51. Borel subgroups and the flag manifold of a complex reductive Lie group

51.1. Borel subgroups and subalgebras. Let G be a connected complex reductive Lie group, $\mathfrak{g} = \text{Lie}(G)$. Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ with a system of simple positive roots Π , and consider the corresponding triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, where \mathfrak{n}_+ is spanned by positive root elements and \mathfrak{n}_- by negative root elements. Let H be the maximal torus in G corresponding to \mathfrak{h} , N_+ the unipotent subgroup of G corresponding to \mathfrak{n}_+ , and $B_+ = HN_+$ the solvable subgroup with $\text{Lie}(B_+) = \mathfrak{b}_+ := \mathfrak{h} \oplus \mathfrak{n}_+$; these are all closed Lie subgroups.

Definition 51.1. A Borel subalgebra of \mathfrak{g} is a Lie subalgebra conjugate to \mathfrak{b}_+ . A Borel subgroup of G is a Lie subgroup conjugate to B_+ .

Since all pairs (\mathfrak{h}, Π) are conjugate, this definition does not depend on the choice of (\mathfrak{h}, Π) .

Lemma 51.2. B_+ is its own normalizer in G.

Proof. Let $\gamma \in G$ be such that $\operatorname{Ad}\gamma(B_+) = B_+$. Let $H' = \operatorname{Ad}\gamma(H) \subset B_+$. It is easy to show that we can conjugate H' back into H inside B_+ , so we may assume without loss of generality that H' = H. Then $\gamma \in N(H)$, and it preserves positive roots. Hence the image of γ in W is 1, so $\gamma \in H \subset B_+$, as claimed. \Box

51.2. The flag manifold of a connected complex reductive group. Thus the set of all Borel subalgebras (or subgroups) in G is the homogeneous space G/B_+ , a complex manifold. It is called the flag manifold of G. Note that it only depends on the semisimple part $\mathfrak{g}_{ss} \subset \mathfrak{g}$ and does not depend on the choice of the Cartan subalgebra and triangular decomposition.

Let $G^c \subset G$ be the compact form of G, with Lie algebra $\mathfrak{g}^c \subset \mathfrak{g}$. It is easy to see that $\mathfrak{g}^c + \mathfrak{b}_+ = \mathfrak{g}$. Thus the G^c -orbit $G^c \cdot 1$ of $1 \in G/B_+$ contains a neighborhood of 1 in G/B_+ . Hence the same holds for any point of this orbit, i.e., $G^c \cdot 1 \subset G/B_+$ is an open subset. But it is also compact, since G^c is compact, hence closed. As G/B_+ is connected, we get that $G^c \cdot 1 = G/B_+$, i.e., G^c acts transitively on G/B_+ .

Also the Cartan involution ω maps positive root elements to negative ones, so $G^c \cap B_+ \subset w_0(B_+) \cap B_+ = H$. Thus $G^c \cap B_+ = H^c$, a maximal torus in G^c . So we get

Proposition 51.3. We have $G/B_+ = G^c/H^c$. In particular, G/B_+ is a compact complex manifold of dimension $|R_+| = \frac{1}{2}(\dim \mathfrak{g} - \operatorname{rank}\mathfrak{g})$.

Example 51.4. 1. For $G = SL_2$ we have $G/B_+ = SU(2)/U(1) = S^2$, the Riemann sphere.

2. For $G = GL_n$ we have $G/B_+ = U(n)/U(1)^n = \mathcal{F}_n$, the set of flags in \mathbb{C}^n that we considered in Subsection 47.3.

Another realization of the flag manifold is one as the *G*-orbit of the line spanned by the highest weight vector in an irreducible representation with a regular highest weight. Namely, let $\lambda \in P_+$ be a dominant integral weight with $\lambda(h_i) \geq 1$ for all *i* (i.e., $\lambda = \mu + \rho$ for $\mu \in P_+$). Let L_{λ} be the corresponding irreducible representation with highest weight vector v_{λ} . We have $\mathfrak{b}_+ \cdot \mathbb{C}v_{\lambda} = \mathbb{C}v_{\lambda}$, but $e_{-\alpha}v_{\lambda} \neq 0$ for any $\alpha \in R_+$ (as $e_{\alpha}e_{-\alpha}v_{\lambda} = h_{\alpha}v_{\lambda} = (\lambda, \alpha^{\vee})v_{\lambda}$, and $(\lambda, \alpha^{\vee}) > 0$). Moreover, these vectors have different weights, so are linearly independent. Thus \mathfrak{b}_+ is the stabilizer of $\mathbb{C}v_{\lambda}$ in \mathfrak{g} . Hence any $g \in G$ which preserves $\mathbb{C}v_{\lambda}$ belongs to the normalizer of \mathfrak{b}_+ (or, equivalently, B_+), i.e., $g \in B_+$. Thus $\mathcal{O} := G \cdot \mathbb{C}v_{\lambda} \subset \mathbb{P}L_{\lambda}$ is identified with G/B_+ . This shows that \mathcal{O} is compact, hence closed, i.e., $\mathcal{O} = G/B_+$ is a smooth complex projective variety.

Let $A = \exp(i\mathfrak{h}^c) \subset H$, $K = G^c$, $N = N_+$. Proposition 51.3 immediately implies

Corollary 51.5. (The Iwasawa decomposition of G) The multiplication map $K \times A \times N \rightarrow G$ is a diffeomorphism. In particular, we have G = KAN.

A similar theorem holds for *real* reductive groups (Theorem 51.14).

51.3. The Borel fixed point theorem. Let V be a finite dimensional representation of a finite dimensional \mathbb{C} -Lie algebra \mathfrak{a} , and $X \subset \mathbb{P}V$ be a subset. We will say that X is \mathfrak{a} -invariant (or fixed by \mathfrak{a}) if it is $\exp(\mathfrak{a})$ -invariant.

Theorem 51.6. Let \mathfrak{a} be a solvable Lie algebra over \mathbb{C} , V a finite dimensional \mathfrak{a} -module. Let $X \subset \mathbb{P}V$ be a closed \mathfrak{a} -invariant subset. Then there exists $x \in X$ fixed by \mathfrak{a} .

Proof. The proof is by induction in $n = \dim \mathfrak{a}$. The base n = 0 is trivial, so we only need to justify the induction step. Since \mathfrak{a} is solvable, it has an ideal \mathfrak{a}' of codimension 1. By the induction assumption, $Y := X^{\mathfrak{a}'}$ (the set of $\exp(\mathfrak{a}')$ -fixed points in X) is a nonempty closed subset of X, so it suffices to show that the 1-dimensional Lie algebra $\mathfrak{a}/\mathfrak{a}'$ has a fixed point on Y. Thus it suffices to prove the theorem for n = 1.

So let \mathfrak{a} be 1-dimensional, spanned by $a \in \mathfrak{a}$. We can choose the normalization of a so that all eigenvalues of a on V have different real parts. Fix $x_0 \in X$ and consider the curve $e^{ta}x_0$ for $t \in \mathbb{R}$. It is easy

to see that there exists $x := \lim_{t\to\infty} e^{ta}x_0 \in \mathbb{P}V$. Then $x \in X$ as X is closed and, and x is fixed by \mathfrak{a} , as desired.

51.4. Parabolic and Levi subalgebras. A Lie subalgebra $\mathfrak{p} \supset \mathfrak{b}$ of a reductive Lie algebra \mathfrak{g} containing some Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ is called a **parabolic subalgebra** of \mathfrak{g} . The corresponding connected Lie subgroup $P \subset G$ is called a **parabolic subgroup**. It is easy to see that $P \subset G$ is necessarily closed (check it!).

Exercise 51.7. Show that parabolic subalgebras \mathfrak{p} containing \mathfrak{b}_+ are in bijection with subsets $S \subset \Pi$ of the set of simple roots of \mathfrak{b}_+ , namely, \mathfrak{p} is sent to the set $S_{\mathfrak{p}}$ of $i \in \Pi$ such that $f_i \in \mathfrak{p}$, and S is sent to the Lie subalgebra \mathfrak{p}_S of \mathfrak{g} generated by \mathfrak{b}_+ and $f_i, i \in S$.

Let $P \subset G$ be a parabolic subgroup with Lie algebra \mathfrak{p} . Let $\mathfrak{u} \subset \mathfrak{p}$ be the nilpotent radical of \mathfrak{p} ; for instance, if $\mathfrak{p} \supset \mathfrak{b}_+$ then \mathfrak{u} is the Lie subalgebra spanned by e_α such that $e_{-\alpha} \notin \mathfrak{p}$. It is easy to see that there exists a (non-unique) Lie subalgebra $\mathfrak{l} \subset \mathfrak{p}$ complementary to \mathfrak{u} , which therefore projects isomorphically to $\mathfrak{p}/\mathfrak{u}$; indeed, if $\mathfrak{p} \supset \mathfrak{b}_+$ then we can take \mathfrak{l} to be the Lie subalgebra spanned by \mathfrak{h} and $e_\alpha, e_{-\alpha}$ where α runs through positive roots for which $e_{-\alpha} \in \mathfrak{p}$. Such a subalgebra \mathfrak{l} is called a **Levi subalgebra** of \mathfrak{p} , and we have $\mathfrak{p} = \mathfrak{l} \ltimes \mathfrak{u}$, which is $\mathfrak{l} \oplus \mathfrak{u}$ as a vector space.

Let $U = \exp(\mathfrak{u})$. The quotient P/U is a reductive group with Lie algebra $\mathfrak{p}/\mathfrak{u}$. A **Levi subgroup** of P is a subgroup L in P such that $\mathfrak{l} :=$ Lie(L) is a Levi subalgebra of \mathfrak{p} ; equivalently, L projects isomorphically to P/U, so we have $P = L \ltimes U$, written shortly as P = LU. It is not difficult to show that all Levi subgroups of P (or, equivalently, all Levi subalgebras of \mathfrak{p}) are conjugate by the action of U (check it!).

For example, L is a maximal torus if and only if P is a Borel subgroup, and L = G if and only if P = G.

Example 51.8. Let $n = n_1 + ... + n_k$ where n_i are positive integers. Then the subgroup P of block upper triangular matrices with diagonal blocks of size $n_1, ..., n_k$ is a parabolic subgroup of $GL_n(\mathbb{C})$, and the subgroup L of block diagonal matrices in P is a Levi subgroup. The unipotent radical U of P is the subgroup of block upper triangular matrices with identity matrices on the diagonal.

51.5. Maximal solvable and maximal nilpotent subalgebras. Note that \mathfrak{b}_+ is a maximal solvable subalgebra of \mathfrak{g} ; indeed, any bigger parabolic subalgebra contains a negative root vector, hence the corresponding root \mathfrak{sl}_2 -subalgebra, so it is not solvable. Moreover, B_+ is a maximal solvable subgroup of G: if $P \supset B_+$ then some element $g \in P$ does not normalize \mathfrak{b}_+ , so Lie(P) has to be larger than \mathfrak{b}_+ , hence not solvable. Thus any Borel subalgebra (subgroup) is a maximal solvable one. It turns out that the converse also holds.

Proposition 51.9. Any solvable Lie subalgebra of \mathfrak{g} (respectively, connected solvable subgroup of G) is contained in a Borel subalgebra (subgroup).

Proof. Let $\mathfrak{a} \subset \mathfrak{g}$ be a solvable Lie subalgebra. By the Borel fixed point theorem, \mathfrak{a} has a fixed point $\mathfrak{b} \in G/B_+$. Thus \mathfrak{a} normalizes \mathfrak{b} . Hence $\mathfrak{a} \subset \mathfrak{b}$, as claimed.

Corollary 51.10. Any element of \mathfrak{g} is contained in a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$.

Let us say that a Lie subalgebra $\mathfrak{a} \subset \mathfrak{g}$ is a **nilpotent subalgebra** if it consists of nilpotent elements. Note that this is a stronger condition than just being nilpotent as a Lie algebra; for example, a Cartan subalgebra is a nilpotent Lie algebra (since it is abelian) but it is not a nilpotent subalgebra of \mathfrak{g} .

Corollary 51.11. Any nilpotent subalgebra of \mathfrak{g} is conjugate to a Lie subalgebra of \mathfrak{n}_+ . Thus \mathfrak{n}_+ is a maximal nilpotent subalgebra of \mathfrak{g} , and any maximal nilpotent subalgebra of \mathfrak{g} is conjugate to \mathfrak{n}_+ .

Proof. By Proposition 51.9 there is $g \in G$ such that $\operatorname{Ad}_g \mathfrak{a} \subset \mathfrak{b}_+$, but since \mathfrak{a} is nilpotent we actually have $\operatorname{Ad}_g \mathfrak{a} \subset \mathfrak{n}_+$.

A similar result holds for groups, with the same proof:

Corollary 51.12. Any unipotent subgroup of G is conjugate to a (closed) Lie subgroup of N_+ . Thus N_+ is a maximal unipotent subgroup of G, and any maximal unipotent subgroup of G is conjugate to N_+ .

We also have

Proposition 51.13. The normalizer of \mathfrak{n}_+ and N_+ in G is B_+ . Thus every maximal nilpotent subalgebra (unipotent subgroup) is contained in a unique Borel subgroup. Hence such subalgebras (subgroups) are parametrized by the flag manifold G/B_+ .

Proof. Clearly B_+ is contained in the normalizer of N_+ , so this normalizer is a parabolic subgroup. We have seen that such a subgroup, if larger than B_+ , must have a Lie algebra larger that \mathfrak{b}_+ , so it must be \mathfrak{p}_S for some $S \neq \emptyset$, hence contains some root \mathfrak{sl}_2 -subalgebra. But the group corresponding to such a subalgebra does not normalize \mathfrak{n}_+ , a contradiction.

51.6. Iwasawa decomposition of a real semisimple linear group. Let $G_{\theta} = K^c P_{\theta}$ be the polar decomposition of a real form of a complex semisimple group $G, \mathfrak{g}_{\theta} = \mathfrak{k}^c \oplus \mathfrak{p}_{\theta}$ the additive version, $\mathfrak{a} \subset \mathfrak{p}_{\theta}$ a maximal abelian subspace. Let $A = \exp(\mathfrak{a}) \subset P_{\theta}$ be the corresponding abelian subgroup of G_{θ} . Pick a generic element $a \in \mathfrak{a}$. Let $\mathfrak{z} = \mathfrak{g}_{\theta}^a$ be the centralizer of a in \mathfrak{g}_{θ} and let $\mathfrak{n}_{a,\pm}$ be the (nilpotent) Lie subalgebras of \mathfrak{g}_{θ} spanned by eigenvectors of ada with positive, respectively negative eigenvalues, so that $\mathfrak{g}_{\theta} = \mathfrak{n}_{a-} \oplus \mathfrak{z} \oplus \mathfrak{n}_{a+}$. Let $N_{a\pm} = \exp(\mathfrak{n}_{a\pm})$.

The following theorem is a generalization of Proposition 51.5.

Theorem 51.14. (Iwasawa decomposition) The multiplication map $K^c \times A \times N_{a+} \rightarrow G_{\theta}$ is a diffeomorphism.

Theorem 51.14 is proved in the following exercise.

Exercise 51.15. (i) Let $\mathfrak{m} = \mathfrak{z} \cap \mathfrak{k}^c$. Show that $\mathfrak{z} = \mathfrak{m} \oplus \mathfrak{a}$ (use Proposition 44.11(ii)).

(ii) Given $x \in \mathfrak{p}$, write $x = x_- + x_0 + x_-$, $x_{\pm} \in \mathfrak{n}_{a\pm}$, $x_0 \in \mathfrak{z}$. Show that $\theta(x_{\pm}) = -x_{\mp}$, $\theta(x_0) = -x_0$. Deduce the **additive Iwasawa decomposition** $\mathfrak{g}_{\theta} = \mathfrak{k}^c \oplus \mathfrak{a} \oplus \mathfrak{n}_{a+}$ (write x as $(x_- - x_+) + x_0 + 2x_+$).

(iii) Show that $\mathfrak{z} \oplus \mathfrak{n}_{a+} = \mathfrak{m} \oplus \mathfrak{a} \oplus \mathfrak{n}_{\mathfrak{a}+}$ is a parabolic subalgebra in \mathfrak{g}_{θ} with Levi subalgebra \mathfrak{z} (i.e., their complexifications are a parabolic subalgebra in \mathfrak{g} and its Levi subalgebra) and its unipotent radical is \mathfrak{n}_{a+} .

(iv) Let M be the centralizer of a in K^c . Show that $\mathbb{P} := MAN_{a+}$ is a subgroup of G_{θ} and $X := G_{\theta}/\mathbb{P}$ is a compact homogeneous space.

(v) Show that K^c acts transitively on X, and $X \cong K^c/M$ as a homogeneous space for K^c (generalize the argument in Subsection 51.2). Deduce Theorem 51.14.

51.7. The Bruhat decomposition. Let G be a connected complex reductive group, $H \subset G$ a maximal torus, $B = B_+ \supset H$ a Borel subgroup. The Bruhat decomposition is the decomposition of G into double cosets of B.

Let N(H) be the normalizer of H in G and W = N(H)/H be the Weyl group. Given $w \in W$, let \tilde{w} be a lift of w to N(H) and consider the double coset $B\tilde{w}B \subset G$. Since any two lifts of w differ by an element of H which is contained in B, the set $B\tilde{w}B$ does not depend on the choice of \tilde{w} , so we will denote it by BwB.

Proposition 51.16. The double cosets BwB, $w \in W$ are disjoint.

Proof. Let $w_1, w_2 \in N(H)$ be such that $Bw_1B = Bw_2B$. Then there exist elements $b_1, b_2 \in B$ such that $b_1w_1 = w_2b_2$. Let us apply this identity to a highest weight vector v_{λ} of an irreducible representation

 L_{λ} of G, where $\lambda \in P_+$ is regular. We have $w_2 b_2 v_{\lambda} = C v_{w_2 \lambda}$ for some $C \in \mathbb{C}^{\times}$, where $v_{w_2 \lambda}$ is an extremal vector of weight $w_2 \lambda$. On the other hand, $b_1 w_1 v_{\lambda} = C' b_1 v_{w_1 \lambda}$ for some $C' \in \mathbb{C}^{\times}$. Thus $C v_{w_2 \lambda} = C' b_1 v_{w_1 \lambda}$. But $b_1 v_{w_1 \lambda}$ equals $C'' v_{w_1 \lambda}$ plus terms of weight $> w_1 \lambda$, where $C'' \in \mathbb{C}^{\times}$. It follows that $w_1 \lambda = w_2 \lambda$, hence $w_1 = w_2 h$, $h \in H$.

Theorem 51.17. (Bruhat decomposition) The union of the double cosets BwB, $w \in W$ is the entire group G. Thus they define a partition of G into double cosets of B.

Theorem 51.17 can be reformulated as a classification of *B*-orbits on the flag manifold G/B. Namely, given $w \in W$, the set BwB/B is an orbit of *B* on G/B, which we will denote by C_w . By Theorem 51.16, C_w are disjoint, and Theorem 51.17 is equivalent to

Theorem 51.18. (Schubert decomposition) $C_w, w \in W$ give the partition of G/B into B-orbits.

The sets BwB are called **Bruhat cells** and the sets C_w are called **Schubert cells**.⁴³

Note that for type A_{n-1} ($G = SL_n(\mathbb{C})$ or its quotient), we have already proved Theorem 51.18 in Subsection 47.3, where we decomposed the flag manifold \mathcal{F}_n into Schubert cells labeled by permutations.

A proof of Theorem 51.18 can be found, for example, in the textbook [CG]. It is also sketched in the following exercise.

Exercise 51.19. (i) Let $B = B_+$ and $w \in W$. Consider the multiplication map $\mu_{i,w} : Bs_i B \times_B C_w \to G/B$. Show that if $\ell(s_i w) = \ell(w) + 1$ then $\mu_{i,w}$ is an isomorphism onto $C_{s_i w}$, while if $\ell(s_i w) = \ell(w) - 1$ then the image of $\mu_{i,w}$ consists of C_w and $C_{s_i w}$.

Hint: Reduce to the SL_2 -case.

(ii) For $i \in \Pi$ let P_i be the **minimal parabolic** subgroup of G generated by B and the 1-parameter subgroup $\exp(tf_i)$. Show that $P_i/B = C_{s_i} \cup C_1 \cong \mathbb{CP}^1 \subset G/B$ (where C_1 is a point and $C_{s_i} \cong \mathbb{C}$).

(iii) Let $w = s_{i_1}...s_{i_l}$ be a reduced decomposition of $w \in W$ (so $l = \ell(w)$); denote this decomposition by \overline{w} . The product $\prod_{k=1}^{l} P_{i_k}$ carries a free action of B^l via

$$(b_1, ..., b_l) \circ (p_1, ..., p_l) := (p_1 b_1^{-1}, b_1 p_2 b_2^{-1}, ..., b_{l-1} p_l b_l^{-1}).$$

Define the **Bott-Samelson variety** $X_{\overline{w}} := (\prod_{k=1}^{l} P_{i_k})/B^l$. Use (ii) to show that if $\overline{w} = s_i \overline{u}$ then $X_{\overline{w}}$ fibers over \mathbb{CP}^1 with fiber $X_{\overline{u}}$. Deduce that $X_{\overline{w}}$ is a smooth projective variety of dimension $\ell(w)$.

 $^{^{43}}$ We note that Bruhat cells, unlike Schubert cells, are not literally cells in the topological sense – they are not homeomorphic to an affine space, but are homeomorphic to the product of an affine space and a torus.

(iv) Define the **Bott-Samelson map**

$$u_{\overline{w}}: X_{\overline{w}} \to G/B$$

given by multiplication. Use (i) to show that the image of $\mu_{\overline{w}}$ is the **Schubert variety** \overline{C}_w , the closure of C_w in G/B. Moreover, show that $\overline{C_w} \setminus C_w$ is the union of C_u over some $u \in W$ with $\ell(u) < \ell(w)$.

(v) Apply (iv) to the maximal element $w = w_0 \in W$. In this case, show that $\mu_{\overline{w}}$ is surjective, and deduce Theorem 51.18.

Let us derive some corollaries of Theorem 51.18.

Corollary 51.20. (i) Any pair of Borel subgroups of G is conjugate to the pair (B, w(B)) for a unique $w \in W$. In particular, any two Borel subgroups of G share a maximal torus.

(ii) The cell C_w is isomorphic to $\mathbb{C}^{\ell(w)}$.

Proof. (i) Let (B_1, B_2) be a pair of Borel subgroups in G. Then we can conjugate B_1 to B, and B_2 will be conjugated to some Borel subgroup B_3 . This subgroup is conjugate to B, i.e., is of the form gBg^{-1} for some $g \in G$. By Bruhat decomposition, we can write g as $g = b_1 \tilde{w} b_2$, $b_1, b_2 \in B$, $\tilde{w} \in N(H)$. So conjugating by b_1^{-1} , we will bring our pair to the required form (B, w(B)), where w is the image of \tilde{w} in W. Uniqueness follows from Proposition 51.16.

(ii) By (i) we have $C_w \cong B/(B \cap w(B))$. Since B = NH, where N = [B, B] and $B \cap w(B) \supset H$, we get $C_w = N/(N \cap w(B)) = N/(N \cap w(N))$. This is a complex affine space of dimension equal to the number of positive roots mapped to negative roots by w, i.e., $\ell(w)$.

Corollary 51.21. The Poincaré polynomial of the flag manifold G/B is

$$\sum_{i\geq 0} b_{2i}(G/B)q^i = \sum_{w\in W} q^{\ell(w)}$$

Remark 51.22. Similarly to the type A case, one can show that this polynomial can also be written as $\prod_{i=1}^{r} [m_i + 1]_q$, where m_i are the exponents of G, but we will not give a proof of this identity.

18.755 Lie Groups and Lie Algebras II Spring 2024

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.