51. Borel subgroups and the flag manifold of a complex reductive Lie group

51.1. Borel subgroups and subalgebras. Let G be a connected complex reductive Lie group, $\mathfrak{g} = \text{Lie}(G)$. Fix a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$ with a system of simple positive roots Π, and consider the corresponding triangular decomposition $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$, where \mathfrak{n}_+ is spanned by positive root elements and \mathfrak{n}_- by negative root elements. Let H be the maximal torus in G corresponding to \mathfrak{h}, N_+ the unipotent subgroup of G corresponding to \mathfrak{n}_+, and $B_+ = HN_+$ the solvable subgroup with $\text{Lie}(B_+) = \mathfrak{b}_+ := \mathfrak{h} \oplus \mathfrak{n}_+$; these are all closed Lie subgroups.

Definition 51.1. A Borel subalgebra of \mathfrak{g} is a Lie subalgebra conjugate to \mathfrak{b}_+. A Borel subgroup of G is a Lie subgroup conjugate to B_+.

Since all pairs (\mathfrak{h}, Π) are conjugate, this definition does not depend on the choice of (\mathfrak{h}, Π).

Lemma 51.2. B_+ is its own normalizer in G.

Proof. Let $\gamma \in G$ be such that $\text{Ad} \gamma(B_+) = B_+$. Let $H' = \text{Ad} \gamma(H) \subset B_+$. It is easy to show that we can conjugate H' back into H inside B_+, so we may assume without loss of generality that $H' = H$. Then $\gamma \in N(H)$, and it preserves positive roots. Hence the image of γ in W is 1, so $\gamma \in H \subset B_+$, as claimed. \square

51.2. The flag manifold of a connected complex reductive group. Thus the set of all Borel subalgebras (or subgroups) in G is the homogeneous space G/B_+, a complex manifold. It is called the flag manifold of G. Note that it only depends on the semisimple part $\mathfrak{g}_{ss} \subset \mathfrak{g}$ and does not depend on the choice of the Cartan subalgebra and triangular decomposition.

Let $G^c \subset G$ be the compact form of G, with Lie algebra $\mathfrak{g}^c \subset \mathfrak{g}$. It is easy to see that $\mathfrak{g}^c + \mathfrak{b}_+ = \mathfrak{g}$. Thus the G^c-orbit $G^c \cdot 1$ of $1 \in G/B_+$ contains a neighborhood of 1 in G/B_+. Hence the same holds for any point of this orbit, i.e., $G^c \cdot 1 \subset G/B_+$ is an open subset. But it is also compact, since G^c is compact, hence closed. As G/B_+ is connected, we get that $G^c \cdot 1 = G/B_+$, i.e., G^c acts transitively on G/B_+.

Also the Cartan involution ω maps positive root elements to negative ones, so $G^c \cap B_+ \subset w_0(B_+) \cap B_+ = H$. Thus $G^c \cap B_+ = H$, a maximal torus in G^c. So we get

Proposition 51.3. We have $G/B_+ = G^c/H^c$. In particular, G/B_+ is a compact complex manifold of dimension $|R_+| = \frac{1}{2}(\dim \mathfrak{g} - \text{rank} \mathfrak{g})$. 274
Example 51.4. 1. For $G = SL_2$ we have $G/B_+ = SU(2)/U(1) = S^2$, the Riemann sphere.

2. For $G = GL_n$ we have $G/B_+ = U(n)/U(1)^n = \mathcal{F}_n$, the set of flags in \mathbb{C}^n that we considered in Subsection 47.3.

Another realization of the flag manifold is one as the G-orbit of the line spanned by the highest weight vector in an irreducible representation with a regular highest weight. Namely, let $\lambda \in P_+$ be a dominant integral weight with $\lambda(h_i) \geq 1$ for all i (i.e., $\lambda = \mu + \rho$ for $\mu \in P_+$). Let L_λ be the corresponding irreducible representation with highest weight vector v_λ. We have $b_+ \cdot C_{v_\lambda} = C_{v_\lambda}$, but $e^{-\alpha}v_\lambda \neq 0$ for any $\alpha \in R_+$ (as $e_\alpha e^{-\alpha}v_\lambda = h_\alpha v_\lambda = (\lambda, \alpha^\vee)v_\lambda$, and $(\lambda, \alpha^\vee) > 0$). Moreover, these vectors have different weights, so are linearly independent. Thus b_+ is the stabilizer of C_{v_λ} in g. Hence any $g \in G$ which preserves C_{v_λ} belongs to the normalizer of b_+ (or, equivalently, B_+), i.e., $g \in B_+$. Thus $\mathcal{O} := G \cdot C_{v_\lambda} \subset \mathbb{P}L_\lambda$ is identified with G/B_+. This shows that \mathcal{O} is compact, hence closed, i.e., $\mathcal{O} = G/B_+$ is a smooth complex projective variety.

Let $A = \exp(i\mathfrak{h})c \subset H$, $K = G^c$, $N = N_+$. Proposition 51.3 immediately implies

Corollary 51.5. (The Iwasawa decomposition of G) The multiplication map $K \times A \times N \to G$ is a diffeomorphism. In particular, we have $G = KAN$.

A similar theorem holds for real reductive groups (Theorem 51.14).

51.3. **The Borel fixed point theorem.** Let V be a finite dimensional representation of a finite dimensional \mathbb{C}-Lie algebra \mathfrak{a}, and $X \subset \mathbb{P}V$ be a subset. We will say that X is \mathfrak{a}-invariant (or fixed by \mathfrak{a}) if it is $\exp(\mathfrak{a})$-invariant.

Theorem 51.6. Let \mathfrak{a} be a solvable Lie algebra over \mathbb{C}, V a finite dimensional \mathfrak{a}-module. Let $X \subset \mathbb{P}V$ be a closed \mathfrak{a}-invariant subset. Then there exists $x \in X$ fixed by \mathfrak{a}.

Proof. The proof is by induction in $n = \dim \mathfrak{a}$. The base $n = 0$ is trivial, so we only need to justify the induction step. Since \mathfrak{a} is solvable, it has an ideal \mathfrak{a}' of codimension 1. By the induction assumption, $Y := X^{\mathfrak{a}'}$ (the set of $\exp(\mathfrak{a}')$-fixed points in X) is a nonempty closed subset of X, so it suffices to show that the 1-dimensional Lie algebra $\mathfrak{a}/\mathfrak{a}'$ has a fixed point on Y. Thus it suffices to prove the theorem for $n = 1$.

So let \mathfrak{a} be 1-dimensional, spanned by $a \in \mathfrak{a}$. We can choose the normalization of a so that all eigenvalues of a on V have different real parts. Fix $x_0 \in X$ and consider the curve $e^{ta}x_0$ for $t \in \mathbb{R}$. It is easy
to see that there exists \(x := \lim_{t \to \infty} e^{t a} x_0 \in P V \). Then \(x \in X \) as \(X \) is closed and, and \(x \) is fixed by \(a \), as desired. \(\square \)

51.4. **Parabolic and Levi subalgebras.** A Lie subalgebra \(p \supset b \) of a reductive Lie algebra \(g \) containing some Borel subalgebra \(b \subset g \) is called a **parabolic subalgebra** of \(g \). The corresponding connected Lie subgroup \(P \subset G \) is called a **parabolic subgroup**. It is easy to see that \(P \subset G \) is necessarily closed (check it!).

Exercise 51.7. Show that parabolic subalgebras \(p \) containing \(b_+ \) are in bijection with subsets \(S \subset \Pi \) of the set of simple roots of \(b_+ \), namely, \(p \) is sent to the set \(S_p \) of \(\alpha \in \Pi \) such that \(e_{-\alpha} \in p \), and \(S \) is sent to the Lie subalgebra \(p_S \) of \(g \) generated by \(b_+ \) and \(f_i \) where \(\alpha \) runs through positive roots for which \(e_{-\alpha} \in \). Such a subalgebra \(l \) is called a **Levi subalgebra** of \(p \), and we have \(p = l \ltimes u \), which is \(l \oplus u \) as a vector space.

Let \(P \subset G \) be a parabolic subgroup with Lie algebra \(p \). Let \(u \subset p \) be the nilpotent radical of \(p \); for instance, if \(p \supset b_+ \) then \(u \) is the Lie subalgebra spanned by \(e_{\alpha} \) such that \(e_{-\alpha} \notin p \). It is easy to see that there exists a (non-unique) Lie subalgebra \(l \subset p \) complementary to \(u \), which therefore projects isomorphically to \(p/u \); indeed, if \(p \supset b_\) then we can take \(l \) to be the Lie subalgebra spanned by \(h \) and \(e_{\alpha}, e_{-\alpha} \) where \(\alpha \) runs through positive roots for which \(e_{-\alpha} \in p \). Such a subalgebra \(l \) is called a **Levi subalgebra** of \(p \), and we have \(p = l \ltimes u \), which is \(l \oplus u \) as a vector space.

Let \(U = \exp(u) \). The quotient \(P/U \) is a reductive group with Lie algebra \(p/u \). A **Levi subgroup** of \(P \) is a subgroup \(L \) in \(P \) such that \(l := \text{Lie}(L) \) is a Levi subalgebra of \(p \); equivalently, \(L \) projects isomorphically to \(P/U \), so we have \(P = L \ltimes U \), written shortly as \(P = LU \). It is not difficult to show that all Levi subgroups of \(P \) (or, equivalently, all Levi subalgebras of \(p \)) are conjugate by the action of \(U \) (check it!).

For example, \(L \) is a maximal torus if and only if \(P \) is a Borel subgroup, and \(L = G \) if and only if \(P = G \).

Example 51.8. Let \(n = n_1 + \ldots + n_k \) where \(n_i \) are positive integers. Then the subgroup \(P \) of block upper triangular matrices with diagonal blocks of size \(n_1, \ldots, n_k \) is a parabolic subgroup of \(GL_n(C) \), and the subgroup \(L \) of block diagonal matrices in \(P \) is a Levi subgroup. The unipotent radical \(U \) of \(P \) is the subgroup of block upper triangular matrices with identity matrices on the diagonal.

51.5. **Maximal solvable and maximal nilpotent subalgebras.** Note that \(b_+ \) is a maximal solvable subalgebra of \(g \); indeed, any bigger parabolic subalgebra contains a negative root vector, hence the corresponding root \(\mathfrak{sl}_2 \)-subalgebra, so it is not solvable. Moreover, \(B_+ \) is a maximal solvable subgroup of \(G \); if \(P \supset B_+ \) then some element \(g \in P \)
does not normalize \mathfrak{b}_+, so $\operatorname{Lie}(P)$ has to be larger than \mathfrak{b}_+, hence not solvable. Thus any Borel subalgebra (subgroup) is a maximal solvable one. It turns out that the converse also holds.

Proposition 51.9. Any solvable Lie subalgebra of \mathfrak{g} (respectively, connected solvable subgroup of G) is contained in a Borel subalgebra (subgroup).

Proof. Let $\mathfrak{a} \subset \mathfrak{g}$ be a solvable Lie subalgebra. By the Borel fixed point theorem, \mathfrak{a} has a fixed point $b \in G/B_+$. Thus \mathfrak{a} normalizes \mathfrak{b}. Hence $\mathfrak{a} \subset \mathfrak{b}$, as claimed. \square

Corollary 51.10. Any element of \mathfrak{g} is contained in a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$.

Let us say that a Lie subalgebra $\mathfrak{a} \subset \mathfrak{g}$ is a **nilpotent subalgebra** if it consists of nilpotent elements. Note that this is a stronger condition than just being nilpotent as a Lie algebra; for example, a Cartan subalgebra is a nilpotent Lie algebra (since it is abelian) but it is not a nilpotent subalgebra of \mathfrak{g}.

Corollary 51.11. Any nilpotent subalgebra of \mathfrak{g} is conjugate to a Lie subalgebra of \mathfrak{n}_+. Thus \mathfrak{n}_+ is a maximal nilpotent subalgebra of \mathfrak{g}, and any maximal nilpotent subalgebra of \mathfrak{g} is conjugate to \mathfrak{n}_+.

Proof. By Proposition 51.9 there is $g \in G$ such that $\operatorname{Ad}_g \mathfrak{a} \subset \mathfrak{b}_+$, but since \mathfrak{a} is nilpotent we actually have $\operatorname{Ad}_g \mathfrak{a} \subset \mathfrak{n}_+$. \square

A similar result holds for groups, with the same proof:

Corollary 51.12. Any unipotent subgroup of G is conjugate to a (closed) Lie subgroup of \mathcal{N}_+. Thus \mathcal{N}_+ is a maximal unipotent subgroup of \mathfrak{g}, and any maximal unipotent subgroup of \mathfrak{g} is conjugate to \mathcal{N}_+.

We also have

Proposition 51.13. The normalizer of \mathfrak{n}_+ and \mathcal{N}_+ in G is B_+. Thus every maximal nilpotent subalgebra (unipotent subgroup) is contained in a unique Borel subgroup. Hence such subalgebras (subgroups) are parametrized by the flag manifold G/B_+.

Proof. Clearly B_+ is contained in the normalizer of \mathcal{N}_+, so this normalizer is a parabolic subgroup. We have seen that such a subgroup, if larger than B_+, must have a Lie algebra larger than \mathfrak{b}_+, so it must be \mathfrak{p}_S for some $S \neq \emptyset$, hence contains some root \mathfrak{sl}_2-subalgebra. But the group corresponding to such a subalgebra does not normalize \mathfrak{n}_+, a contradiction. \square
51.6. Iwasawa decomposition of a real semisimple linear group.

Let \(G_{\theta} = K^c P_{\theta} \) be the polar decomposition of a real form of a complex semisimple group \(G \), \(g_{\theta} = \mathfrak{k}^c \oplus \mathfrak{p}_{\theta} \) the additive version, \(a \subset \mathfrak{p}_{\theta} \) a maximal abelian subspace. Let \(A = \exp(a) \subset P_{\theta} \) be the corresponding abelian subgroup of \(G_{\theta} \). Pick a generic element \(a \in a \). Let \(\mathfrak{z} = g_{\theta}^a \) be the centralizer of \(a \) in \(g_{\theta} \) and let \(n_{a,\pm} \) be the (nilpotent) Lie subalgebras of \(g_{\theta} \) spanned by eigenvectors of \(\text{ad}a \) with positive, respectively negative eigenvalues, so that \(g_{\theta} = n_{a, -} \oplus \mathfrak{z} \oplus n_{a, +} \). Let \(N_{a, \pm} = \exp(n_{a, \pm}) \).

The following theorem is a generalization of Proposition 51.5.

Theorem 51.14. (Iwasawa decomposition) The multiplication map \(K^c \times A \times N_{a, +} \to G_{\theta} \) is a diffeomorphism.

Theorem 51.14 is proved in the following exercise.

Exercise 51.15. (i) Let \(m = \mathfrak{z} \cap \mathfrak{k}^c \). Show that \(\mathfrak{z} = m \oplus a \) (use Proposition 44.11(ii)).

(ii) Given \(x \in \mathfrak{p} \), write \(x = x_- + x_0 + x_+ \), \(x_0 \in \mathfrak{z} \). Show that \((x_\pm) = -x_\pm, (x_0) = -x_0 \). Deduce the additive Iwasawa decomposition \(g_{\theta} = \mathfrak{k}^c \oplus a \oplus n_{a, +} \) (write \(x \) as \((x_- - x_+) + x_0 + 2x_+ \)).

(iii) Show that \(\mathfrak{z} \oplus n_{a, +} = m \oplus a \oplus n_{a, +} \) is a parabolic subalgebra in \(g_{\theta} \) with Levi subalgebra \(\mathfrak{z} \) (i.e., their complexifications are a parabolic subalgebra in \(g \) and its Levi subalgebra) and its unipotent radical is \(n_{a, +} \).

(iv) Let \(M \) be the centralizer of \(a \) in \(K^c \). Show that \(\mathbb{P} := MAN_{a, +} \) is a subgroup of \(G_{\theta} \) and \(X := G_{\theta}/\mathbb{P} \) is a compact homogeneous space.

(v) Show that \(K^c \) acts transitively on \(X \), and \(X \cong K^c/M \) as a homogeneous space for \(K^c \) (generalize the argument in Subsection 51.2). Deduce Theorem 51.14.

51.7. The Bruhat decomposition. Let \(G \) be a connected complex reductive group, \(H \subset G \) a maximal torus, \(B = B_+ \supset H \) a Borel subgroup. The Bruhat decomposition is the decomposition of \(G \) into double cosets of \(B \).

Let \(N(H) \) be the normalizer of \(H \) in \(G \) and \(W = N(H)/H \) be the Weyl group. Given \(w \in W \), let \(\tilde{w} \) be a lift of \(w \) to \(N(H) \) and consider the double coset \(B\tilde{w}B \subset G \). Since any two lifts of \(w \) differ by an element of \(H \) which is contained in \(B \), the set \(B\tilde{w}B \) does not depend on the choice of \(\tilde{w} \), so we will denote it by \(BwB \).

Proposition 51.16. The double cosets \(BwB, w \in W \) are disjoint.

Proof. Let \(w_1, w_2 \in N(H) \) be such that \(Bw_1B = Bw_2B \). Then there exist elements \(b_1, b_2 \in B \) such that \(b_1w_1 = w_2b_2 \). Let us apply this identity to a highest weight vector \(v_\lambda \) of an irreducible representation
L_λ of G, where $\lambda \in P_+$ is regular. We have $w_2b_2v_\lambda = Cv_{w_2\lambda}$ for some $C \in \mathbb{C}^\times$, where $v_{w_2\lambda}$ is an extremal vector of weight $w_2\lambda$. On the other hand, $b_1w_1v_\lambda = C'b_1v_{w_1\lambda}$ for some $C' \in \mathbb{C}^\times$. Thus $Cv_{w_2\lambda} = C'b_1v_{w_1\lambda}$. But $b_1v_{w_1\lambda}$ equals $C''v_{w_1\lambda}$ plus terms of weight $> w_1\lambda$, where $C'' \in \mathbb{C}^\times$. It follows that $w_1\lambda = w_2\lambda$, hence $w_1 = w_2h$, $h \in H$.

Theorem 51.17. (Bruhat decomposition) The union of the double cosets BwB, $w \in W$ is the entire group G. Thus they define a partition of G into double cosets of B.

Theorem 51.17 can be reformulated as a classification of B-orbits on the flag manifold G/B. Namely, given $w \in W$, the set BwB/B is an orbit of B on G/B, which we will denote by C_w. By Theorem 51.16, C_w are disjoint, and Theorem 51.17 is equivalent to

Theorem 51.18. (Schubert decomposition) $C_w, w \in W$ give the partition of G/B into B-orbits.

The sets BwB are called Bruhat cells and the sets C_w are called Schubert cells.\(^{35}\)

Note that for type A_{n-1} ($G = SL_n(\mathbb{C})$ or its quotient), we have already proved Theorem 51.18 in Subsection 47.3, where we decomposed the flag manifold \mathcal{F} into Schubert cells labeled by permutations.

A proof of Theorem 51.18 can be found, for example, in the textbook [CG]. It is also sketched in the following exercise.

Exercise 51.19. (i) Let $B = B_+$ and $w \in W$. Consider the multiplication map $\mu_{i,w} : B s_i B \times_B C_w \to G/B$. Show that if $\ell(s_iw) = \ell(w) + 1$ then $\mu_{i,w}$ is an isomorphism onto C_{s_iw}, while if $\ell(s_iw) = \ell(w) - 1$ then the image of $\mu_{i,w}$ consists of C_w and C_{s_iw}.

Hint: Reduce to the SL_2-case.

(ii) For $i \in I$ let P_i be the minimal parabolic subgroup of G generated by B and the 1-parameter subgroup $exp(tf_i)$. Show that $P_i/B = C_{s_i} \cap C_1 \cong \mathbb{CP}^1 \subset G/B$ (where C_1 is a point and $C_{s_i} \cong \mathbb{C}$).

(iii) Let $w = s_{i_1}...s_{i_l}$ be a reduced decomposition of $w \in W$ (so $l = \ell(w)$); denote this decomposition by \overline{w}. The product $\prod_{k=1}^l P_{i_k}$ carries a free action of B^l via

$$(b_1, ..., b_l) \circ (p_1, ..., p_l) := (p_1b_1^{-1}, b_1p_2b_2^{-1}, ..., b_{l-1}p_lb_l^{-1}).$$

Define the Bott-Samelson variety $X_{\overline{w}} := (\prod_{k=1}^l P_{i_k})/B^l$. Use (ii) to show that if $\overline{w} = s_i\overline{w}$ then $X_{\overline{w}}$ fibers over \mathbb{CP}^1 with fiber $X_{\overline{w}}$. Deduce that $X_{\overline{w}}$ is a smooth projective variety of dimension $\ell(w)$.

\(^{35}\)We note that Bruhat cells, unlike Schubert cells, are not literally cells in the topological sense – they are not homeomorphic to an affine space, but are homeomorphic to the product of an affine space and a torus.
(iv) Define the Bott-Samelson map $$\mu_w : X_w \to G/B$$ given by multiplication. Use (i) to show that the image of $$\mu_w$$ is the Schubert variety $$C_w$$, the closure of $$C_w$$ in $$G/B$$. Moreover, show that $$C_w \setminus C_w$$ is the union of $$C_u$$ over some $$u \in W$$ with $$\ell(u) < \ell(w)$$.

(v) Apply (iv) to the maximal element $$w = w_0 \in W$$. In this case, show that $$\mu_w$$ is surjective, and deduce Theorem 51.18.

Let us derive some corollaries of Theorem 51.18.

Corollary 51.20.
(i) Any pair of Borel subgroups of $$G$$ is conjugate to the pair $$(B, w(B))$$ for a unique $$w \in W$$. In particular, any two Borel subgroups of $$G$$ share a maximal torus.

(ii) The cell $$C_w$$ is isomorphic to $$C^{\ell(w)}$$.

Proof. (i) Let $$(B_1, B_2)$$ be a pair of Borel subgroups in $$G$$. Then we can conjugate $$B_1$$ to $$B$$, and $$B_2$$ will be conjugated to some Borel subgroup $$B_3$$. This subgroup is conjugate to $$B$$, i.e., is of the form $$gBg^{-1}$$ for some $$g \in G$$. By Bruhat decomposition, we can write $$g$$ as $$g = b_1 \tilde{w} b_2$$, $$b_1, b_2 \in B$$, $$\tilde{w} \in N(H)$$. So conjugating by $$b_1^{-1}$$, we will bring our pair to the required form $$(B, w(B))$$, where $$w$$ is the image of $$\tilde{w}$$ in $$W$$. Uniqueness follows from Proposition 51.16.

(ii) By (i) we have $$C_w \cong B/(B \cap w(B))$$. Since $$B = NH$$, where $$N = [B, B]$$ and $$B \cap w(B) \supset H$$, we get $$C_w = N/(N \cap w(B)) = N/(N \cap w(N))$$. This is a complex affine space of dimension equal to the number of positive roots mapped to negative roots by $$w$$, i.e., $$\ell(w)$$. \(\square\)

Corollary 51.21. The Poincaré polynomial of the flag manifold $$G/B$$ is

$$\sum_{i \geq 0} b_{2i}(G/B)q^i = \sum_{w \in W} q^{\ell(w)}.$$

Remark 51.22. Similarly to the type $$A$$ case, one can show that this polynomial can also be written as $$\prod_{i=1}^r [m_i + 1]_q$$, where $$m_i$$ are the exponents of $$G$$, but we will not give a proof of this identity.

References

