2. K-finite vectors and matrix coefficients

2.1. K-finite vectors. Let K be a compact topological group. In this case K has a unique right-invariant Haar measure of volume 1, which is therefore also left-invariant; we will denote this measure by dg. Thus if V is a finite-dimensional (continuous) representation of K and B a positive definite Hermitian form on V then the form

$$\overline{B}(v,w) := \int_K B(gv,gw) dg$$

is positive definite and K-invariant, which implies that V is unitary. If V is irreducible then by Schur's lemma this unitary structure is unique up to scaling.

This implies that finite-dimensional representations of K are completely reducible: if $W \subset V$ is a subrepresentation then $V = W \oplus W^{\perp}$, where W^{\perp} is the orthogonal complement of W under the Hermitian form.

Now let V be any continuous representation of K (not necessarily finite-dimensional).

Definition 2.1. A vector $v \in V$ is *K*-finite if it is contained in a finitedimensional subrepresentation of *V*. The space of *K*-finite vectors of *V* is denoted by V^{fin} .

Let IrrK be the set of isomorphism classes of irreducible finitedimensional representations of K. We have a natural K-invariant linear map

 $\xi: \oplus_{\rho \in \operatorname{Irr} K} \operatorname{Hom}(\rho, V) \otimes \rho \to V^{\operatorname{fin}}$

(where K acts trivially on $\operatorname{Hom}(\rho, V)$) defined by

 $\xi(h\otimes u)=h(u).$

Lemma 2.2. ξ is an isomorphism.

Proof. To show ξ is injective, assume the contrary, and let $\tilde{\rho}$ be an irreducible subrepresentation of Ker ξ . Then $\tilde{\rho} = h \otimes \rho$ for a suitable $h \in \text{Hom}(\rho, V)$, so for any $u \in \rho$ we have $h(u) = \xi(h \otimes u) = 0$. Thus h = 0, a contradiction.

It remains to show that ξ is surjective. For $v \in V^{\text{fin}}$, let $W \subset V^{\text{fin}}$ be a finite-dimensional subrepresentation of V containing v. By complete reducibility, W is a direct sum of irreducible representations. Thus it suffices to assume that W is irreducible. Let $h: W \hookrightarrow V$ be the corresponding inclusion. Then $v = h(v) = \xi(h \otimes v)$. \Box

Example 2.3. Let $K = S^1 = \mathbb{R}/2\pi\mathbb{Z}$. The irreducible finite-dimensional representations of K are the characters $\rho_n(x) = e^{inx}$ for integer n. Let

 $V = L^2(S^1)$. Then $\operatorname{Hom}(\rho_n, V)$ is the space of functions on S^1 such that $f(x+a) = e^{ina}f(x)$, which is a 1-dimensional space spanned by the function e^{inx} . It follows that V^{fin} is the space of trigonometric polynomials $\sum_n a_n e^{inx}$, where only finitely many coefficients $a_n \in \mathbb{C}$ are nonzero.

2.2. Matrix coefficients. Let us now consider the special case $V = L^2(K)$, and view it as a representation of $K \times K$ via

$$(\pi(a,b)f)(x) = f(a^{-1}xb).$$

For every irreducible representation $\rho \in \operatorname{Irr} K$ we have a homomorphism of representations of $K \times K$:

$$\xi_{\rho} : \operatorname{End}_{\mathbb{C}}\rho = \rho^* \otimes \rho \to L^2(K)$$

defined by

$$\xi_{\rho}(h \otimes v)(g) := h(gv).$$

This map is nonzero, hence injective (as $\rho^* \otimes \rho$ is an irreducible $K \times K$ module), and is called **the matrix coefficient map**, as the right hand side is a matrix coefficient of the representation ρ . The **theorem on orthogonality of matrix coefficients** tells us that the images of ξ_{ρ} for different ρ are orthogonal, and for $A, B \in \text{End}_{\mathbb{C}}\rho$ we have

$$(\xi_{\rho}(A),\xi_{\rho}(B)) = \frac{\operatorname{Tr}(AB^{\dagger})}{\dim\rho},$$

where B^{\dagger} is the Hermitian adjoint of B with respect to the unitary structure on ρ . Thus, choosing orthonormal bases $\{v_{\rho i}\}$ in each ρ , we find that the functions

$$\psi_{\rho ij} := (\dim \rho)^{\frac{1}{2}} \xi_{\rho}(E_{ij}),$$

where $E_{ij} := v_{\rho j}^* \otimes v_{\rho i}$ are elementary matrices, form an orthonormal system in $L^2(K)$.

Let us view $L^2(K)$ as a representation of K via left translations. Let $\rho \in \operatorname{Irr} K$. Then every $h \in \rho$ defines a homomorphism of representations $f_h : \rho^* \to L^2(K)$ which, when viewed as an element of $L^2(K,\rho)$, is given by the formula $f_h(y) := yh$. Conversely, suppose $f : \rho \to V$ is a homomorphism. Then f can be represented by an L^2 -function $\tilde{f} : K \to \rho$ such that for any $b \in K$, the function $x \mapsto \tilde{f}(bx) - b\tilde{f}(x)$ vanishes outside a set $S_b \subset K$ of measure 0. Let $S \subset K \times K$ be the set of pairs (b, x) such that $x \in S_b$. Then S has measure 0, hence the set T_x of $b \in K$ such that $(b, x) \in S$ (i.e., $x \in S_b$) has measure zero almost everywhere with respect to x. So pick $x \in K$ such that T_x has measure zero. For $y = bx \notin T_x x$, we have $x \notin S_b$, so $\tilde{f}(y) = yx^{-1}\tilde{f}(x)$. Thus

 $f = f_h$ where $h = x^{-1} \tilde{f}(x)$. It follows that the assignment $h \mapsto f_h$ is an isomorphism $\rho \cong \operatorname{Hom}(\rho^*, L^2(K))$. This shows that the map

$$\bigoplus_{\rho \in \operatorname{Irr} K} \xi_{\rho} : \bigoplus_{\rho \in \operatorname{Irr} K} \rho^* \otimes \rho \to L^2(K)^{\operatorname{fin}}$$

is an isomorphism, where $L^2(K)^{\text{fin}}$ is the space of K-finite vectors in $L^2(K)$ under left translations. Thus any K-finite function under left (or right) translations is actually $K \times K$ -finite, and we have a natural orthogonal decomposition

$$L^2(K)^{\text{fin}} \cong \bigoplus_{\rho \in \text{Irr}K} \rho^* \otimes \rho.$$

Moreover, since $L^2(K)$ is separable, it follows that IrrK is a countable set.

2.3. The Peter-Weyl theorem. The following non-trivial theorem is proved in the basic Lie groups course.

Theorem 2.4. (Peter-Weyl) $L^2(K)^{\text{fin}}$ is a dense subspace of $L^2(K)$. Hence $\{\psi_{\rho ij}\}$ form an orthonormal basis of $L^2(K)$, and we have

$$L^2(K) = \widehat{\oplus}_{\rho \in \operatorname{Irr} K} \rho^* \otimes \rho.$$

(completed orthogonal direct sum under the Hilbert space norm).

Example 2.5. For $K = S^1 = \mathbb{R}/2\pi\mathbb{Z}$ the Peter-Weyl theorem says that the Fourier system $\{e^{inx}\}$ is complete, i.e., a basis of $L^2(S^1)$.

2.4. **Partitions of unity.** Let X be a metric space with distance function d, and $C \subset X$ a closed subset. For $x \in X$ define

$$d(x,C) := \inf_{y \in C} d(x,y)$$

if $C \neq \emptyset$. This function is continuous, since $d(x, C) \leq d(x, y) + d(y, C)$, hence $|d(x, C) - d(y, C)| \leq d(x, y)$. Thus the function $f_C(x) := \frac{d(x, C)}{1 + d(x, C)}$ (defined to be 1 if $C = \emptyset$) is continuous on X, takes values in [0, 1], and $f_C(x) = 0$ iff $x \in C$. So if $\{U_i, i \in \mathbb{N}\}$ is a countable open cover of X then the function $\sum_{i \in \mathbb{N}} 2^{-i} f_{U_i^c}$ is continuous and strictly positive, so we may define the continuous functions on X

$$\phi_i := \frac{2^{-i} f_{U_i^c}}{\sum_{i \in \mathbb{N}} 2^{-i} f_{U_i^c}}, i \in \mathbb{N}$$

These functions form a **partition of unity subordinate to the cover** $\{U_i, i \in \mathbb{N}\}$: each ϕ_i is non-negative, vanishes outside U_i , and $\sum_{i \in \mathbb{N}} \phi_i = 1$ (a uniformly convergent series on X).

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.