51. Borel subgroups and the flag manifold of a complex reductive Lie group

51.1. Borel subgroups and subalgebras. Let G be a connected complex reductive Lie group, $\mathfrak{g}=\operatorname{Lie}(G)$. Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ with a system of simple positive roots Π, and consider the corresponding triangular decomposition $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$, where \mathfrak{n}_{+}is spanned by positive root elements and \mathfrak{n} - by negative root elements. Let H be the maximal torus in G corresponding to \mathfrak{h}, N_{+}the unipotent subgroup of G corresponding to \mathfrak{n}_{+}, and $B_{+}=H N_{+}$the solvable subgroup with $\operatorname{Lie}\left(B_{+}\right)=\mathfrak{b}_{+}:=\mathfrak{h} \oplus \mathfrak{n}_{+}$; these are all closed Lie subgroups.

Definition 51.1. A Borel subalgebra of \mathfrak{g} is a Lie subalgebra conjugate to \mathfrak{b}_{+}. A Borel subgroup of G is a Lie subgroup conjugate to B_{+}.

Since all pairs (\mathfrak{h}, Π) are conjugate, this definition does not depend on the choice of (\mathfrak{h}, Π).

Lemma 51.2. B_{+}is its own normalizer in G.
Proof. Let $\gamma \in G$ be such that $\operatorname{Ad} \gamma\left(B_{+}\right)=B_{+}$. Let $H^{\prime}=\operatorname{Ad} \gamma(H) \subset$ B_{+}. It is easy to show that we can conjugate H^{\prime} back into H inside B_{+}, so we may assume without loss of generality that $H^{\prime}=H$. Then $\gamma \in N(H)$, and it preserves positive roots. Hence the image of γ in W is 1 , so $\gamma \in H \subset B_{+}$, as claimed.
51.2. The flag manifold of a connected complex reductive group. Thus the set of all Borel subalgebras (or subgroups) in G is the homogeneous space G / B_{+}, a complex manifold. It is called the flag manifold of G. Note that it only depends on the semisimple part $\mathfrak{g}_{s s} \subset \mathfrak{g}$ and does not depend on the choice of the Cartan subalgebra and triangular decomposition.

Let $G^{c} \subset G$ be the compact form of G, with Lie algebra $\mathfrak{g}^{c} \subset \mathfrak{g}$. It is easy to see that $\mathfrak{g}^{c}+\mathfrak{b}_{+}=\mathfrak{g}$. Thus the G^{c}-orbit $G^{c} \cdot 1$ of $1 \in G / B_{+}$ contains a neighborhood of 1 in G / B_{+}. Hence the same holds for any point of this orbit, i.e., $G^{c} \cdot 1 \subset G / B_{+}$is an open subset. But it is also compact, since G^{c} is compact, hence closed. As G / B_{+}is connected, we get that $G^{c} \cdot 1=G / B_{+}$, i.e., G^{c} acts transitively on G / B_{+}.

Also the Cartan involution ω maps positive root elements to negative ones, so $G^{c} \cap B_{+} \subset w_{0}\left(B_{+}\right) \cap B_{+}=H$. Thus $G^{c} \cap B_{+}=H^{c}$, a maximal torus in G^{c}. So we get

Proposition 51.3. We have $G / B_{+}=G^{c} / H^{c}$. In particular, G / B_{+}is a compact complex manifold of dimension $\left|R_{+}\right|=\frac{1}{2}(\operatorname{dim} \mathfrak{g}-\operatorname{rank} \mathfrak{g})$.

Example 51.4. 1. For $G=S L_{2}$ we have $G / B_{+}=S U(2) / U(1)=S^{2}$, the Riemann sphere.
2. For $G=G L_{n}$ we have $G / B_{+}=U(n) / U(1)^{n}=\mathcal{F}_{n}$, the set of flags in \mathbb{C}^{n} that we considered in Subsection 47.3.

Another realization of the flag manifold is one as the G-orbit of the line spanned by the highest weight vector in an irreducible representation with a regular highest weight. Namely, let $\lambda \in P_{+}$be a dominant integral weight with $\lambda\left(h_{i}\right) \geq 1$ for all i (i.e., $\lambda=\mu+\rho$ for $\mu \in P_{+}$). Let L_{λ} be the corresponding irreducible representation with highest weight vector v_{λ}. We have $\mathfrak{b}_{+} \cdot \mathbb{C} v_{\lambda}=\mathbb{C} v_{\lambda}$, but $e_{-\alpha} v_{\lambda} \neq 0$ for any $\alpha \in R_{+}$ (as $e_{\alpha} e_{-\alpha} v_{\lambda}=h_{\alpha} v_{\lambda}=\left(\lambda, \alpha^{\vee}\right) v_{\lambda}$, and $\left.\left(\lambda, \alpha^{\vee}\right)>0\right)$. Moreover, these vectors have different weights, so are linearly independent. Thus \mathfrak{b}_{+}is the stabilizer of $\mathbb{C} v_{\lambda}$ in \mathfrak{g}. Hence any $g \in G$ which preserves $\mathbb{C} v_{\lambda}$ belongs to the normalizer of \mathfrak{b}_{+}(or, equivalently, B_{+}), i.e., $g \in B_{+}$. Thus $\mathcal{O}:=G \cdot \mathbb{C} v_{\lambda} \subset \mathbb{P} L_{\lambda}$ is identified with G / B_{+}. This shows that \mathcal{O} is compact, hence closed, i.e., $\mathcal{O}=G / B_{+}$is a smooth complex projective variety.

Let $A=\exp \left(i \mathfrak{h}^{c}\right) \subset H, K=G^{c}, N=N_{+}$. Proposition 51.3 immediately implies

Corollary 51.5. (The Iwasawa decomposition of G) The multiplication map $K \times A \times N \rightarrow G$ is a diffeomorphism. In particular, we have $G=K A N$.

A similar theorem holds for real reductive groups (Theorem 51.14).
51.3. The Borel fixed point theorem. Let V be a finite dimensional representation of a finite dimensional \mathbb{C}-Lie algebra \mathfrak{a}, and $X \subset \mathbb{P} V$ be a subset. We will say that X is \mathfrak{a}-invariant (or fixed by \mathfrak{a}) if it is $\exp (\mathfrak{a})$-invariant.

Theorem 51.6. Let \mathfrak{a} be a solvable Lie algebra over \mathbb{C}, V a finite dimensional \mathfrak{a}-module. Let $X \subset \mathbb{P} V$ be a closed \mathfrak{a}-invariant subset. Then there exists $x \in X$ fixed by \mathfrak{a}.

Proof. The proof is by induction in $n=\operatorname{dim} \mathfrak{a}$. The base $n=0$ is trivial, so we only need to justify the induction step. Since \mathfrak{a} is solvable, it has an ideal \mathfrak{a}^{\prime} of codimension 1. By the induction assumption, $Y:=X^{\mathfrak{a}^{\prime}}$ (the set of $\exp \left(\mathfrak{a}^{\prime}\right)$-fixed points in X) is a nonempty closed subset of X, so it suffices to show that the 1-dimensional Lie algebra $\mathfrak{a} / \mathfrak{a}^{\prime}$ has a fixed point on Y. Thus it suffices to prove the theorem for $n=1$.

So let \mathfrak{a} be 1-dimensional, spanned by $a \in \mathfrak{a}$. We can choose the normalization of a so that all eigenvalues of a on V have different real parts. Fix $x_{0} \in X$ and consider the curve $e^{t a} x_{0}$ for $t \in \mathbb{R}$. It is easy
to see that there exists $x:=\lim _{t \rightarrow \infty} e^{t a} x_{0} \in \mathbb{P} V$. Then $x \in X$ as X is closed and, and x is fixed by \mathfrak{a}, as desired.
51.4. Parabolic and Levi subalgebras. A Lie subalgebra $\mathfrak{p} \supset \mathfrak{b}$ of a reductive Lie algebra \mathfrak{g} containing some Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ is called a parabolic subalgebra of \mathfrak{g}. The corresponding connected Lie subgroup $P \subset G$ is called a parabolic subgroup. It is easy to see that $P \subset G$ is necessarily closed (check it!).

Exercise 51.7. Show that parabolic subalgebras \mathfrak{p} containing \mathfrak{b}_{+}are in bijection with subsets $S \subset \Pi$ of the set of simple roots of \mathfrak{b}_{+}, namely, \mathfrak{p} is sent to the set $S_{\mathfrak{p}}$ of $i \in \Pi$ such that $f_{i} \in \mathfrak{p}$, and S is sent to the Lie subalgebra \mathfrak{p}_{S} of \mathfrak{g} generated by \mathfrak{b}_{+}and $f_{i}, i \in S$.

Let $P \subset G$ be a parabolic subgroup with Lie algebra \mathfrak{p}. Let $\mathfrak{u} \subset \mathfrak{p}$ be the nilpotent radical of \mathfrak{p}; for instance, if $\mathfrak{p} \supset \mathfrak{b}_{+}$then \mathfrak{u} is the Lie subalgebra spanned by e_{α} such that $e_{-\alpha} \notin \mathfrak{p}$. It is easy to see that there exists a (non-unique) Lie subalgebra $\mathfrak{l} \subset \mathfrak{p}$ complementary to \mathfrak{u}, which therefore projects isomorphically to $\mathfrak{p} / \mathfrak{u}$; indeed, if $\mathfrak{p} \supset \mathfrak{b}_{+}$then we can take \mathfrak{l} to be the Lie subalgebra spanned by \mathfrak{h} and $e_{\alpha}, e_{-\alpha}$ where α runs through positive roots for which $e_{-\alpha} \in \mathfrak{p}$. Such a subalgebra \mathfrak{l} is called a Levi subalgebra of \mathfrak{p}, and we have $\mathfrak{p}=\mathfrak{l} \ltimes \mathfrak{u}$, which is $\mathfrak{l} \oplus \mathfrak{u}$ as a vector space.

Let $U=\exp (\mathfrak{u})$. The quotient P / U is a reductive group with Lie algebra $\mathfrak{p} / \mathfrak{u}$. A Levi subgroup of P is a subgroup L in P such that $\mathfrak{l}:=$ Lie (L) is a Levi subalgebra of \mathfrak{p}; equivalently, L projects isomorphically to P / U, so we have $P=L \ltimes U$, written shortly as $P=L U$. It is not difficult to show that all Levi subgroups of P (or, equivalently, all Levi subalgebras of \mathfrak{p}) are conjugate by the action of U (check it!).

For example, L is a maximal torus if and only if P is a Borel subgroup, and $L=G$ if and only if $P=G$.

Example 51.8. Let $n=n_{1}+\ldots+n_{k}$ where n_{i} are positive integers. Then the subgroup P of block upper triangular matrices with diagonal blocks of size n_{1}, \ldots, n_{k} is a parabolic subgroup of $G L_{n}(\mathbb{C})$, and the subgroup L of block diagonal matrices in P is a Levi subgroup. The unipotent radical U of P is the subgroup of block upper triangular matrices with identity matrices on the diagonal.
51.5. Maximal solvable and maximal nilpotent subalgebras. Note that \mathfrak{b}_{+}is a maximal solvable subalgebra of \mathfrak{g}; indeed, any bigger parabolic subalgebra contains a negative root vector, hence the corresponding root $\mathfrak{s l}_{2}$-subalgebra, so it is not solvable. Moreover, B_{+}is a maximal solvable subgroup of G : if $P \supset B_{+}$then some element $g \in P$
does not normalize \mathfrak{b}_{+}, so $\operatorname{Lie}(P)$ has to be larger than \mathfrak{b}_{+}, hence not solvable. Thus any Borel subalgebra (subgroup) is a maximal solvable one. It turns out that the converse also holds.

Proposition 51.9. Any solvable Lie subalgebra of \mathfrak{g} (respectively, connected solvable subgroup of G) is contained in a Borel subalgebra (subgroup).

Proof. Let $\mathfrak{a} \subset \mathfrak{g}$ be a solvable Lie subalgebra. By the Borel fixed point theorem, \mathfrak{a} has a fixed point $\mathfrak{b} \in G / B_{+}$. Thus \mathfrak{a} normalizes \mathfrak{b}. Hence $\mathfrak{a} \subset \mathfrak{b}$, as claimed.

Corollary 51.10. Any element of \mathfrak{g} is contained in a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$.

Let us say that a Lie subalgebra $\mathfrak{a} \subset \mathfrak{g}$ is a nilpotent subalgebra if it consists of nilpotent elements. Note that this is a stronger condition than just being nilpotent as a Lie algebra; for example, a Cartan subalgebra is a nilpotent Lie algebra (since it is abelian) but it is not a nilpotent subalgebra of \mathfrak{g}.

Corollary 51.11. Any nilpotent subalgebra of \mathfrak{g} is conjugate to a Lie subalgebra of \mathfrak{n}_{+}. Thus \mathfrak{n}_{+}is a maximal nilpotent subalgebra of \mathfrak{g}, and any maximal nilpotent subalgebra of \mathfrak{g} is conjugate to \mathfrak{n}_{+}.

Proof. By Proposition 51.9 there is $g \in G$ such that $\operatorname{Ad}_{g} \mathfrak{a} \subset \mathfrak{b}_{+}$, but since \mathfrak{a} is nilpotent we actually have $\operatorname{Ad}_{g} \mathfrak{a} \subset \mathfrak{n}_{+}$.

A similar result holds for groups, with the same proof:
Corollary 51.12. Any unipotent subgroup of G is conjugate to a (closed) Lie subgroup of N_{+}. Thus N_{+}is a maximal unipotent subgroup of G, and any maximal unipotent subgroup of G is conjugate to N_{+}.

We also have
Proposition 51.13. The normalizer of \mathfrak{n}_{+}and N_{+}in G is B_{+}. Thus every maximal nilpotent subalgebra (unipotent subgroup) is contained in a unique Borel subgroup. Hence such subalgebras (subgroups) are parametrized by the flag manifold G / B_{+}.

Proof. Clearly B_{+}is contained in the normalizer of N_{+}, so this normalizer is a parabolic subgroup. We have seen that such a subgroup, if larger than B_{+}, must have a Lie algebra larger that \mathfrak{b}_{+}, so it must be \mathfrak{p}_{S} for some $S \neq \emptyset$, hence contains some root $\mathfrak{s l}_{2}$-subalgebra. But the group corresponding to such a subalgebra does not normalize \mathfrak{n}_{+}, a contradiction.
51.6. Iwasawa decomposition of a real semisimple linear group. Let $G_{\theta}=K^{c} P_{\theta}$ be the polar decomposition of a real form of a complex semisimple group $G, \mathfrak{g}_{\theta}=\mathfrak{k}^{c} \oplus \mathfrak{p}_{\theta}$ the additive version, $\mathfrak{a} \subset \mathfrak{p}_{\theta}$ a maximal abelian subspace. Let $A=\exp (\mathfrak{a}) \subset P_{\theta}$ be the corresponding abelian subgroup of G_{θ}. Pick a generic element $a \in \mathfrak{a}$. Let $\mathfrak{z}=\mathfrak{g}_{\theta}^{a}$ be the centralizer of a in \mathfrak{g}_{θ} and let $\mathfrak{n}_{a, \pm}$ be the (nilpotent) Lie subalgebras of \mathfrak{g}_{θ} spanned by eigenvectors of ad a with positive, respectively negative eigenvalues, so that $\mathfrak{g}_{\theta}=\mathfrak{n}_{a-} \oplus \mathfrak{z} \oplus \mathfrak{n}_{a+}$. Let $N_{a \pm}=\exp \left(\mathfrak{n}_{a \pm}\right)$.

The following theorem is a generalization of Proposition 51.5.
Theorem 51.14. (Iwasawa decomposition) The multiplication map $K^{c} \times A \times N_{a+} \rightarrow G_{\theta}$ is a diffeomorphism.

Theorem 51.14 is proved in the following exercise.
Exercise 51.15. (i) Let $\mathfrak{m}=\mathfrak{z} \cap \mathfrak{k}^{c}$. Show that $\mathfrak{z}=\mathfrak{m} \oplus \mathfrak{a}$ (use Proposition 44.11(ii)).
(ii) Given $x \in \mathfrak{p}$, write $x=x_{-}+x_{0}+x_{-}, x_{ \pm} \in \mathfrak{n}_{a \pm}, x_{0} \in \mathfrak{z}$. Show that $\theta\left(x_{ \pm}\right)=-x_{\mp}, \theta\left(x_{0}\right)=-x_{0}$. Deduce the additive Iwasawa decomposition $\mathfrak{g}_{\theta}=\mathfrak{k}^{c} \oplus \mathfrak{a} \oplus \mathfrak{n}_{a+}$ (write x as $\left.\left(x_{-}-x_{+}\right)+x_{0}+2 x_{+}\right)$.
(iii) Show that $\mathfrak{z} \oplus \mathfrak{n}_{a+}=\mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}_{\mathfrak{a}+}$ is a parabolic subalgebra in \mathfrak{g}_{θ} with Levi subalgebra \mathfrak{z} (i.e., their complexifications are a parabolic subalgebra in \mathfrak{g} and its Levi subalgebra) and its unipotent radical is \mathfrak{n}_{a+}.
(iv) Let M be the centralizer of a in K^{c}. Show that $\mathbb{P}:=M A N_{a+}$ is a subgroup of G_{θ} and $X:=G_{\theta} / \mathbb{P}$ is a compact homogeneous space.
(v) Show that K^{c} acts transitively on X, and $X \cong K^{c} / M$ as a homogeneous space for K^{c} (generalize the argument in Subsection 51.2). Deduce Theorem 51.14.
51.7. The Bruhat decomposition. Let G be a connected complex reductive group, $H \subset G$ a maximal torus, $B=B_{+} \supset H$ a Borel subgroup. The Bruhat decomposition is the decomposition of G into double cosets of B.

Let $N(H)$ be the normalizer of H in G and $W=N(H) / H$ be the Weyl group. Given $w \in W$, let \widetilde{w} be a lift of w to $N(H)$ and consider the double coset $B \widetilde{w} B \subset G$. Since any two lifts of w differ by an element of H which is contained in B, the set $B \widetilde{w} B$ does not depend on the choice of \widetilde{w}, so we will denote it by $B w B$.

Proposition 51.16. The double cosets $B w B, w \in W$ are disjoint.
Proof. Let $w_{1}, w_{2} \in N(H)$ be such that $B w_{1} B=B w_{2} B$. Then there exist elements $b_{1}, b_{2} \in B$ such that $b_{1} w_{1}=w_{2} b_{2}$. Let us apply this identity to a highest weight vector v_{λ} of an irreducible representation
L_{λ} of G, where $\lambda \in P_{+}$is regular. We have $w_{2} b_{2} v_{\lambda}=C v_{w_{2} \lambda}$ for some $C \in \mathbb{C}^{\times}$, where $v_{w_{2} \lambda}$ is an extremal vector of weight $w_{2} \lambda$. On the other hand, $b_{1} w_{1} v_{\lambda}=C^{\prime} b_{1} v_{w_{1} \lambda}$ for some $C^{\prime} \in \mathbb{C}^{\times}$. Thus $C v_{w_{2} \lambda}=C^{\prime} b_{1} v_{w_{1} \lambda}$. But $b_{1} v_{w_{1} \lambda}$ equals $C^{\prime \prime} v_{w_{1} \lambda}$ plus terms of weight $>w_{1} \lambda$, where $C^{\prime \prime} \in \mathbb{C}^{\times}$. It follows that $w_{1} \lambda=w_{2} \lambda$, hence $w_{1}=w_{2} h, h \in H$.
Theorem 51.17. (Bruhat decomposition) The union of the double cosets $B w B, w \in W$ is the entire group G. Thus they define a partition of G into double cosets of B.

Theorem 51.17 can be reformulated as a classification of B-orbits on the flag manifold G / B. Namely, given $w \in W$, the set $B w B / B$ is an orbit of B on G / B, which we will denote by C_{w}. By Theorem 51.16, C_{w} are disjoint, and Theorem 51.17 is equivalent to
Theorem 51.18. (Schubert decomposition) $C_{w}, w \in W$ give the partition of G / B into B-orbits.

The sets $B w B$ are called Bruhat cells and the sets C_{w} are called Schubert cells. ${ }^{35}$

Note that for type $A_{n-1}\left(G=S L_{n}(\mathbb{C})\right.$ or its quotient), we have already proved Theorem 51.18 in Subsection 47.3, where we decomposed the flag manifold \mathcal{F}_{n} into Schubert cells labeled by permutations.

A proof of Theorem 51.18 can be found, for example, in the textbook [CG]. It is also sketched in the following exercise.
Exercise 51.19. (i) Let $B=B_{+}$and $w \in W$. Consider the multiplication map $\mu_{i, w}: B s_{i} B \times{ }_{B} C_{w} \rightarrow G / B$. Show that if $\ell\left(s_{i} w\right)=\ell(w)+1$ then $\mu_{i, w}$ is an isomorphism onto $C_{s_{i} w}$, while if $\ell\left(s_{i} w\right)=\ell(w)-1$ then the image of $\mu_{i, w}$ consists of C_{w} and $C_{s_{i} w}$.

Hint: Reduce to the $S L_{2}$-case.
(ii) For $i \in \Pi$ let P_{i} be the minimal parabolic subgroup of G generated by B and the 1-parameter subgroup $\exp \left(t f_{i}\right)$. Show that $P_{i} / B=C_{s_{i}} \cup C_{1} \cong \mathbb{C P}^{1} \subset G / B$ (where C_{1} is a point and $C_{s_{i}} \cong \mathbb{C}$).
(iii) Let $w=s_{i_{1}} \ldots s_{i_{l}}$ be a reduced decomposition of $w \in W$ (so $l=\ell(w))$; denote this decomposition by \bar{w}. The product $\prod_{k=1}^{l} P_{i_{k}}$ carries a free action of B^{l} via

$$
\left(b_{1}, \ldots, b_{l}\right) \circ\left(p_{1}, \ldots, p_{l}\right):=\left(p_{1} b_{1}^{-1}, b_{1} p_{2} b_{2}^{-1}, \ldots, b_{l-1} p_{l} b_{l}^{-1}\right)
$$

Define the Bott-Samelson variety $X_{\bar{w}}:=\left(\prod_{k=1}^{l} P_{i_{k}}\right) / B^{l}$. Use (ii) to show that if $\bar{w}=s_{i} \bar{u}$ then $X_{\bar{w}}$ fibers over $\mathbb{C P}{ }^{1}$ with fiber $X_{\bar{u}}$. Deduce that $X_{\bar{w}}$ is a smooth projective variety of dimension $\ell(w)$.

[^0](iv) Define the Bott-Samelson map
$$
\mu_{\bar{w}}: X_{\bar{w}} \rightarrow G / B
$$
given by multiplication. Use (i) to show that the image of $\mu_{\bar{w}}$ is the Schubert variety \bar{C}_{w}, the closure of C_{w} in G / B. Moreover, show that $\overline{C_{w}} \backslash C_{w}$ is the union of C_{u} over some $u \in W$ with $\ell(u)<\ell(w)$.
(v) Apply (iv) to the maximal element $w=w_{0} \in W$. In this case, show that $\mu_{\bar{w}}$ is surjective, and deduce Theorem 51.18.

Let us derive some corollaries of Theorem 51.18.
Corollary 51.20. (i) Any pair of Borel subgroups of G is conjugate to the pair $(B, w(B))$ for a unique $w \in W$. In particular, any two Borel subgroups of G share a maximal torus.
(ii) The cell C_{w} is isomorphic to $\mathbb{C}^{\ell(w)}$.

Proof. (i) Let $\left(B_{1}, B_{2}\right)$ be a pair of Borel subgroups in G. Then we can conjugate B_{1} to B, and B_{2} will be conjugated to some Borel subgroup B_{3}. This subgroup is conjugate to B, i.e., is of the form $g B g^{-1}$ for some $g \in G$. By Bruhat decomposition, we can write g as $g=b_{1} \widetilde{w} b_{2}$, $b_{1}, b_{2} \in B, \widetilde{w} \in N(H)$. So conjugating by b_{1}^{-1}, we will bring our pair to the required form $(B, w(B))$, where w is the image of \widetilde{w} in W. Uniqueness follows from Proposition 51.16.
(ii) By (i) we have $C_{w} \cong B /(B \cap w(B))$. Since $B=N H$, where $N=[B, B]$ and $B \cap w(B) \supset H$, we get $C_{w}=N /(N \cap w(B))=$ $N /(N \cap w(N))$. This is a complex affine space of dimension equal to the number of positive roots mapped to negative roots by w, i.e., $\ell(w)$.

Corollary 51.21. The Poincaré polynomial of the flag manifold G / B is

$$
\sum_{i \geq 0} b_{2 i}(G / B) q^{i}=\sum_{w \in W} q^{\ell(w)}
$$

Remark 51.22. Similarly to the type A case, one can show that this polynomial can also be written as $\prod_{i=1}^{r}\left[m_{i}+1\right]_{q}$, where m_{i} are the exponents of G, but we will not give a proof of this identity.

References

[C] P. Cartier, A Primer of Hopf algebras, 2006, http://preprints.ihes.fr/ 2006/M/M-06-40.pdf
[CR] D. Calaque, C. Rossi, Lectures on Duflo Isomorphisms in Lie Algebra and Complex Geometry, EMS Series of Lectures in Mathematics, v. 14, 2011.
[CG] N. Chriss, V. Ginzburg, Representation theory and complex geometry, Springer, 2020.
[E] P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, E. Yudovina, with historical interludes by S. Gerovitch, AMS, 2011, http:// www-math.mit.edu/~etingof/reprbook.pdf
[FH] W. Fulton, J. Harris, Representation theory, a first course, Graduate texts in Mathematics, Springer, 1991.
[H] A. Hatcher, Algebraic topology, Cambridge University Press, 2002.
[Hu] J. Humphreys, Introduction to Lie algebras and representation theory, Graduate texts in mathematics, Springer, 2017.
[J] N. Jacobson, Lie algebras, Dover, 1979.
[K] A. Kirillov Jr., An introduction to Lie groups and Lie algebras, Cambridge University Press, 2008.
[Kn] A, Knapp, Lie groups beyond an introduction, Springer, 1996.
[M] J. Munkres, Topology, Second edition, Pearson, 2000.
[Mu] M. Müger, Notes on the theorem of Baker-Campbell-Hausdorff-Dynkin, https://www.math.ru.nl/~mueger/PDF/BCHD.pdf
[R] M. Reeder, On the Cohomology of Compact Lie Groups. L'Ens. Math. 41(1995),181-200.

MIT OpenCourseWare
https://ocw.mit.edu

18.755 Lie Groups and Lie Algebras II

Spring 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{35}$ We note that Bruhat cells, unlike Schubert cells, are not literally cells in the topological sense - they are not homeomorphic to an affine space, but are homeomorphic to the product of an affine space and a torus.

