50. Ado's theorem

50.1. The nilradical. Consider now a solvable Lie algebra \mathfrak{a} over \mathbb{C} and its adjoint representation. By Lie's theorem, in some basis \mathfrak{a} acts in this representation by upper triangular matrices. Let $\mathfrak{n} \subset \mathfrak{a}$ be the subset of nilpotent elements (the nilradical of \mathfrak{a}). Thus \mathfrak{n} is the set of $x \in \mathfrak{a}$ that act in this basis by strictly upper triangular matrices. In particular, $\mathfrak{n} \supset[\mathfrak{a}, \mathfrak{a}]$, so $\mathfrak{a} / \mathfrak{n}$ is abelian. Moreover, the diagonal entries of these upper triangular matrices gives rise to characters $\lambda_{i} \in(\mathfrak{a} / \mathfrak{n})^{*}$ which constitute a composition series of the adjoint representation of \mathfrak{a}. By the definition of \mathfrak{n}, the characters λ_{i} form a spanning set in $(\mathfrak{a} / \mathfrak{n})^{*}$.

Proposition 50.1. If $d: \mathfrak{a} \rightarrow \mathfrak{a}$ is a derivation then $d(\mathfrak{a}) \subset \mathfrak{n}$. Thus if $\mathfrak{a}=\operatorname{rad}(\mathfrak{g})$ is the radical of \mathfrak{g} then \mathfrak{g} acts trivially on $\mathfrak{a} / \mathfrak{n}$.

Proof. Since there are finitely many characters λ_{i} in the composition series of \mathfrak{a}, for each of them we have $e^{t d} \lambda_{i}=\lambda_{i}$. It follows that d acts on $\mathfrak{a} / \mathfrak{n}$ trivially.
50.2. Algebraic Lie algebras. Let us say that a finite dimensional complex Lie algebra \mathfrak{g} is algebraic if \mathfrak{g} is the Lie algebra of a group $G=K \ltimes N$, where K is a reductive group and N a unipotent group. It turns out that this is equivalent to being the Lie algebra of an affine algebraic group over \mathbb{C} (i.e., a closed subgroup in $G L_{n}(\mathbb{C})$ defined by polynomial equations), which motivates the terminology.

A finite dimensional complex Lie algebra need not be algebraic:
Example 50.2. Let \mathfrak{g}_{1} be a 3 -dimensional Lie algebra with basis d, x, y and $[x, y]=0,[d, x]=x,[d, y]=\sqrt{2} y$. Similarly, let \mathfrak{g}_{2} have basis d, x, y with $[x, y]=0,[d, x]=x,[d, y]=y+x$. Then $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ are not algebraic (check it!).

Nevertheless, we have the following proposition.
Proposition 50.3. Any finite dimensional complex Lie algebra is a Lie subalgebra of an algebraic one.

Proof. Let us say that \mathfrak{g} is n-algebraic if it is the Lie algebra of a group $G:=K \ltimes A$, where K is reductive and $\mathfrak{a}=\operatorname{Lie}(A)$ is solvable with $\operatorname{dim}(\mathfrak{a} / \mathfrak{n}) \leq n$, where \mathfrak{n} is the nilradical of \mathfrak{a}. Thus 0 -algebraic is the same as algebraic. Note that for any \mathfrak{g} we have the Levi decomposition $\mathfrak{g}=\mathfrak{g}_{s s} \ltimes \mathfrak{a}$, where $\mathfrak{a}=\operatorname{rad}(\mathfrak{g})$, which shows that any \mathfrak{g} is n-algebraic for some n. So it suffices to show that any n-algebraic Lie algebra for $n>0$ embeds into an $n-1$-algebraic one.

To this end, let $\mathfrak{g}=\operatorname{Lie}(G)$ be n-algebraic, with $G=K \ltimes A$ and A simply connected. Let $\mathfrak{a}=\operatorname{Lie}(A)$, so $\operatorname{dim}(\mathfrak{a} / \mathfrak{n})=n$. Pick $d \in \mathfrak{a}, d \notin \mathfrak{n}$
such that d is K-invariant. This can be done since K acts trivially on $\mathfrak{a} / \mathfrak{n}$ and its representations are completely reducible. We have a decomposition $\mathfrak{a}=\oplus_{i=1}^{r} \mathfrak{a}\left[\beta_{i}\right]$ of \mathfrak{a} into generalized eigenspaces of d. It is clear that K preserves each $\mathfrak{a}\left[\beta_{i}\right]$. Pick a character $\chi: \mathfrak{a} \rightarrow \mathbb{C}$ such that $\chi(d)=1$.

Consider the subgroup Γ of \mathbb{C} generated by β_{i} and let $\alpha_{1}, \ldots, \alpha_{m}$ be a basis of Γ, so that $\beta_{i}=\sum_{j} b_{i j} \alpha_{j}$ for $b_{i j} \in \mathbb{Z}$. Let $T=\left(\mathbb{C}^{\times}\right)^{m}$ and make T act on G so that it commutes with K and acts on $\mathfrak{a}\left[\beta_{i}\right]$ by $\left(z_{1}, \ldots, z_{m}\right) \mapsto \prod_{j} z_{j}^{b_{i j}}$. Now consider the group $\widetilde{G}:=(K \times T) \ltimes A$. Let $\mathfrak{a}^{\prime} \subset \operatorname{Lie}(T) \ltimes \mathfrak{a} \subset \operatorname{Lie}(\widetilde{G})$ be spanned by Ker χ and $d-\alpha$ where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{m}\right) \in \operatorname{Lie}(T)$. Then the nilradical \mathfrak{n}^{\prime} of \mathfrak{a}^{\prime} is spanned by \mathfrak{n} and $d-\alpha$ (as the latter is nilpotent). Moreover, if A^{\prime} is the simply connected group corresponding to \mathfrak{a}^{\prime}, then $(K \times T) \ltimes A \cong(K \ltimes T) \ltimes A^{\prime}$ Thus, the Lie algebra $\widetilde{\mathfrak{g}}:=\operatorname{Lie}(\widetilde{G})$ is $n-1$-algebraic $\left(\right.$ as $\operatorname{dim}\left(\mathfrak{a}^{\prime} / \mathfrak{n}^{\prime}\right)=$ $n-1$), and it contains \mathfrak{g}, as claimed.

Example 50.4. The Lie algebras $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ in the Example 50.2 are 1algebraic.

To embed \mathfrak{g}_{1} into an algebraic Lie algebra, add element δ with $[\delta, x]=$ $0,[\delta, y]=y,[\delta, d]=0$. Then the Lie algebra $\mathfrak{g}_{1}^{\prime}$ spanned by δ, d, x, y is $\mathfrak{b} \oplus \mathfrak{b}$, where \mathfrak{b} is the non-abelian 2-dimensional Lie algebra (so it is algebraic). Namely, the first copy of \mathfrak{b} is spanned by δ, y and the second by $d-\sqrt{2} \delta, x$.

To embed \mathfrak{g}_{2} into an algebraic Lie algebra, add element δ with $[\delta, x]=$ $0,[\delta, y]=x,[\delta, d]=0$. Then the Lie algebra $\mathfrak{g}_{2}^{\prime}$ spanned by δ, d, x, y is $\mathbb{C} \ltimes \mathcal{H}$, where \mathcal{H} is the 3 -dimensional Heisenberg Lie algebra with basis δ, x, y, and \mathbb{C} is spanned by $d-\delta$ (so it is algebraic, as $d-\delta$ acts diagonalizably with integer eigenvalues).
50.3. Faithful representations of nilpotent Lie algebras. Let \mathfrak{n} be a finite dimensional nilpotent Lie algebra over \mathbb{C}. In this subsection we will show that \mathfrak{n} has a finite dimensional faithful representation.

To this end, recall that by Theorem 49.1, $\mathfrak{n}=\operatorname{Lie}(N)$ where N is a simply connected Lie group, and the exponential map $\exp : \mathfrak{n} \rightarrow N$ is bijective. Moreover, the multiplication law of N, when rewritten on \mathfrak{n} using the exponential map, is given by polynomials.

Proposition 50.5. Let $\mathcal{O}(N)$ be the space of polynomial functions on $N \cong \mathfrak{n}$ (identified using the exponential map). Then $\mathcal{O}(N)$ is invariant under the action of \mathfrak{n} by left-invariant vector fields. Moreover, we have a canonical filtration $\mathcal{O}(N)=\cup_{n \geq 1} V_{n}$, where $V_{n} \subset \mathcal{O}(N)$ are finite dimensional subspaces such that $V_{1} \subset V_{2} \subset \ldots$ and $\mathfrak{n} V_{n} \subset V_{n-1}$.

Proof. Let $\mu: \mathfrak{n} \times \mathfrak{n} \rightarrow \mathfrak{n}$ be the polynomial multiplication law. Let $x \in \mathfrak{n}$ and L_{x} be the corresponding left-invariant vector field. Let $f \in \mathcal{O}(N)=S \mathfrak{n}^{*}$. Then for $y \in \mathfrak{n}$ we have

$$
\left(L_{x} f\right)(y)=\left.\frac{d}{d t}\right|_{t=0} f(\mu(y, t x)) .
$$

Since f and μ are polynomials, this is clearly a polynomial in y. Thus $L_{x}: \mathcal{O}(N) \rightarrow \mathcal{O}(N)$.

We have a lower central series filtration on \mathfrak{n} :

$$
\mathfrak{n}=D_{0}(\mathfrak{n}) \supset[\mathfrak{n}, \mathfrak{n}]=D_{1}(\mathfrak{n}) \supset \ldots \supset D_{m}(\mathfrak{n})=0
$$

This gives an ascending filtration

$$
0=D_{0}(\mathfrak{n})^{\perp} \subset \ldots \subset D_{m}(\mathfrak{n})^{\perp}=\mathfrak{n}^{*}
$$

We assign to $D_{j}(\mathfrak{n})^{\perp}$ filtration degree d^{j}, where d is a sufficiently large positive integer. This gives rise to an ascending filtration F^{\bullet} on $S \mathfrak{n}^{*}=$ $\mathcal{O}(N)$. Note that

$$
\mu(x, y)=x+y+\sum_{i \geq 1} Q_{i}(x, y)
$$

where $Q_{i}: \mathfrak{n} \times \mathfrak{n} \rightarrow[\mathfrak{n}, \mathfrak{n}]$ has degree i in x. Thus

$$
\left(L_{x} f\right)(y)=\left(\partial_{x} f\right)(y)+\left(\partial_{Q_{1}(x, y)} f\right)(y) .
$$

The first term clearly lowers the degree, and so does the second one if d is large enough. So we may take $V_{n}=F_{n}\left(S \mathfrak{n}^{*}\right)$ to be the space of polynomials of degree $\leq n$, then $L_{x} V_{n} \subset V_{n-1}$, as claimed.

Example 50.6. We illustrate this proof on the example of the Heisenberg algebra $\mathcal{H}=\langle x, y, c\rangle$ with $[x, y]=c$ and $[x, c]=[y, c]=0$. In this case

$$
e^{t x} e^{s y}=e^{t x+s y+\frac{1}{2} t s c}
$$

so writing $u=p x+q y+r c \in \mathcal{H}$, we get

$$
\mu\left(\left(p_{1}, q_{1}, r_{1}\right),\left(p_{2}, q_{2}, r_{2}\right)\right)=\left(p_{1}+p_{2}, q_{1}+q_{2}, r_{1}+r_{2}+\frac{1}{2}\left(p_{1} q_{2}-p_{2} q_{1}\right)\right) .
$$

Thus

$$
L_{c}=\partial_{r}, L_{x}=\partial_{p}-\frac{1}{2} q \partial_{r}, L_{y}=\partial_{q}+\frac{1}{2} p \partial_{r}
$$

We have $D_{1}(\mathcal{H})=\mathbb{C} c$, so $D_{1}(\mathcal{H})^{\perp}$ is spanned by p, q. Thus we have $\operatorname{deg}(p)=\operatorname{deg}(q)=d, \operatorname{deg}(r)=d^{2}$. So for any $d>1, L_{c}, L_{x}, L_{y}$ lower the degree. So setting $V_{n}=F_{n}\left(S \mathcal{H}^{*}\right)$ to be the (finite dimensional) space of polynomials of degree $\leq n$, we see that L_{c}, L_{x}, L_{y} map V_{n} to V_{n-1}.

Corollary 50.7. Every finite dimensional nilpotent Lie algebra \mathfrak{n} over \mathbb{C} has a faithful finite dimensional representation where all its elements act by nilpotent operators. Thus \mathfrak{n} is isomorphic to a subalgebra of the Lie algebra of strictly upper triangular matrices of some size.
Proof. By definition, $\mathcal{O}(N)$ is a faithful \mathfrak{n}-module. Hence so is V_{n} for some n.

50.4. Faithful representations of general finite dimensional Lie algebras.

Theorem 50.8. (Ado's theorem) Every finite dimensional Lie algebra over \mathbb{C} has a finite dimensional faithful representation.

Proof. Let \mathfrak{g} be a finite dimensional complex Lie algebra. By Proposition $50.3, \mathfrak{g}$ can be embedded into an algebraic Lie algebra, so we may assume without loss of generality that \mathfrak{g} is algebraic. Thus $\mathfrak{g}=\operatorname{Lie}(G)$ where $G=K \ltimes N$ for reductive K and unipotent N. Also we may assume that $\mathfrak{g} \neq \mathfrak{g}^{\prime} \oplus \mathfrak{g}^{\prime \prime}$ for $\mathfrak{g}^{\prime}, \mathfrak{g}^{\prime \prime} \neq 0$, otherwise the problem reduces to a smaller algebraic Lie algebra (indeed if $V^{\prime}, V^{\prime \prime}$ are faithful representations of $\mathfrak{g}^{\prime}, \mathfrak{g}^{\prime \prime}$ then $V^{\prime} \oplus V^{\prime \prime}$ is a faithful representation of $\left.\mathfrak{g}^{\prime} \oplus \mathfrak{g}^{\prime \prime}\right)$. Then $\mathfrak{k}=\operatorname{Lie}(K)$ acts faithfully on $\mathfrak{n}=\operatorname{Lie}(N)$. Now, \mathfrak{g} acts on $\mathcal{O}(N)$ preserving the subspaces $V_{n}(\mathfrak{n}=\operatorname{Lie}(N)$ acts by left invariant vector fields and \mathfrak{k} by the adjoint action).

As we have shown in the proof of Corollary 50.7, \mathfrak{n} acts faithfully on V_{n} for some n. We claim that this V_{n} is, in fact, a faithful representation of the whole \mathfrak{g}, which implies the theorem. Indeed, let $\mathfrak{a} \subset \mathfrak{g}$ be the ideal of elements acting by zero on V_{n}, and let $\overline{\mathfrak{a}}$ be the projection of \mathfrak{a} to \mathfrak{k} (an ideal in \mathfrak{k}). Since \mathfrak{n} acts faithfully on V_{n}, we have $\mathfrak{a} \cap \mathfrak{n}=0$. Given $a \in \mathfrak{a}$, we have $a=\bar{a}+b$ where $\bar{a} \in \overline{\mathfrak{a}}$ is the projection of a and $b \in \mathfrak{n}$. For $x \in \mathfrak{n}$ we have $[a, x] \in \mathfrak{a} \cap \mathfrak{n}=0$. Thus $[\bar{a}, x]=-[b, x]$. Hence the operator $x \mapsto[\bar{a}, x]$ on \mathfrak{n} is nilpotent. So $\overline{\mathfrak{a}}$ acts on \mathfrak{n} by nilpotent operators. Since K is reductive and $\overline{\mathfrak{a}} \subset \mathfrak{k}$ is an ideal, this means that $\overline{\mathfrak{a}}$ acts on \mathfrak{n} by zero. Thus $\overline{\mathfrak{a}}=0$ and $\mathfrak{a} \subset \mathfrak{n}$. Hence $\mathfrak{a}=0$.

MIT OpenCourseWare
https://ocw.mit.edu

18.755 Lie Groups and Lie Algebras II

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

