2. K-finite vectors and matrix coefficients

2.1. K-finite vectors. Let K be a compact topological group. In this
case K has a unique right-invariant Haar measure of volume 1, which
is therefore also left-invariant; we will denote this measure by dg. Thus
if V' is a finite-dimensional (continuous) representation of K and B a
positive definite Hermitian form on V' then the form

B(v,w) ::/KB(gv,gw)dg

is positive definite and K-invariant, which implies that V' is unitary. If
V' is irreducible then by Schur’s lemma this unitary structure is unique
up to scaling.

This implies that finite-dimensional representations of K are com-
pletely reducible: if W C V is a subrepresentation then V =W @ W+,
where W+ is the orthogonal complement of W under the Hermitian
form.

Now let V' be any continuous representation of K (not necessarily
finite-dimensional).

Definition 2.1. A vector v € V is K-finite if it is contained in a finite-

dimensional subrepresentation of V. The space of K-finite vectors of
V is denoted by Vfin,

Let IrrK be the set of isomorphism classes of irreducible finite-
dimensional representations of K. We have a natural K-invariant linear
map

5 : @ﬂEIrrKHom(p’ V) ® p — Vﬁn
(where K acts trivially on Hom(p, V')) defined by

E(h®u) = h(u).
Lemma 2.2. £ is an isomorphism.

Proof. To show £ is injective, assume the contrary, and let p be an
irreducible subrepresentation of Ker{. Then p = h ® p for a suitable
h € Hom(p, V), so for any u € p we have h(u) = {(h ® u) = 0. Thus
h =0, a contradiction.

It remains to show that £ is surjective. For v € Vir let W c Vi» be
a finite-dimensional subrepresentation of V' containing v. By complete
reducibility, W is a direct sum of irreducible representations. Thus
it suffices to assume that W is irreducible. Let h : W < V be the
corresponding inclusion. Then v = h(v) = £(h ® v). O

Example 2.3. Let K = S' = R/27Z. The irreducible finite-dimensional

representations of K are the characters p,(z) = ¢™® for integer n. Let
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V = L*(S'). Then Hom(p,, V) is the space of functions on S! such
that f(z + a) = e™*f(z), which is a 1-dimensional space spanned by
the function e™*. It follows that V" is the space of trigonometric
polynomials Y a,e™, where only finitely many coefficients a,, € C
are NONZero.

2.2. Matrix coefficients. Let us now consider the special case V' =
L?(K), and view it as a representation of K x K via

(m(a,b)f)(x) = f(a™ xb).
For every irreducible representation p € Irr K we have a homomorphism
of representations of K x K:
¢, Endep=p* ®p— L*(K)
defined by
&o(h @ v)(g) = h(gv).
This map is nonzero, hence injective (as p*® p is an irreducible K x K-
module), and is called the matrix coefficient map, as the right hand
side is a matrix coefficient of the representation p. The theorem on
orthogonality of matrix coefficients tells us that the images of £,
for different p are orthogonal, and for A, B € End¢p we have
Tr(ABT)
A B)=—~+
(6(4).6(B)) = —5=
where Bt is the Hermitian adjoint of B with respect to the unitary

structure on p. Thus, choosing orthonormal bases {v,;} in each p, we
find that the functions
Vpij = (dim p)2&,(Eyy),

where Ej; := vy, ® v, are elementary matrices, form an orthonormal
system in L?(K).

Let us view L?(K) as a representation of K via left translations. Let
p € Irr K. Then every h € p defines a homomorphism of representations
fn : p* — L*(K) which, when viewed as an element of L?*(K,p), is
given by the formula f;(y) := yh. Conversely, suppose f : p — V
is a homomorphism. Then f can be represented by an L2—func£ion
f : K — psuch that for any b € K, the function z — f(bx) — bf(x)
vanishes outside a set S, C K of measure 0. Let S C K x K be the set
of pairs (b, z) such that = € Sy. Then S has measure 0, hence the set
T, of b € K such that (b,z) € S (i.e., z € Sp) has measure zero almost
everywhere with respect to z. So pick x € K such that T, has measure
zero. For y = bx ¢ T,x, we have © ¢ S, so f(y) = yz~'f(x). Thus
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f = fn where h = 271 f(z). It follows that the assignment h > f;, is
an isomorphism p = Hom(p*, L?(K)). This shows that the map

P s P rrop— LK)

pelrrK pelrrK

is an isomorphism, where L?(K)f" is the space of K-finite vectors in
L?(K) under left translations. Thus any K-finite function under left
(or right) translations is actually K x K-finite, and we have a natural
orthogonal decomposition

LZ(K)ﬁn o~ @ p*®p

pElrrK

Moreover, since L?(K) is separable, it follows that IrrK is a countable
set.

2.3. The Peter-Weyl theorem. The following non-trivial theorem
is proved in the basic Lie groups course.

Theorem 2.4. (Peter-Weyl) L*(K)™ is a dense subspace of L*(K).
Hence {1} form an orthonormal basis of L*(K), and we have

LQ(K) - é\apEIrer* ® p
(completed orthogonal direct sum under the Hilbert space norm,).

Example 2.5. For K = S!' = R/27Z the Peter-Weyl theorem says
that the Fourier system {e™"} is complete, i.e., a basis of L?(S').

2.4. Partitions of unity. Let X be a metric space with distance func-
tion d, and C' C X a closed subset. For x € X define
d(z,C) = inf ccd(x,y)

if C' # ). This function is continuous, since d(z, C) < d(x,y)+d(y,C),
hence |d(z,C)—d(y,C)| < d(z,y). Thus the function fo(z) := 1:1-(;25%*)
(defined to be 1 if C' = @) is continuous on X, takes values in [0, 1],
and fo(z) = 0iff x € C. So if {U;,i € N} is a countable open cover
of X then the function . 270 Jue is continuous and strictly positive,
so we may define the continuous functions on X

27 f, Ue
ZieN 271f, Uy ’
These functions form a partition of unity subordinate to the cover
{Ui,i € N}: each ¢; is non-negative, vanishes outside U;, and ) . ¢; =
1 (a uniformly convergent series on X).

¢ = 1 €N
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