
3. Algebras of measures on locally compact groups

3.1. The space of measures. Let X be a locally compact second
countable Hausdorff topological space. It is well known that such a
space is metrizable, so let us fix a metric d defining the topology on X.

As we have seen in Example 1.1, the space C(X) of continuous func-
tions on X is a separable Fréchet space. So let us consider the topo-
logical dual space, C(X)∗, of continuous linear functionals on C(X).
This space is denoted by Measc(X); its elements are called (complex-
valued) compactly supported (Radon) measures on X. We will
often use the standard notation from measure theory: for f ∈ C(X)
and µ ∈ Measc(X),

µ(f) =

∫
X

f(x)dµ(x).

We equip Measc(X) with the weak topology,9 in which µn → µ iff
µn(f)→ µ(f) for any f ∈ C(X) (this topology is commonly called the
weak* topology, but we will drop the *). Namely, the weak topology is
defined by the family of seminorms µ 7→ |µ(f)|, f ∈ C(X), so Measc(X)
is Hausdorff and locally convex. We will also see that Measc(X) is
separable and sequentially complete, but, as shown by the example
below, in general it is not first countable (so in particular not second
countable or metrizable), nor complete, so it is not a Fréchet space.

Example 3.1. Let X = N with discrete topology. Then C(X) is the
space of complex sequences a = {an, n ∈ N} with topology defined by
the seminorms νn(a) := |an|, n ∈ N (i.e., topology of termwise conver-
gence). So C(X)∗ = Measc(X) is the space of eventually vanishing com-
plex sequences f = {fn, n ∈ N} (acting on C(X) by f(a) =

∑
n∈N fnan)

with topology having base of neighborhoods of zero consisting of finite
intersections of the sets Ua,ε = {f ∈ C(X)∗ : |f(a)| < ε}, a ∈ C(X),
ε > 0. This space has a basis {em,m ≥ 0} given by (em)n := δmn, i.e.,
it is countably dimensional.

We have fn → 0 in C(X)∗ iff all fn are supported on some finite
set S ⊂ N and for all j ∈ S, fnj → 0. This implies that C(X)∗

is not first countable (hence all the more not second countable and
not metrizable). Indeed if Wm,m ≥ 1 were a basis of neighborhoods
of zero then by replacing Wm by W1 ∩ ... ∩ Wm we can ensure that
W1 ⊃ W2 ⊃ .... Assuming this is the case, pick Nm ≥ 1 such that the
sequence am := em

Nm
belongs to Wm (it exists since for each m, em

N
→ 0 in

9If X is compact then C(X) is a Banach space and thus so is Measc(X), in the
corresponding norm topology. However, this norm topology is stronger than the
weak topology and is not relevant here.
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C(X)∗ as N →∞). Then the sequence {am,m ≥ 1} does not converge
to 0, and yet for each m, aj ∈ Wm for all j ≥ m, contradiction.

Also C(X)∗ is not complete, as it is a dense subspace of the space
C(X)∗alg of all (not necessarily continuous) linear functionals on C(X)
(uncountably dimensional, hence bigger than C(X)∗), from which it
inherits the weak topology. On the other hand, it is sequentially com-
plete. Indeed, if {fn} is a Cauchy sequence in C(X)∗ then fn − fn+1

goes to 0 as n→∞, so for some N and n ≥ N , fn − fn+1 is supported
on some finite set S ⊂ N. Hence for all n, fn is supported on the union
of S and the supports of fi, 1 ≤ i ≤ N , which is a finite set. Hence it
converges (as it is Cauchy). Also, the countable set C(X)∗rat of even-
tually vanishing sequences of Gaussian rationals is dense in C(X)∗, so
C(X)∗ is separable.

Thus we see that C(X)∗ =
⋃
i≥1C(Ki)

∗ as a vector space, or, with-
out making any choices, C(X)∗ = limK⊂X−−−−−→C(K)∗, where K runs over

compact subsets of X.
Pick a representation of X as a nested union of compact subsets

Ki, i ≥ 1. We claim that for any µ ∈ C(X)∗ there exists i such that
if f ∈ C(X) satisfies f |Ki = 0 then µ(f) = 0. Indeed, if not then
for each i there is fi ∈ C(X) with fi|Ki = 0 but µ(fi) = 1. Then
the series

∑
i fi converges in C(X) (as it terminates on each Ki, and

every compact subset of X is contained in some Ki) while the series
µ(
∑

i fi) =
∑

i µ(fi) =
∑

i 1 diverges, a contradiction. Thus we see
that C(X)∗ =

⋃
i≥1 C(Ki)

∗ as a vector space, or, without making any
choices, C(X)∗ = limK⊂X−−−−−→C(K)∗, where K runs over compact subsets

of X.

Lemma 3.2. (i) If a sequence {µn, n ≥ 1} ∈ C(X)∗ is Cauchy then
there is a compact subset K ⊂ X such that µn ∈ C(K)∗ ⊂ C(X)∗ for
all n.

(ii) C(X)∗ is sequentially complete.

Proof. (i) Otherwise for each j ≥ 1 there exists the largest positive
integer Nj ≥ 0 such that if f ∈ C(X) and f |Kj = 0 then µ1(f) = ... =
µNj−1(f) = 0. The numbers Nj form a nondecreasing sequence, and
since C(X)∗ =

⋃
i≥1C(Ki)

∗, we have Nj →∞. So let p(j) ≥ j be the
largest i for which Ni = Nj. By assumption, for every j ≥ 1 there is
fj ∈ C(X) with fi|Kj = 0 and µNj(fj) 6= 0. Then we can arrange that
µNj(f1 + ... + fj) = j, and µNj(fi) = 0 if i > p(j). Now, the series
f :=

∑
i≥1 fi converges in C(X), and we have

µNj(f) = µNj(f1 + ...+ fp(j)) = µNp(j)(f1 + ...+ fp(j)) = p(j).
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On the other hand, since µn is Cauchy, we get

p(j + 1)− p(j) = µNj+1
(f)− µNj(f)→ 0, j →∞,

a contradiction since p(j) ≥ j.
(ii) Let {µn, n ≥ 1} be a Cauchy sequence in C(X)∗. By (i), µn ∈

C(K)∗ for some compact K ⊂ X, so we may assume that X is compact.
Since µn is Cauchy, so is µn(f) for any f ∈ C(X). Thus µn weakly
converges to some linear functional µ : C(X) → C given by µ(f) :=
limn→∞ µn(f), and our job is to show, that µ is continuous. Since
µn(f) is convergent, it is bounded, so by the uniform boundedness
principle, the sequence ‖µn‖ is bounded above by some constant C,
i.e., |µn(f)| ≤ C ‖f‖. But then |µ(f)| ≤ C ‖f‖, so ‖µ‖ ≤ C, as
desired. �

3.2. Support of a measure. Define the support of µ ∈ C(X)∗, de-
noted suppµ, to be the set of all x ∈ X such that for any neighborhood
U of x in X there exists f ∈ C(X) vanishing outside U with µ(f) 6= 0.
Thus the complement (suppµ)c is the set of x ∈ X which admit a
neighborhood U such that for every f ∈ C(X) vanishing outside U we
have µ(f) = 0. In this case, U ⊂ (suppµ)c, so (suppµ)c is open, hence
suppµ is closed. Moreover, since C(X)∗ = limK⊂X−−−−−→C(K)∗, suppµ is

contained in some compact subset K ⊂ X, so it is itself compact.

Proposition 3.3. If f ∈ C(X) and f |suppµ = 0 then µ(f) = 0.

Proof. For every z ∈ (suppµ)c there is a neighborhood Uz ⊂ (suppµ)c

such that for any φ ∈ C(X) vanishing outside Uz, µ(φ) = 0. These
neighborhoods form an open cover of (suppµ)c. Since (suppµ)c is sec-
ond countable, this cover has a countable subcover {Ui, i ∈ N}. Let
{φi, i ∈ N} be a continuous partition of unity subordinate to this cover.
Then µ(φif) = 0 for all i, so µ(f) = µ(

∑
i φif) =

∑
i µ(φif) = 0, as

claimed. �

3.3. Finitely supported measures. A basic example of an element
of Measc(X) is a Dirac measure δa, a ∈ X, such that δa(f) = f(a).
Thus if an → a in X as n → ∞ then δan → δa in the weak topology.
A finite linear combination of Dirac measures is called a finitely sup-
ported measure, since such measures are exactly the measures with
finite support. The subspace of finitely supported measures is denoted
Meas0

c(X).

Lemma 3.4. Meas0
c(X) is a sequentially dense (in particular, dense)

subspace in Measc(X), i.e., every element µ ∈ Measc(X) is the limit of
a sequence µn ∈ Meas0

c(X) in the weak topology.
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Proof. By replacing X with suppµ, we may assume that X is compact.
For every n ≥ 1, let Xn be a finite subset of X such that the open balls
B(x, 1

n
) around x ∈ Xn cover X. Let {φnx, x ∈ Xn} be a continuous

partition of unity subordinate to this cover, and let

µn :=
∑
x∈Xn

µ(φnx)δx ∈ Meas0
c(X).

We claim that µn → µ in the weak topology.
Indeed, let f ∈ C(X). Then

|µn(f)−µ(f)| = |µ(
∑
x∈Xn

φnx(f−f(x))| ≤ ‖µ‖ sup
y∈X

∑
x∈Xn

φnx(y)|f(y)−f(x)|.

But f is uniformly continuous, so for every ε > 0 there is N such
that if d(x, y) < 1

N
then |f(x) − f(y)| < ε. So for n ≥ N , whenever

φnx(y) 6= 0, we have |f(y)− f(x)| < ε. Thus we get

|µn(f)− µ(f)| ≤ ε ‖µ‖ sup
y∈X

∑
x∈Xn

φnx(y) = ε ‖µ‖ ,

which implies the desired statement. �

Note that since X is separable, so is Meas0
c(X) (given a countable

dense subset T ⊂ X, finitely supported measures with support in T
and Gaussian rational coefficients form a countable, sequentially dense
subset ET ⊂ Meas0

c(X)). Thus we get that Measc(X) is separable;
moreover, since ET is sequentially dense in Measc(X), the latter is
sequentially separable.

Corollary 3.5. If X, Y are locally compact second countable Hausdorff
spaces then the natural bilinear map

� : Meas0
c(X)×Meas0

c(Y )→ Measc(X × Y )

uniquely extends to a bilinear map

� : Measc(X)×Measc(Y )→ Measc(X × Y )

which is continuous in each variable.

Proof. It is clear that � is continuous in each variable, so the result
follows from the facts that Meas0

c(X) is sequentially dense in Measc(X)
and that Measc(X) is sequentially complete. �

Remark 3.6. Here is another proof of Corollary 3.5. We may assume
that X, Y are compact. Given µ ∈ C(X)∗, ν ∈ C(Y )∗, define a linear
functional µ � ν on C(X) ⊗ C(Y ) ⊂ C(X × Y ) by (µ � ν)(f ⊗ g) :=
µ(f)ν(g). We claim that ‖µ� ν‖ ≤ ‖µ‖ ‖ν‖ (in fact, the opposite
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inequality is obvious, so we have an equality). Thus our job is to show
that for fi ∈ C(X), gi ∈ C(Y ), 1 ≤ i ≤ n, we have

|
∑
i

µ(fi)ν(gi)| ≤ ‖µ‖ ‖ν‖ max
x∈X,y∈Y

|
∑
i

fi(x)gi(y)|.

i.e., that

|ν(
∑
i

µ(fi)gi)| ≤ ‖µ‖ ‖ν‖ max
x∈X,y∈Y

|
∑
i

fi(x)gi(y)|

To this end, it suffices to show that

max
y∈Y
|
∑
i

µ(fi)gi(y)| ≤ ‖µ‖ max
x∈X,y∈Y

|
∑
i

fi(x)gi(y)|,

which would follow from the inequality

|
∑
i

µ(fi)gi(y)| ≤ ‖µ‖max
x∈X
|
∑
i

fi(x)gi(y)|.

for all y ∈ Y . But this is just the inequality |µ(Fy)| ≤ ‖µ‖maxx∈X |Fy(x)|
applied to Fy(x) :=

∑
i gi(y)fi(x).

Now note that by the Stone-Weierstrass theorem, C(X) ⊗ C(Y ) is
dense in C(X × Y ), so µ� ν extends continuously to C(X × Y ).

3.4. The algebra of measures on a locally compact group. Now
let G be a locally compact group. In this case Meas0

c(G) = CG is
the group algebra of G as an abstract group. Namely, the algebra
structure is given by δxδy = δxy. This multiplication is continuous
in the weak topology, hence uniquely extends to Measc(G), since the
latter is sequentially complete and Meas0

c(G) is sequentially dense in
Measc(G). Thus Measc(G) is a topological unital associative algebra
with unit δ1. The multiplication in this algebra may be written as

(µ1 ∗ µ2)(f) = (µ1 � µ2,∆(f)) =

∫
G×G

f(xy)dµ1(x)dµ2(y),

where ∆ : C(G) → C(G × G) is given by ∆(f)(x, y) := f(xy). This
multiplication is called the convolution product.

Moreover, if dg is a right-invariant Haar measure on G then any com-
pactly supported continuous function (or, more generally, L1-function)
φ on G gives rise to a measure µ = φdg ∈ Measc(G). For such measures
µ1 = φ1dg, µ2 = φ2dg we have

(µ1∗µ2)(f) =

∫
G×G

f(xy)φ1(x)φ2(y)dxdy =

∫
G×G

f(z)φ1(zy−1)φ2(y)dzdy.
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Thus µ1 ∗ µ2 = φdg where

φ(z) =

∫
G

φ1(zy−1)φ2(y)dy.

This is called the convolution of functions.
Now let V be a continuous representation of G with the associated

homomorphism π : G → Aut(V ). This map π extends by linearity to
a homomorphism π : CG = Meas0

c(G)→ End(V ).
Let us equip CG with weak topology and introduce the corresponding

product topology on CG× V .

Lemma 3.7. The map CG×V → V given by g 7→ π(g)v is continuous.
Thus π is continuous in the weak topology of CG and strong topology
of End(V ).

Proof. We need to show that for any seminorm λ (from the family
defining the topology of V ) there exists a neighborhood U of 0 in the
space CG × V such that for (µ, v) ∈ U we have λ(π(µ)v) < 1. Let
µ =

∑n
i=1 ciδxi , then this inequality takes the form

(1)
n∑
i=1

λ(ciπ(xi)v) < 1.

Since λ is a seminorm, (1) would follow from the inequality

(2)
n∑
i=1

|ci|λ(π(xi)v) < 1.

We define |µ| =
∑n

i=1 |ci|δxi and fv(x) := λ(π(x)v), fv ∈ C(X). Then
(2) takes the form

(3) |µ|(fv) < 1.

Clearly, the map (µ, v) 7→ |µ|(fv) is continuous, so we may take U to
be defined by (3). �

Corollary 3.8. If (V, π) is a continuous representation of G then π
the action G × V → V uniquely extends to a continuous bilinear map
Measc(G) × V → V , which gives rise to a continuous unital algebra
homomorphism

π : Measc(G)→ End(V ).

Proof. We need to show that for every v ∈ V the map µ 7→ π(µ)v
uniquely extends by continuity from Meas0

c(G) to Measc(G). This fol-
lows from Lemmas 3.4 and 3.7 since V is complete. �
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