q^{2}\right) \ldots\left(1+q+\ldots+q^{n-1}\right) .
$$

Moreover, it is easy to see that $\operatorname{dim}_{\mathbb{C}} C_{w}=\ell(w)$, so we get the identity

$$
\sum_{w \in S_{n}} q^{\ell(w)}=[n]_{q}!
$$

Finally, note that the group B_{n} of upper triangular matrices preserves each C_{w}. In fact, it is easy to check by induction in n that C_{w} are simply B_{n}-orbits on \mathcal{F}_{n}.

Remark 47.8. We have a map $\pi_{m}: \mathcal{F}_{m+n}(\mathbb{C}) \rightarrow \mathrm{G}_{m+n, m}(\mathbb{C})$ sending $\left(V_{1}, \ldots, V_{m+n-1}\right)$ to V_{m}. This is a fibration with fiber $\mathcal{F}_{m}(\mathbb{C}) \times \mathcal{F}_{n}(\mathbb{C})$. This gives another proof of the formula for Betti numbers of the Grassmannian (Proposition 47.1).

We can also define the partial flag manifold $\mathcal{F}_{S}(\mathbb{C})$, where $S \subset$ $[1, n-1]$ is a subset, namely the space of partial flags $\left(V_{s}, s \in S\right)$, $V_{s} \subset \mathbb{C}^{n}, \operatorname{dim} V_{s}=s, V_{s} \subset V_{t}$ if $s<t$.

Exercise 47.9. Let $S=\left\{n_{1}, n_{1}+n_{2}, \ldots, n_{1}+\ldots+n_{k-1}\right\}$, and $n_{k}=$ $n-n_{1}-\ldots-n_{k-1}$. Show that the even Betti numbers of the partial flag manifold are the coefficients of the polynomial

$$
P_{S}(q):=\frac{[n]_{q}!}{\left[n_{1}\right]_{q}!\ldots\left[n_{k}\right]_{q}!}
$$

called the Gaussian multinomial coefficient (and the odd Betti numbers vanish). Show that the partial flag manifold is simply connected.

MIT OpenCourseWare
https://ocw.mit.edu

18.755 Lie Groups and Lie Algebras II

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{28}$ Note that setting $q=1$ in the q-binomial theorem, we get the familiar formula from calculus, often called the binomial theorem:

 $$
 \sum_{n \geq 0}\binom{m+n}{m} z^{n}=\frac{1}{(1-z)^{m+1}}
 $$

