
1. Continuous representations of topological groups

This course will be about representations of Lie groups, with a focus
on non-compact groups. While irreducible representations of compact
groups are all finite dimensional, this is not so for non-compact groups,
whose most interesting irreducible representations are infinite dimen-
sional. Thus to have a sensible representation theory of non-compact
Lie groups, we need to consider their continuous representations on
topological vector spaces.

1.1. Topological vector spaces. All representations we’ll consider
will be over the field C, which is equipped with its usual topology.
Recall that a topological vector space over C is a complex vector
space V with a topology in which addition V × V → V and scalar
multiplication C × V → V are continuous. The topological vector
spaces V we’ll consider will always be assumed to have the following
properties:
• Hausdorff: any two distinct points of V have disjoint neighbor-

hoods.
• locally convex: 0 ∈ V (hence every point) has a base of convex

neighborhoods.1 Equivalently, the topology on V is defined by a family
of seminorms2 {να, α ∈ A}: a base of neighborhoods of 0 is formed by
finite intersections of the sets Uα,ε := {v ∈ V |να(v) < ε}, α ∈ A, ε > 0.
I.e., it is the weakest of the topologies in which all να are continuous.
• sequentially complete: every Cauchy sequence3 is convergent.
Also, unless specified otherwise, we will assume that V is
• first countable: 0 ∈ V (equivalently, every point of V ) has

a countable base of neighborhoods. By the Birkhoff-Kakutani theo-
rem, this is equivalent to V being metrizable (topology defined by a
metric), and moreover this metric can be chosen translation invariant:
d(x, y) = D(x− y) for some function D : V → R≥0.

In this case V is called a Fréchet space. For example, every Ba-
nach space (a complete normed space), in particular, Hilbert space
is a Fréchet space.

Recall that Hausdorff topological vector space V is said to be com-
plete if whenever V is realized as a dense subspace of a Hausdorff

1Recall that a set X ⊂ V is convex if for any x, y ∈ X and t ∈ [0, 1] we have
tx+ (1− t)y ∈ X.

2Recall that a seminorm on V is a function ν : V → R≥0 such that ν(x+ y) ≤
ν(x) + ν(y) and ν(λx) = |λ|ν(x) for x, y ∈ V , λ ∈ C. A seminorm is a norm iff
ν(x) = 0 implies x = 0.

3Recall that a sequence an ∈ V is Cauchy if for any neighborhood U of 0 ∈ V
there exists N such that for n,m ≥ N we have an − am ∈ U .
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topological vector space V with induced topology, we have V = V .
Every complete space is sequentially complete, and the converse holds
for metrizable spaces (albeit not in general). Thus a Fréchet space can
be defined as a locally convex complete metrizable topological vector
space.

Alternatively, a Fréchet space may be defined as a complete topo-
logical vector space with topology defined by a countable system of
seminorms νn : V → R, n ≥ 1. Thus, a sequence xm ∈ V goes to
zero iff νn(xm) goes to zero for all n. Note that the Hausdorff prop-
erty is then equivalent to the requirement that any vector x ∈ V with
νn(x) = 0 for all n is zero.

A translation-invariant metric on a Fréchet space may be defined by
the formula

d(x, y) = D(x− y), D(x) :=
∞∑
n=1

1

2n
νn(x)

1 + νn(x)
.

Note however that D is not a norm, as it is not homogeneous: for
λ ∈ C, D(λx) 6= |λ|D(x). If we had a finite collection of seminorms,
we could define a norm simply by D(x) :=

∑
n νn(x), but if there are

infinitely many, this sum may not converge, and we have to sacrifice
the homogeneity property for convergence. In fact, the examples below
show that there are important Fréchet spaces that are not Banach (i.e.,
do not admit a single norm defining the topology). We also note that
the same Fréchet space structure on V can be defined by different
systems of seminorms νn, and there is also nothing canonical about the
formula for D (e.g., we can replace 1

2n
by any sequence an > 0 with∑

n an <∞), so νn or D are not part of the data of a Fréchet space.
Finally, unless specified otherwise, we will assume that V is
• second countable: admits a countable base. For metrizable

spaces, this is equivalent to being separable (having a dense countable
subset).

Example 1.1. 1. Let X be a locally compact second countable Haus-
dorff topological space (e.g., a manifold). Then it is easy to see that
X can be represented as a countable nested union of compact subsets:
X =

⋃
n≥1Kn, K1 ⊂ K2 ⊂ .... Let C(X) be the space of continuous

complex-valued functions on X. We can then define seminorms νn by

νn(f) = max
x∈Kn

|f(x)|.

(this is well defined since Kn are compact). This makes C(X) into a
Fréchet space, and this structure is independent on the choice of the
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sequence Kn. The convergence in C(X) is uniform convergence on
compact sets.

By the Tietze extension theorem, if K ⊂ L are compact Haus-
dorff spaces then the restriction map C(L) → C(K) is surjective. So
C(X) = limn→∞←−−−−−C(Kn) as a vector space. Alternatively, without mak-

ing any choices, we may write C(X) = limK⊂X←−−−−−C(K), where K runs

over compact subsets of X.
2. If X is a manifold and 0 ≤ k ≤ ∞, we can similarly define a

Fréchet space structure on the space Ck(X) of k times continuously
differentiable functions on X. Namely, cover X by countably many
closed balls Kn, each equipped with a local coordinate system, and set

νn,m(f) = max
x∈Kn

‖dmf(x)‖ , 0 ≤ m ≤ k

(these are labeled by two indices rather than one, but it does not matter
since this collection is still countable). The convergence in Ck(X) is
uniform convergence with all derivatives up to k-th order on compact
sets.

These spaces are not Banach unless X is compact. Moreover, C∞(X)
is not Banach even for compact X (of positive dimension). For exam-
ple, for C∞(S1) we may take,

νm(f) =
m∑
i=0

max
x∈S1
|f (i)(x)|,

but this is still an infinite collection. Note that these are all norms,
not just seminorms, but each of them taken separately does not define
the correct topology on C∞(S1) (namely, νm defines the incomplete
topology induced by embedding C∞(S1) as a dense subspace into the
Banach space Cm(S1) with norm νm).

3. The Schwartz space S(R) ⊂ C∞(R) is the space of functions f
with

νm,n(f) := sup
x∈R
|xn∂mf(x)| <∞, m, n ≥ 0.

This system of seminorms can then be used to give S(R) the structure of
a (non-Banach) Fréchet space. The same definition can be used for the
Schwartz space S(RN), by taking n = (n1, ..., nN), m = (m1, ...,mN),
x = (x1, ..., xN), ∂ = (∂1, ..., ∂N), and

xn :=
∏
i

xnii , ∂
m :=

∏
i

∂mii .

It is well known that all these spaces are separable (check it!).
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1.2. Continuous representations. Let G be a locally compact topo-
logical group, for example, a Lie group.4

Definition 1.2. A continuous representation of G is a topological
vector space V with a continuous linear action a : G× V → V .5

In particular, a continuous representation gives a homomorphism
π : G→ Aut(V ) from G to the group of continuous automorphisms of
V (i.e., continuous linear maps V → V with continuous inverse).6

Definition 1.3. A continuous representation is called unitary if V
is a Hilbert space and for all g ∈ G, the operator π(g) : V → V is
unitary; in other words, π lands in the unitary group U(V ) ⊂ Aut(V ).

Exercise 1.4. Let 1 ≤ p < ∞ and Lp(R) be the Banach space of
measurable functions f : R→ R with

‖f‖p =

(∫
R
|f(x)|pdx

) 1
p

<∞

(modulo functions vanishing outside a set of measure zero), with norm
f 7→ ‖f‖p. The Lie group R acts on Lp(R) by translation.

(i) Show that this is a continuous representation, which is unitary
for p = 2 (use approximation of Lp functions by continuous functions
with compact support).

(ii) Prove the same for the Fréchet spaces Ck(R) and S(R).

Let G be a locally compact group, for example a Lie group. In this
case G is known to have a unique up to scaling right-invariant Haar
measure dx. For Lie groups, this measure is easy to construct by
spreading a nonzero element of ∧ng∗, g = Lie(G), n = dim g, over the
group G by right translations. Thus we can define the Banach space
Lp(G) similarly to the case G = R. It is easy to generalize Exercise
1.4 to show that the translation action of G on Lp(G) and Ck(G) is
continuous, with L2(G) unitary.

Example 1.5. Let X be a manifold with a right action of a Lie group
G. We’d like to say that we have a unitary representation of G on

4Topological groups will always be assumed Hausdorff and second countable.
Important examples of locally compact topological groups include groups G(F ),
where F is a local field and G is an algebraic group defined over F . If F is
archimedian (R or C) then G(F ) is a real, respectively complex, Lie group. Another
example important in number theory is G(Ak), where k is a global field, Ak is its
ring of adéles, and G is an algebraic group over k.

5It is easy to see that it suffices to check this property at points (1, v) for v ∈ V .
6Note that by the open mapping theorem, in a Fréchet space any invertible

continuous operator has a continuous inverse.
11



L2(X) via (gf)(x) = f(xg). But for this purpose we need to fix a G-
invariant measure on X, and such a nonzero measure does not always
exist (e.g., G = SL2(R), X = RP1 = S1).

The way out is to use half-densities on X rather than functions.
Namely, recall that if dimX = m then the canonical line bundle KX :=
∧mT ∗X has structure group R×. Consider the character R× → R>0

given by t 7→ |t|s, s ∈ R, and denote the associated line bundle |K|s.
This is called the bundle of s-densities on X (in particular, densities
for s = 1 and half-densities for s = 1

2
). Thus in local coordinates

s-densities are ordinary functions, but when we change coordinates by
x 7→ x′ = x′(x), these functions change as

f = f ′| det(∂x
′

∂x
)|s.

The benefit of half-densities is that for any half-density f , the ex-
pression |f |2 is naturally a density on X, which canonically defines a
measure that can be integrated over X. As a result, the space L2(X)
of half-densities f on X with

‖f‖2 =

√∫
X

|f |2 <∞

is a Hilbert space attached canonically to X (without choosing any
additional structures), and any diffeomorphism g : X → X defines a
unitary operator on L2(X). Thus similarly to Exercise 1.4, L2(X) is a
unitary representation of G. Note that if X has a G-invariant measure,
this is the same as a representation of G on L2-functions on X.

In particular, we see that we have a unitary representation of G×G
on L2(G) by left and right translation even though the right-invariant
Haar measure is not always left-invariant.

If V is finite dimensional, Aut(V ) = GL(V ) is just the group of in-
vertible matrices, and the continuity condition for representations of G
is just that the map π : G→ Aut(V ) is continuous in the usual topol-
ogy. Then it is well known that this map is smooth and is determined
by the corresponding Lie algebra map g → End(V ) = gl(V ), and this
correspondence is a bijection if G is simply connected. In this way the
theory of finite dimensional continuous representations of connected
Lie groups is immediately reduced to pure algebra.

On the other hand, for infinite dimensional representations the situ-
ation is more tricky, as there are several natural topologies on Aut(V ).
One of them is the strong topology of End(V ) (continuous endomor-
phisms of V ), in which Tn → T iff for all v ∈ V we have Tnv → Tv. It
is clear that if (V, π) is a continuous representation of G then the map
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π : G→ Aut(V ) is continuous in the strong topology, but the converse
is not true, in general. However, the converse holds for Banach spaces
(in particular, for unitary representations).

Proposition 1.6. If V is a Banach space then a representation (V, π)
of G is continuous if and only if the map π : G→ Aut(V ) is continuous
in the strong topology.

Proof. Recall the uniform boundedness principle: If Tn is a se-
quence of bounded operators from a Banach space V to a normed space
and for any v ∈ V the sequence Tnv is bounded then the sequence ‖Tn‖
is bounded.

Now assume that π is continuous in the strong topology. Let gn ∈ G,
gn → 1, and vn → v ∈ V . Since G is second countable, our job is to
show that π(gn)vn → v. We know that π(gn)v → v, as π(gn) → 1 in
the strong topology. So it suffices to show that π(gn)(vn − v)→ 0. As
vn − v → 0, it suffices to show that the sequence ‖π(gn)‖ is bounded.
But this follows from the uniform boundedness principle. �

Remark 1.7. 1. Another topology on End(V ) for a Banach space V is
the norm topology, defined by the operator norm. It is stronger that
the strong topology, and a continuous representation π : G→ Aut(V )
does not have to be continuous in this topology. For example, the
action of R on L2(R) is not. Indeed, denoting by Ta the operator π(a)
given by (Taf)(x) = f(x+a), we have ‖Ta − 1‖ = 2 for all a 6= 0 (show
it!).

2. If dimV =∞ then Aut(V ) is not a topological group with respect
to strong topology (multiplication is not continuous).

1.3. Subrepresentations, irreducible representations.

Definition 1.8. A subrepresentation of a continuous representa-
tion V of G is a closed G-invariant subspace of V . We say that V is
irreducible if its only subrepresentations are 0 and V .

Example 1.9. The translation representation of R on L2(R) is not irre-
ducible, although this is not completely obvious. To see this, we apply
Fourier transform, which is a unitary automorphism of L2(R). The
Fourier transform maps the operator Ta to the operator of multiplica-
tion by eiax. But it is easy to construct closed subspaces of L2(R) invari-
ant under multiplication by eiax: take any measurable subset X ⊂ R
and the subspace L2(X) ⊂ L2(R) of functions that essentially vanish
outside X (e.g., one can take X = [0,+∞)).
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Example 1.10. Here is the most basic example of an irreducible infi-
nite dimensional representation of a Lie group. Let G be the Heisen-
berg group, i.e., the group of upper triangular unipotent real 3-by-3
matrices. It can be realized as the Euclidean space R3 (with coordinates
x, y, z being the above-diagonal matrix entries), with multiplication law

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + ab′).

Then we can define a unitary representation of G on V = L2(R) by
setting π(a, 0, 0) = eiax (multiplication operator) and π(0, b, 0) = Tb
(shift by b).

Exercise 1.11. (i) Show that this gives rise to a well defined unitary
representation of G, and compute π(a, b, c) for general (a, b, c).

(ii) Show that V is irreducible.
Hint. Suppose W ⊂ V is a proper subrepresentation, and denote

by P : V → V the orthogonal projector to W . We can write P as an
integral operator with Schwartz kernel7 K(x, y), a distribution on R2.
Show that K is translation invariant, i.e., K(x + a, y + a) = K(x, y),
and deduce K(x, y) = k(x− y) for some distribution k(x) on R.8 Show
that (eiax−1)k(x) = 0 for all a ∈ R. Deduce that P is a scalar operator.
Conclude that P = 0, so W = 0.

7Recall that every smooth function φ(x, y) on R2 with compact support defines
a trace class operator Tφ with kernel φ(y, x), i.e.,

(Tφf)(x) =

∫
R
φ(y, x)f(y)dy.

Then the Schwartz kernel K of a continuous endomorphism A of L2(R) is defined
by the formula (K,φ) = Tr(ATφ) (which is well defined since the operator ATφ is
trace class).

8This means that (K,φ) = (k, φ̃), where φ̃(x) :=
∫
R φ(x+ y, y)dy.
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