
49. The third fundamental theorem of Lie theory

49.1. Exponentiating nilpotent and solvable Lie algebras and
the third fundamental theorem of Lie theory. The following the-
orem implies the third fundamental theorem of Lie theory for solvable
Lie algebras. Let g be a finite dimensional solvable Lie algebra over
K = R or C of dimension n.

Theorem 49.1. There is a simply connected Lie group G over K with
Lie(G) = g, diffeomorphic to Kn. Moreover, if g is nilpotent then the
exponential map exp : g → G is a diffeomorphism, and if we use it
to identify G with g then the multiplication map µ : g × g → g is
polynomial.

Proof. The proof is by induction in n, with trivial base n = 0. Namely,
fix a nonzero homomorphism χ : g → K (which exists since g is solv-
able), and let g0 = Kerχ. Then we have g = Kd n g0, the semidirect
product, where d ∈ g acts as a derivation d on g0. Let G0 be the simply
connected Lie group corresponding to g0, which is defined by the induc-
tion assumption. So we have a 1-parameter group of automorphisms
etd : g0 → g0 which by the second fundamental theorem of Lie theory
gives rise to a 1-parameter group of automorphisms etd : G0 → G0.
Thus we can define a group structure on G := G0 ×K by the formula

(x, t) · (y, s) = (x · etd(y), t+ s), x, y ∈ G0, t, s ∈ K.
Otherwise formulated, G = KnG0. This gives a desired group G with
Lie algebra g.

Moreover, if g is nilpotent then by the induction assumption the ex-
ponential map g0 → G0 is a diffeomorphism, and if we use it to identify
g0 with G0 then the multiplication µ0 : g0× g0 → g0 is polynomial. So
we may realize G as g = g0 ×K with multiplication law

(X, t)∗(Y, s) = µ((X, t), (Y, s)) = (µ0(X, etd(Y )), t+s), X, Y ∈ g0, t, s ∈ K.
By nilpotency dN = 0 for some N , so

etd(Y ) =
N−1∑
n=0

tndn(Y )

n!
,

so we see that µ is polynomial. Also

exp(X, t) = (exp(Xt), t),

where

Xt =
etd − 1

td
(X) =

N∑
n=1

tn−1dn−1(X)

n!
.
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Thus

X =

(
N∑
n=1

tn−1dn−1

n!

)−1

(Xt),

which makes sense since dN = 0. This implies that the exponential
map for g is a diffeomorphism. �

Example 49.2. Let g be the Heisenberg Lie algebra, i.e. the Lie
algebra of strictly upper triangular 3-by-3 matrices. Then under such
identification the multiplication map in the corresponding Heisenberg
group G has the form

(x, y, z) ∗ (x′, y′, z′) = (x+ x′, y + y′, z + z′ + 1
2
(xy′ − x′y)).

Exercise 49.3. Show that if g is the 2-dimensional non-abelian com-
plex Lie algebra and G the corresponding simply connected Lie group
then exp : g→ G is not injective.

Definition 49.4. The simply connected Lie group whose Lie algebra
is nilpotent is called unipotent.36

Corollary 49.5. (Third fundamental theorem of Lie theory, Theorem
9.13) For any finite dimensional Lie algebra g over R or C there is a
simply connected Lie group G with Lie(G) = g.

Proof. By Theorem 49.1, we have such a group A for a = rad(g).
Moreover, by the Levi decomposition theorem, the simply connected
semisimple group Gss corresponding to gss acts on rad(g). Hence by
the second fundamental theorem of Lie theory, Gss acts on A, and the
simply connected Lie group GssnA has the Lie algebra gssn rad(g) =
g. �

Corollary 49.6. A simply connected complex Lie group G is of the
form GssnA, where A is solvable simply connected, hence diffeomorphic
to Cn, and Gss is a simply connected semisimple complex Lie group.
Thus G has the homotopy type of Gc

ss.

49.2. Formal groups. The third fundamental theorem of Lie theory
assigns a simply connected Lie group G to any finite dimensional Lie
algebra g over R or C, such that LieG = g. But what about infinite
dimensional Lie algebras? There are some examples when this is pos-
sible, for instance for g = Vect(M), the Lie algebra of vector fields
for a smooth manifold M , we can take G to be the universal cover of

36The reason for this terminology is that these groups act by unipotent operators
on the adjoint representation.
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Diff0(M), the group of diffeomorphisms of M homotopic to the iden-
tity, and for g = C∞(S1, k) for a finite dimensional Lie algebra k we
can take G = C∞(S1, K), where K is the simply connected Lie group
corresponding to k (although we would need to explain in what sense
G is a Lie group and LieG = g). However, for a general infinite di-
mensional g, such an assignment is typically impossible and a suitable
group G does not exist.

However, this assignment becomes possible (and in fact not just over
R and C but over any field of characteristic zero) if we replace the no-
tion of a Lie group with a purely algebraic notion of a formal group.
Roughly speaking, the notion of a formal group is the analog of the
notion of a real or complex analytic Lie group where analytic func-
tions are replaced by formal power series, and we don’t worry about
their convergence. This allows us to work with infinite dimensional Lie
algebras and over arbitrary fields of characteristic zero.

Let us give a precise definition. Given a vector space V over a field
k of characteristic zero, define the algebra k[[V ]] of formal regular
functions on V to be (SV )∗, the dual of the symmetric algebra of V .
Since SV has a bialgebra structure ∆0 : SV → SV ⊗ SV defined by
∆0(v) = v⊗ 1 + 1⊗ v for v ∈ V , the dual map ∆∗0 gives a commutative
associative product on k[[V ]], which is continuous in the weak topology
of the dual space.37 If xi, i ∈ I is a linear coordinate system on V
corresponding to a basis vi, i ∈ I, then we have a natural identification
k[[V ]] ∼= k[[xi, i ∈ I]] of k[[V ]] with the algebra of formal power series
in xi. Note that here I can be a set of any cardinality, not necessarily
finite or countable. Moreover, if dimV <∞ then k[[V ]] =

∏
n≥0 S

nV ∗.
Finally, note that we have the augmentation homomorphism (counit)

ε : k[[V ]] → k given by ε(f) = f(0), i.e., obtained by taking the
quotient by the maximal ideal m ⊂ k[[V ]].

Definition 49.7. A formal group structure on V is a (topological)
coproduct ∆ : k[[V ]]→ k[[V ⊕ V ]], i.e., a continuous38 homomorphism
which is coassociative and compatible with the counit:

(∆⊗Id)◦∆(f) = (Id⊗∆)◦∆(f), (ε⊗Id)◦∆(f) = (Id⊗ε)◦∆(f) = f.

A formal group over k is a pair G = (V,∆). We will denote k[[V ]] by
O(G) and call it the algebra of regular functions on G. We define
the dimension of G by dimG := dimV .

37Recall that if E is a vector space then the dual space E∗ carries the weak
topology whose basis of neighborhoods of zero is given by orthogonal complements
of finite dimensional subspaces of E.

38Note that if dimV <∞, any such homomorphism is automatically continuous.
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A (homo)morphism of formal groups φ : G1 → G2 is a (contin-
uous) algebra homomorphism O(G2)→ O(G1) preserving the coprod-
uct.39

For example, a 1-dimensional formal group is defined by a power
series F (x, y) ∈ k[[x, y]], F (x, y) = x + y + ..., where ... denotes
quadratic and higher terms, which is associative:

F (F (x, y), z) = F (x, F (y, z)).

Such a series F is called a formal group law. Namely, the map
∆ : k[[x]]→ k[[x1, x2]] is defined by the formula

∆(f)(x1, x2) = f(F (x1, x2)).

Higher-dimensional formal groups G can also be presented in this way,
with F, x, y being vectors with dimG entries rather than scalars.

Example 49.8. 1. The additive formal group: ∆(f) = f⊗1+1⊗f ,
f ∈ V ∗. In other words, F (x, y) = x+ y and ∆(f)(x, y) = f(x+ y).

2. Let G be a real or complex Lie group. Then the multiplication
map G×G→ G is smooth. So we can take its Taylor expansion at the
unit element, which defines a formal group Gformal called the formal
completion of G at the identity. Its coproduct is defined by the
formula ∆(f)(x, y) = f(x ◦ y) where (x, y) 7→ x ◦ y denotes the group
law of G. The same construction is valid for an algebraic group over
any field.

So what does it have to do with groups? In fact, a lot: if G is a formal
group then it defines a functor from the category of local commutative
finite dimensional k-algebras to the category of groups,

R 7→ G(R) = Homcontinuous(O(G), R)

(where the topology on R is discrete).40 Namely, the group law on such
homomorphisms is defined by

(a ◦ b)(f) = (a⊗ b)(∆(f)).

This makes sense even though ∆(f) does not belong to k[[V ]]⊗ k[[V ]]
but only to its completion k[[V ⊕ V ]] since R is finite dimensional.

Exercise 49.9. Show that (G(R), ◦) is a group.

39Thus we forget the linear structure on V (it does not have to be preserved
by homomorphisms). In other words, to specify a formal group, we don’t need to
specify a vector space V but only need to specify a (topological) ring isomorphic
to k[[V ]] for some V and equipped with a coproduct.

40Again, continuity is automatic if dimG <∞.
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Moreover, any (homo)morphism of formal groups G1 → G2 defines a
morphism of functors G1(?) → G2(?), and this assignment is compat-
ible with composition. Furthermore, it is not hard to show that this
assignment can be inverted, which allows us to define formal groups
as representable functors from local finite dimensional commutative
algebras to groups.

Any formal group G defines a Lie algebra LieG, which as a vector
space is the continuous dual g := (m/m2)∗. In other words, it is the
underlying vector space V of G = (V,∆). Note that by compatibility
of ∆ with ε, for f ∈ m the element ∆(f) − f ⊗ 1 − 1 ⊗ f belongs
to the completed tensor product m⊗̂m, thus projects to a well defined
element of (g⊗g)∗. Thus the same is true for the element ∆(f)−∆op(f)
(where ∆op is obtained from ∆ by swapping components); in fact, it
defines an element of (∧2g)∗. Moreover, this element only depends on
the residue f of f in g∗ = m/m2 (check it!). Denote the projection of
∆(f)−∆op(f) to (∧2g)∗ by δ(f). Then δ : g∗ → (∧2g)∗ is continuous,
so it is dual to the map [, ] = δ∗ : ∧2g→ g, and it is easy to show that
[, ] is a Lie bracket on g; namely, the Jacobi identity follows from the
coassociativity of ∆ (check it!).

Conversely, given a Lie algebra g over k (not necessarily finite dimen-
sional), we can use the Baker-Campbell-Hausdorff formula (Subsection
14.3) to assign a formal group to g. Namely, take V = g and define
∆ : k[[g]]→ k[[g⊕ g]] by

∆(f)(x, y) = f(µ(x, y)),

where µ(x, y) = x + y + 1
2
[x, y] + ... is the Baker-Campbell-Hausdorff

series. Then the coassociativity of ∆ follows from the associativity of
µ. In other words, we define G by setting its formal group law F to be
equal to µ.

Example 49.10. Let g be a Lie algebra and G be the corresponding
formal group. Let R be a finite dimensional local commutative algebra
with maximal ideal mR. Then G(R) = mR ⊗ g with group law

(x, y) 7→ µ(x, y)

(which makes sense since the series terminates).

Theorem 49.11. (The fundamental theorems of Lie theory for formal
groups) These assignments are mutually inverse equivalences between
the category of formal groups over k and the category of Lie algebras
over k.

Proof. The proof is analogous to the proof of the first two fundamental
theorems for usual Lie groups (but without the analytic details), and
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we leave it as an exercise. Note that the third theorem, which was the
hardest for usual Lie groups, assigning a group to a Lie algebra, has
already been proved above by using the series µ(x, y). �

Corollary 49.12. Every 1-dimensional formal group G over a field
of characteristic zero is isomorphic to the additive formal group, with
∆(f)(x, y) = f(x+ y).

Over a field of positive characteristic (or over a commutative ring,
such as Z), much, but not all, of this story extends; let us for simplicity
consider the finite dimensional case over a field. Namely, the definition
of a formal group structure (say, on a finite dimensional space) is the
same: it’s a coproduct on k[[x1, ..., xn]] with the same properties as
above.41 The definition of the Lie algebra of a formal group also goes
along for the ride. However, the reverse assignment fails, since the
series µ(x, y) is only defined over Q and has all primes occurring in
denominators of its coefficients. As a result, not any Lie algebra gives
rise to a formal group, and the fundamental theorems of Lie theory for
formal groups don’t hold.

In particular, there are many non-isomorphic 1-dimensional formal
groups. For example, we have the additive group law F (x, y) = x+y as
above, but also the multiplicative group law F (x, y) = x+ y + xy,
which is called so because this means that 1 +F (x, y) = (1 +x)(1 + y).
In characteristic zero these are isomorphic by the map

x 7→ ex − 1 =
∑
n≥1

xn

n!
,

(not surprisingly in view of Corollary 49.12), but in positive charac-
teristic this series does not make sense and in fact the additive and
multiplicative formal groups are not isomorphic (check it!). There are
also many other 1-dimensional formal group laws, commutative and
not. Such (commutative) formal group laws are very important in alge-
braic topology, since they parametrize (complex-oriented) cohomology
theories. For example, the additive group law corresponds to ordinary
cohomology and the multiplicative one to K-theory. In characteristic
zero the isomorphism between the additive and multiplicative formal
groups leads to the Chern character map which identifies cohomol-
ogy and K-theory of a topological space with Q-coefficients.

41More precisely, instead of SV we should take the symmetric algebra with
divided powers ΓV , defined by ΓmV := (SmV ∗)∗. Note that in characteristic p,
ΓmV is not naturally isomorphic to SmV for m ≥ p.
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