2. K-finite vectors and matrix coefficients

2.1. K-finite vectors. Let K be a compact topological group. In this case K has a unique right-invariant Haar measure of volume 1 , which is therefore also left-invariant; we will denote this measure by $d g$. Thus if V is a finite dimensional (continuous) representation of K and B a positive definite Hermitian form on V then the form

$$
\bar{B}(v, w):=\int_{K} B(g v, g w) d g
$$

is positive definite and K-invariant, which implies that V is unitary. If V is irreducible then by Schur's lemma this unitary structure is unique up to scaling.

This implies that finite dimensional representations of K are completely reducible: if $W \subset V$ is a subrepresentation then $V=W \oplus W^{\perp}$, where W^{\perp} is the orthogonal complement of W under the Hermitian form.

Now let V be any continuous representation of K (not necessarily finite dimensional).

Definition 2.1. A vector $v \in V$ is K-finite if it is contained in a finitedimensional subrepresentation of V. The space of K-finite vectors of V is denoted by $V^{\text {fin }}$.

Let $\operatorname{Irr} K$ be the set of isomorphism classes of irreducible finite dimensional representations of K. We have a natural K-invariant linear map

$$
\xi: \oplus_{\rho \in \operatorname{Irr} K} \operatorname{Hom}(\rho, V) \otimes \rho \rightarrow V^{\operatorname{fin}}
$$

(where K acts trivially on $\operatorname{Hom}(\rho, V)$) defined by

$$
\xi(h \otimes u)=h(u) .
$$

Lemma 2.2. ξ is an isomorphism.
Proof. To show ξ is injective, assume the contrary, and let $\widetilde{\rho}$ be an irreducible subrepresentation of $\operatorname{Ker} \xi$. Then $\widetilde{\rho}=h \otimes \rho$, so for any $u \in \rho, h(u)=\xi(h \otimes u)=0$, so $h=0$, contradiction.

It remains to show that ξ is surjective. For $v \in V^{\text {fin }}$, let $W \subset V^{\text {fin }}$ be a finite dimensional subrepresentation of V containing v. By complete reducibility, W is a direct sum of irreducible representations. Thus it suffices to assume that W is irreducible. Let $h: W \hookrightarrow V$ be the corresponding inclusion. Then $v=h(v)=\xi(h \otimes v)$.
Example 2.3. Let $K=S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$. The irreducible finite dimensional representations of K are the characters $\rho_{n}(x)=e^{i n x}$ for integer n. Let $V=L^{2}\left(S^{1}\right)$. Then $\operatorname{Hom}\left(\rho_{n}, V\right)$ is the space of functions on S^{1}
such that $f(x+a)=e^{i n a} f(x)$, which is a 1 -dimensional space spanned by the function $e^{i n x}$. It follows that $V^{\text {fin }}$ is the space of trigonometric polynomials $\sum_{n} a_{n} e^{i n x}$, where only finitely many coefficients $a_{n} \in \mathbb{C}$ are nonzero.
2.2. Matrix coefficients. Let us now consider the special case $V=$ $L^{2}(K)$, and view it as a representation of $K \times K$ via

$$
(\pi(a, b) f)(x)=f\left(a^{-1} x b\right)
$$

For every irreducible representation $\rho \in \operatorname{Irr} K$ we have a homomorphism of representations of $K \times K$:

$$
\xi_{\rho}: \operatorname{End}_{\mathbb{C}} \rho=\rho^{*} \otimes \rho \rightarrow L^{2}(K)
$$

defined by

$$
\xi_{\rho}(h \otimes v)(g):=h(g v)
$$

This map is nonzero, hence injective (as $\rho^{*} \otimes \rho$ is an irreducible $K \times K$ module), and is called the matrix coefficient map, as the right hand side is a matrix coefficient of the representation ρ. The theorem on orthogonality of matrix coefficients tells us that the images of ξ_{ρ} for different ρ are orthogonal, and for $A, B \in \operatorname{End}_{\mathbb{C}} \rho$ we have

$$
\left(\xi_{\rho}(A), \xi_{\rho}(B)\right)=\frac{\operatorname{Tr}\left(A B^{\dagger}\right)}{\operatorname{dim} \rho}
$$

where B^{\dagger} is the Hermitian adjoint of B with respect to the unitary structure on ρ. Thus, choosing orthonormal bases $\left\{v_{\rho i}\right.$ in each ρ, we find that the functions

$$
\psi_{\rho i j}:=(\operatorname{dim} \rho)^{\frac{1}{2}} \xi_{\rho}\left(E_{i j}\right),
$$

where $E_{i j}:=v_{\rho j}^{*} \otimes v_{\rho i}$ are elementary matrices, form an orthonormal system in $L^{2}(K)$.

Let us view $L^{2}(K)$ as a representation of K via left translations. Let $\rho \in \operatorname{Irr} K$. Then every $h \in \rho$ defines a homomorphism of representations $f_{h}: \rho^{*} \rightarrow L^{2}(K)$ which, when viewed as an element of $L^{2}(K, \rho)$, is given by the formula $f_{h}(y):=y h$. Conversely, suppose $f: \rho \rightarrow V$ is a homomorphism. Then f can be represented by an L^{2}-function $\widetilde{f}: K \rightarrow \rho$ such that for any $b \in K$, the function $x \mapsto \widetilde{f}(b x)-b \widetilde{f}(x)$ vanishes outside a set $S_{b} \subset K$ of measure 0 . Let $S \subset K \times K$ be the set of pairs (b, x) such that $x \in S_{b}$. Then S has measure 0 , hence the set T_{x} of $b \in K$ such that $(b, x) \in S$ (i.e., $x \in S_{b}$) has measure zero almost everywhere with respect to x. So pick $x \in K$ such that T_{x} has measure zero. For $y=b x \notin T_{x} x$, we have $x \notin S_{b}$, so $\widetilde{f}(y)=y x^{-1} \widetilde{f}(x)$. Thus
$f=f_{h}$ where $h=x^{-1} \widetilde{f}(x)$. It follows that the assignment $h \mapsto f_{h}$ is an isomorphism $\rho \cong \operatorname{Hom}\left(\rho^{*}, L^{2}(K)\right)$. This shows that the map

$$
\bigoplus_{\rho \in \operatorname{Irr} K} \xi_{\rho}: \bigoplus_{\rho \in \operatorname{Irr} K} \rho^{*} \otimes \rho \rightarrow L^{2}(K)^{\mathrm{fin}}
$$

is an isomorphism, where $L^{2}(K)^{\mathrm{fin}}$ is the space of K-finite vectors in $L^{2}(K)$ under left translations. Thus any K-finite function under left (or right) translations is actually $K \times K$-finite, and we have a natural orthogonal decomposition

$$
L^{2}(K)^{\mathrm{fin}} \cong \bigoplus_{\rho \in \operatorname{Irr} K} \rho^{*} \otimes \rho
$$

Moreover, since $L^{2}(K)$ is separable, it follows that $\operatorname{Irr} K$ is a countable set.
2.3. The Peter-Weyl theorem. The following non-trivial theorem is proved in the basic Lie groups course.

Theorem 2.4. (Peter-Weyl) $L^{2}(K)^{\mathrm{fin}}$ is a dense subspace of $L^{2}(K)$. Hence $\left\{\psi_{\rho i j}\right\}$ form an orthonormal basis of $L^{2}(K)$, and we have

$$
L^{2}(K)=\widehat{\oplus}_{\rho \in \operatorname{Irr} K} \rho^{*} \otimes \rho
$$

(completed orthogonal direct sum under the Hilbert space norm).
Example 2.5. For $K=S^{1}=\mathbb{R} / 2 \pi \mathbb{Z}$ the Peter-Weyl theorem says that the Fourier system $\left\{e^{i n x}\right\}$ is complete, i.e., a basis of $L^{2}\left(S^{1}\right)$.
2.4. Partitions of unity. Let X be a metric space with distance function d, and $C \subset X$ a closed subset. For $x \in X$ define

$$
d(x, C):=\inf _{y \in C} d(x, y)
$$

if $C \neq \emptyset$. This function is continuous, since $d(x, C) \leq d(x, y)+d(y, C)$, hence $|d(x, C)-d(y, C)| \leq d(x, y)$. Thus the function $f_{C}(x):=\frac{d(x, C)}{1+d(x, C)}$ (defined to be 1 if $C=\emptyset$) is continuous on X, takes values in [0, 1], and $f_{C}(x)=0$ iff $x \in C$. So if $\left\{U_{i}, i \in \mathbb{N}\right\}$ is a countable open cover of X then the function $\sum_{i \in \mathbb{N}} 2^{-i} f_{U_{i}^{c}}$ is continuous and strictly positive, so we may define the continuous functions on X

$$
\phi_{i}:=\frac{2^{-i} f_{U_{i}^{c}}}{\sum_{i \in \mathbb{N}} 2^{-i} f_{U_{i}^{c}}}, i \in \mathbb{N}
$$

These functions form a partition of unity subordinate to the cover $\left\{U_{i}, i \in \mathbb{N}\right\}:$ each ϕ_{i} is non-negative, vanishes outside U_{i}, and $\sum_{i \in \mathbb{N}} \phi_{i}=$ 1 (a uniformly convergent series on X).

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

