
2. K-finite vectors and matrix coefficients

2.1. K-finite vectors. Let K be a compact topological group. In this
case K has a unique right-invariant Haar measure of volume 1, which
is therefore also left-invariant; we will denote this measure by dg. Thus
if V is a finite-dimensional (continuous) representation of K and B a
positive definite Hermitian form on V then the form

B(v, w) :=

∫
K

B(gv, gw)dg

is positive definite and K-invariant, which implies that V is unitary. If
V is irreducible then by Schur’s lemma this unitary structure is unique
up to scaling.

This implies that finite-dimensional representations of K are com-
pletely reducible: if W ⊂ V is a subrepresentation then V = W ⊕W⊥,
where W⊥ is the orthogonal complement of W under the Hermitian
form.

Now let V be any continuous representation of K (not necessarily
finite-dimensional).

Definition 2.1. A vector v ∈ V is K-finite if it is contained in a finite-
dimensional subrepresentation of V . The space of K-finite vectors of
V is denoted by V fin.

Let IrrK be the set of isomorphism classes of irreducible finite-
dimensional representations of K. We have a natural K-invariant linear
map

ξ : ⊕ρ∈IrrKHom(ρ, V )⊗ ρ→ V fin

(where K acts trivially on Hom(ρ, V )) defined by

ξ(h⊗ u) = h(u).

Lemma 2.2. ξ is an isomorphism.

Proof. To show ξ is injective, assume the contrary, and let ρ̃ be an
irreducible subrepresentation of Kerξ. Then ρ̃ = h ⊗ ρ for a suitable
h ∈ Hom(ρ, V ), so for any u ∈ ρ we have h(u) = ξ(h ⊗ u) = 0. Thus
h = 0, a contradiction.

It remains to show that ξ is surjective. For v ∈ V fin, let W ⊂ V fin be
a finite-dimensional subrepresentation of V containing v. By complete
reducibility, W is a direct sum of irreducible representations. Thus
it suffices to assume that W is irreducible. Let h : W ↪→ V be the
corresponding inclusion. Then v = h(v) = ξ(h⊗ v). �

Example 2.3. LetK = S1 = R/2πZ. The irreducible finite-dimensional
representations of K are the characters ρn(x) = einx for integer n. Let
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V = L2(S1). Then Hom(ρn, V ) is the space of functions on S1 such
that f(x + a) = einaf(x), which is a 1-dimensional space spanned by
the function einx. It follows that V fin is the space of trigonometric
polynomials

∑
n ane

inx, where only finitely many coefficients an ∈ C
are nonzero.

2.2. Matrix coefficients. Let us now consider the special case V =
L2(K), and view it as a representation of K ×K via

(π(a, b)f)(x) = f(a−1xb).

For every irreducible representation ρ ∈ IrrK we have a homomorphism
of representations of K ×K:

ξρ : EndCρ = ρ∗ ⊗ ρ→ L2(K)

defined by

ξρ(h⊗ v)(g) := h(gv).

This map is nonzero, hence injective (as ρ∗⊗ρ is an irreducible K×K-
module), and is called the matrix coefficient map, as the right hand
side is a matrix coefficient of the representation ρ. The theorem on
orthogonality of matrix coefficients tells us that the images of ξρ
for different ρ are orthogonal, and for A,B ∈ EndCρ we have

(ξρ(A), ξρ(B)) =
Tr(AB†)

dim ρ
,

where B† is the Hermitian adjoint of B with respect to the unitary
structure on ρ. Thus, choosing orthonormal bases {vρi} in each ρ, we
find that the functions

ψρij := (dim ρ)
1
2 ξρ(Eij),

where Eij := v∗ρj ⊗ vρi are elementary matrices, form an orthonormal

system in L2(K).
Let us view L2(K) as a representation of K via left translations. Let

ρ ∈ IrrK. Then every h ∈ ρ defines a homomorphism of representations
fh : ρ∗ → L2(K) which, when viewed as an element of L2(K, ρ), is
given by the formula fh(y) := yh. Conversely, suppose f : ρ → V
is a homomorphism. Then f can be represented by an L2-function

f̃ : K → ρ such that for any b ∈ K, the function x 7→ f̃(bx) − bf̃(x)
vanishes outside a set Sb ⊂ K of measure 0. Let S ⊂ K×K be the set
of pairs (b, x) such that x ∈ Sb. Then S has measure 0, hence the set
Tx of b ∈ K such that (b, x) ∈ S (i.e., x ∈ Sb) has measure zero almost
everywhere with respect to x. So pick x ∈ K such that Tx has measure

zero. For y = bx /∈ Txx, we have x /∈ Sb, so f̃(y) = yx−1f̃(x). Thus
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f = fh where h = x−1f̃(x). It follows that the assignment h 7→ fh is
an isomorphism ρ ∼= Hom(ρ∗, L2(K)). This shows that the map⊕

ρ∈IrrK

ξρ :
⊕
ρ∈IrrK

ρ∗ ⊗ ρ→ L2(K)fin

is an isomorphism, where L2(K)fin is the space of K-finite vectors in
L2(K) under left translations. Thus any K-finite function under left
(or right) translations is actually K ×K-finite, and we have a natural
orthogonal decomposition

L2(K)fin ∼=
⊕
ρ∈IrrK

ρ∗ ⊗ ρ.

Moreover, since L2(K) is separable, it follows that IrrK is a countable
set.

2.3. The Peter-Weyl theorem. The following non-trivial theorem
is proved in the basic Lie groups course.

Theorem 2.4. (Peter-Weyl) L2(K)fin is a dense subspace of L2(K).
Hence {ψρij} form an orthonormal basis of L2(K), and we have

L2(K) = ⊕̂ρ∈IrrKρ
∗ ⊗ ρ.

(completed orthogonal direct sum under the Hilbert space norm).

Example 2.5. For K = S1 = R/2πZ the Peter-Weyl theorem says
that the Fourier system {einx} is complete, i.e., a basis of L2(S1).

2.4. Partitions of unity. Let X be a metric space with distance func-
tion d, and C ⊂ X a closed subset. For x ∈ X define

d(x,C) := infy∈Cd(x, y)

if C 6= ∅. This function is continuous, since d(x,C) ≤ d(x, y)+d(y, C),

hence |d(x,C)−d(y, C)| ≤ d(x, y). Thus the function fC(x) := d(x,C)
1+d(x,C)

(defined to be 1 if C = ∅) is continuous on X, takes values in [0, 1],
and fC(x) = 0 iff x ∈ C. So if {Ui, i ∈ N} is a countable open cover
of X then the function

∑
i∈N 2−ifUci is continuous and strictly positive,

so we may define the continuous functions on X

φi :=
2−ifUci∑
i∈N 2−ifUci

, i ∈ N

These functions form a partition of unity subordinate to the cover
{Ui, i ∈ N}: each φi is non-negative, vanishes outside Ui, and

∑
i∈N φi =

1 (a uniformly convergent series on X).
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