50. Ado's theorem

50.1. The nilradical. Consider now a solvable Lie algebra \mathfrak{a} over \mathbb{C} and its adjoint representation. By Lie's theorem, in some basis \mathfrak{a} acts in this representation by upper triangular matrices. Let $\mathfrak{n} \subset \mathfrak{a}$ be the subset of nilpotent elements (the nilradical of \mathfrak{a}). Thus \mathfrak{n} is the set of $x \in \mathfrak{a}$ that act in this basis by strictly upper triangular matrices. In particular, $\mathfrak{n} \supset [\mathfrak{a}, \mathfrak{a}]$, so $\mathfrak{a}/\mathfrak{n}$ is abelian. Moreover, the diagonal entries of these upper triangular matrices gives rise to characters $\lambda_i \in (\mathfrak{a}/\mathfrak{n})^*$ which constitute a composition series of the adjoint representation of \mathfrak{a} . By the definition of \mathfrak{n} , the characters λ_i form a spanning set in $(\mathfrak{a}/\mathfrak{n})^*$.

Proposition 50.1. If $d : \mathfrak{a} \to \mathfrak{a}$ is a derivation then $d(\mathfrak{a}) \subset \mathfrak{n}$. Thus if $\mathfrak{a} = \operatorname{rad}(\mathfrak{g})$ is the radical of \mathfrak{g} then \mathfrak{g} acts trivially on $\mathfrak{a}/\mathfrak{n}$.

Proof. Since there are finitely many characters λ_i in the composition series of \mathfrak{a} , for each of them we have $e^{td}\lambda_i = \lambda_i$. It follows that d acts on $\mathfrak{a}/\mathfrak{n}$ trivially.

50.2. Algebraic Lie algebras. Let us say that a finite dimensional complex Lie algebra \mathfrak{g} is algebraic if \mathfrak{g} is the Lie algebra of a group $G = K \ltimes N$, where K is a reductive group and N a unipotent group. It turns out that this is equivalent to being the Lie algebra of an affine algebraic group over \mathbb{C} (i.e., a closed subgroup in $GL_n(\mathbb{C})$ defined by polynomial equations), which motivates the terminology.

A finite dimensional complex Lie algebra need not be algebraic:

Example 50.2. Let \mathfrak{g}_1 be a 3-dimensional Lie algebra with basis d, x, y and [x, y] = 0, [d, x] = x, $[d, y] = \sqrt{2}y$. Similarly, let \mathfrak{g}_2 have basis d, x, y with [x, y] = 0, [d, x] = x, [d, y] = y + x. Then $\mathfrak{g}_1, \mathfrak{g}_2$ are not algebraic (check it!).

Nevertheless, we have the following proposition.

Proposition 50.3. Any finite dimensional complex Lie algebra is a Lie subalgebra of an algebraic one.

Proof. Let us say that \mathfrak{g} is *n*-algebraic if it is the Lie algebra of a group $G := K \ltimes A$, where K is reductive and $\mathfrak{a} = \text{Lie}(A)$ is solvable with $\dim(\mathfrak{a}/\mathfrak{n}) \leq n$, where \mathfrak{n} is the nilradical of \mathfrak{a} . Thus 0-algebraic is the same as algebraic. Note that for any \mathfrak{g} we have the Levi decomposition $\mathfrak{g} = \mathfrak{g}_{ss} \ltimes \mathfrak{a}$, where $\mathfrak{a} = \operatorname{rad}(\mathfrak{g})$, which shows that any \mathfrak{g} is *n*-algebraic for some *n*. So it suffices to show that any *n*-algebraic Lie algebra for n > 0 embeds into an n - 1-algebraic one.

To this end, let $\mathfrak{g} = \operatorname{Lie}(G)$ be *n*-algebraic, with $G = K \ltimes A$ and A simply connected. Let $\mathfrak{a} = \operatorname{Lie}(A)$, so $\dim(\mathfrak{a}/\mathfrak{n}) = n$. Pick $d \in \mathfrak{a}, d \notin \mathfrak{n}$

such that d is K-invariant. This can be done since K acts trivially on $\mathfrak{a}/\mathfrak{n}$ and its representations are completely reducible. We have a decomposition $\mathfrak{a} = \bigoplus_{i=1}^{r} \mathfrak{a}[\beta_i]$ of \mathfrak{a} into generalized eigenspaces of d. It is clear that K preserves each $\mathfrak{a}[\beta_i]$. Pick a character $\chi : \mathfrak{a} \to \mathbb{C}$ such that $\chi(d) = 1$.

Consider the subgroup Γ of \mathbb{C} generated by β_i and let $\alpha_1, ..., \alpha_m$ be a basis of Γ , so that $\beta_i = \sum_j b_{ij}\alpha_j$ for $b_{ij} \in \mathbb{Z}$. Let $T = (\mathbb{C}^{\times})^m$ and make T act on G so that it commutes with K and acts on $\mathfrak{a}[\beta_i]$ by $(z_1, ..., z_m) \mapsto \prod_j z_j^{b_{ij}}$. Now consider the group $\widetilde{G} := (K \times T) \ltimes A$. Let $\mathfrak{a}' \subset \operatorname{Lie}(T) \ltimes \mathfrak{a} \subset \operatorname{Lie}(\widetilde{G})$ be spanned by $\operatorname{Ker}\chi$ and $d - \alpha$ where $\alpha = (\alpha_1, ..., \alpha_m) \in \operatorname{Lie}(T)$. Then the nilradical \mathfrak{n}' of \mathfrak{a}' is spanned by \mathfrak{n} and $d - \alpha$ (as the latter is nilpotent). Moreover, if A' is the simply connected group corresponding to \mathfrak{a}' , then $(K \times T) \ltimes A \cong (K \ltimes T) \ltimes A'$ Thus, the Lie algebra $\widetilde{\mathfrak{g}} := \operatorname{Lie}(\widetilde{G})$ is n - 1-algebraic (as $\dim(\mathfrak{a}'/\mathfrak{n}') =$ n - 1), and it contains \mathfrak{g} , as claimed. \Box

Example 50.4. The Lie algebras $\mathfrak{g}_1, \mathfrak{g}_2$ in the Example 50.2 are 1-algebraic.

To embed \mathfrak{g}_1 into an algebraic Lie algebra, add element δ with $[\delta, x] = 0$, $[\delta, y] = y$, $[\delta, d] = 0$. Then the Lie algebra \mathfrak{g}'_1 spanned by δ, d, x, y is $\mathfrak{b} \oplus \mathfrak{b}$, where \mathfrak{b} is the non-abelian 2-dimensional Lie algebra (so it is algebraic). Namely, the first copy of \mathfrak{b} is spanned by δ, y and the second by $d - \sqrt{2}\delta, x$.

To embed \mathfrak{g}_2 into an algebraic Lie algebra, add element δ with $[\delta, x] = 0$, $[\delta, y] = x$, $[\delta, d] = 0$. Then the Lie algebra \mathfrak{g}'_2 spanned by δ, d, x, y is $\mathbb{C} \ltimes \mathcal{H}$, where \mathcal{H} is the 3-dimensional Heisenberg Lie algebra with basis δ, x, y , and \mathbb{C} is spanned by $d - \delta$ (so it is algebraic, as $d - \delta$ acts diagonalizably with integer eigenvalues).

50.3. Faithful representations of nilpotent Lie algebras. Let \mathfrak{n} be a finite dimensional nilpotent Lie algebra over \mathbb{C} . In this subsection we will show that \mathfrak{n} has a finite dimensional faithful representation.

To this end, recall that by Theorem 49.1, $\mathbf{n} = \text{Lie}(N)$ where N is a simply connected Lie group, and the exponential map $\exp : \mathbf{n} \to N$ is bijective. Moreover, the multiplication law of N, when rewritten on \mathbf{n} using the exponential map, is given by polynomials.

Proposition 50.5. Let $\mathcal{O}(N)$ be the space of polynomial functions on $N \cong \mathfrak{n}$ (identified using the exponential map). Then $\mathcal{O}(N)$ is invariant under the action of \mathfrak{n} by left-invariant vector fields. Moreover, we have a canonical filtration $\mathcal{O}(N) = \bigcup_{n \ge 1} V_n$, where $V_n \subset \mathcal{O}(N)$ are finite dimensional subspaces such that $V_1 \subset V_2 \subset \ldots$ and $\mathfrak{n} V_n \subset V_{n-1}$.

Proof. Let $\mu : \mathfrak{n} \times \mathfrak{n} \to \mathfrak{n}$ be the polynomial multiplication law. Let $x \in \mathfrak{n}$ and L_x be the corresponding left-invariant vector field. Let $f \in \mathcal{O}(N) = S\mathfrak{n}^*$. Then for $y \in \mathfrak{n}$ we have

$$(L_x f)(y) = \frac{d}{dt}|_{t=0} f(\mu(y, tx)).$$

Since f and μ are polynomials, this is clearly a polynomial in y. Thus $L_x : \mathcal{O}(N) \to \mathcal{O}(N)$.

We have a lower central series filtration on \mathfrak{n} :

$$\mathfrak{n} = D_0(\mathfrak{n}) \supset [\mathfrak{n}, \mathfrak{n}] = D_1(\mathfrak{n}) \supset ... \supset D_m(\mathfrak{n}) = 0.$$

This gives an ascending filtration

$$0 = D_0(\mathfrak{n})^{\perp} \subset \dots \subset D_m(\mathfrak{n})^{\perp} = \mathfrak{n}^*.$$

We assign to $D_j(\mathfrak{n})^{\perp}$ filtration degree d^j , where d is a sufficiently large positive integer. This gives rise to an ascending filtration F^{\bullet} on $S\mathfrak{n}^* = \mathcal{O}(N)$. Note that

$$\mu(x,y) = x + y + \sum_{i \ge 1} Q_i(x,y),$$

where $Q_i : \mathfrak{n} \times \mathfrak{n} \to [\mathfrak{n}, \mathfrak{n}]$ has degree *i* in *x*. Thus

$$(L_x f)(y) = (\partial_x f)(y) + (\partial_{Q_1(x,y)} f)(y).$$

The first term clearly lowers the degree, and so does the second one if d is large enough. So we may take $V_n = F_n(S\mathfrak{n}^*)$ to be the space of polynomials of degree $\leq n$, then $L_x V_n \subset V_{n-1}$, as claimed.

Example 50.6. We illustrate this proof on the example of the Heisenberg algebra $\mathcal{H} = \langle x, y, c \rangle$ with [x, y] = c and [x, c] = [y, c] = 0. In this case

$$e^{tx}e^{sy} = e^{tx+sy+\frac{1}{2}tsc},$$

so writing $u = px + qy + rc \in \mathcal{H}$, we get

$$\mu((p_1, q_1, r_1), (p_2, q_2, r_2)) = (p_1 + p_2, q_1 + q_2, r_1 + r_2 + \frac{1}{2}(p_1q_2 - p_2q_1)).$$

Thus

$$L_c = \partial_r, \ L_x = \partial_p - \frac{1}{2}q\partial_r, \ L_y = \partial_q + \frac{1}{2}p\partial_r.$$

We have $D_1(\mathcal{H}) = \mathbb{C}c$, so $D_1(\mathcal{H})^{\perp}$ is spanned by p, q. Thus we have $\deg(p) = \deg(q) = d$, $\deg(r) = d^2$. So for any d > 1, L_c, L_x, L_y lower the degree. So setting $V_n = F_n(S\mathcal{H}^*)$ to be the (finite dimensional) space of polynomials of degree $\leq n$, we see that L_c, L_x, L_y map V_n to V_{n-1} .

Corollary 50.7. Every finite dimensional nilpotent Lie algebra \mathfrak{n} over \mathbb{C} has a faithful finite dimensional representation where all its elements act by nilpotent operators. Thus \mathfrak{n} is isomorphic to a subalgebra of the Lie algebra of strictly upper triangular matrices of some size.

Proof. By definition, $\mathcal{O}(N)$ is a faithful \mathfrak{n} -module. Hence so is V_n for some n.

50.4. Faithful representations of general finite dimensional Lie algebras.

Theorem 50.8. (Ado's theorem) Every finite dimensional Lie algebra over \mathbb{C} has a finite dimensional faithful representation.

Proof. Let \mathfrak{g} be a finite dimensional complex Lie algebra. By Proposition 50.3, \mathfrak{g} can be embedded into an algebraic Lie algebra, so we may assume without loss of generality that \mathfrak{g} is algebraic. Thus $\mathfrak{g} = \operatorname{Lie}(G)$ where $G = K \ltimes N$ for reductive K and unipotent N. Also we may assume that $\mathfrak{g} \neq \mathfrak{g}' \oplus \mathfrak{g}''$ for $\mathfrak{g}', \mathfrak{g}'' \neq 0$, otherwise the problem reduces to a smaller algebraic Lie algebra (indeed if V', V'' are faithful representations of $\mathfrak{g}', \mathfrak{g}''$ then $V' \oplus V''$ is a faithful representation of $\mathfrak{g}' \oplus \mathfrak{g}''$). Then $\mathfrak{k} = \operatorname{Lie}(K)$ acts faithfully on $\mathfrak{n} = \operatorname{Lie}(N)$. Now, \mathfrak{g} acts on $\mathcal{O}(N)$ preserving the subspaces V_n ($\mathfrak{n} = \operatorname{Lie}(N)$ acts by left invariant vector fields and \mathfrak{k} by the adjoint action).

As we have shown in the proof of Corollary 50.7, \mathbf{n} acts faithfully on V_n for some n. We claim that this V_n is, in fact, a faithful representation of the whole \mathfrak{g} , which implies the theorem. Indeed, let $\mathfrak{a} \subset \mathfrak{g}$ be the ideal of elements acting by zero on V_n , and let $\overline{\mathfrak{a}}$ be the projection of \mathfrak{a} to \mathfrak{k} (an ideal in \mathfrak{k}). Since \mathfrak{n} acts faithfully on V_n , we have $\mathfrak{a} \cap \mathfrak{n} = 0$. Given $a \in \mathfrak{a}$, we have $a = \overline{a} + b$ where $\overline{a} \in \overline{\mathfrak{a}}$ is the projection of a and $b \in \mathfrak{n}$. For $x \in \mathfrak{n}$ we have $[a, x] \in \mathfrak{a} \cap \mathfrak{n} = 0$. Thus $[\overline{a}, x] = -[b, x]$. Hence the operator $x \mapsto [\overline{a}, x]$ on \mathfrak{n} is nilpotent. So $\overline{\mathfrak{a}}$ acts on \mathfrak{n} by nilpotent operators. Since K is reductive and $\overline{\mathfrak{a}} \subset \mathfrak{k}$ is an ideal, this means that $\overline{\mathfrak{a}}$ acts on \mathfrak{n} by zero. Thus $\overline{\mathfrak{a}} = 0$ and $\mathfrak{a} \subset \mathfrak{n}$. Hence $\mathfrak{a} = 0$.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.