
5. Admissible representations and (g, K)-modules

5.1. Admissible representations. Now let G be a Lie group and
K ⊂ G a compact subgroup. For a continuous representation V of G,
denote by V K-fin the space (V |K)fin. In general V K-fin is not contained
in V ∞; for example, if K = 1 then V K-fin = V . However, this inclusion
holds if K is sufficiently large and V is sufficiently small.

Definition 5.1. V is said to be K-admissible (or of finite K-type)
if for every finite-dimensional irreducible representation ρ of K, the
space HomK(ρ, V ) is finite-dimensional.

Example 5.2. Let G be a connected Lie group and V = L2(G/B)
where B is a closed subgroup of G (half-densities on G/B). Then V
is K-admissible iff K acts transitively on G/B, i.e., KB = G. In this
case setting T = K ∩ B, we have G/B = K/T , so V = L2(K/T ) and
HomK(ρ, V ) ∼= (ρT )∗.11

Example 5.3. For G = SL2(C) and K = SU(2), the unitary repre-
sentation of G on the space V = L2(CP1) of square-integrable half-
densities on CP1 is K-admissible. Indeed, taking ρn to be the repre-
sentation of SU(2) with highest weight n, we have dim Hom(ρn, V ) = 0
for odd n and 1 for even n.

More generally, for a real number s we may consider the representa-
tion Vs of square integrable 1

2
+is-densities on CP1; this space is canon-

ically defined since for a 1
2

+ is-density f , the complex conjugate f is a
1
2
− is-density, so |f |2 = ff is a density and can be integrated canon-

ically over CP1. This representation has the same K-multiplicities as
V = V0.

Similarly, for G = SL2(R), K = SO(2), we have a unitary K-
admissible representation V = L2(RP1) (half-densities) and more gen-
erally Vs (1

2
+ is-densities). For the K-multiplicities we have equalities

dim Hom(χn, Vs) = 1 for odd n and 0 for even n, where χn(θ) = einθ.
We will see that the representations Vs in both cases are irreducible

and Vs, Vt are isomorphic iff s = ±t. The family of representations Vs
is called the unitary spherical principal series.

11Note that here we don’t have to distinguish between half-densities and func-
tions on K/T since K/T always has a K-invariant volume form as K is compact.
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Note that this family makes sense also when s is a complex number
which is not necessarily real. In this case Vs is not necessarily uni-
tary but still a continuous representation on square integrable 1

2
+ is-

densities. The space of such densities is canonically defined as a topo-
logical vector space, although its Hilbert norm is not canonically de-
fined unless s is real (however, we will see that for some non-real s,
corresponding to so-called complementary series, this representa-
tion is still unitary, even though the inner product is not given by the
standard formula). The family Vs with arbitrary complex s is called
the spherical principal series.

Explicitly, the action of G on Vs looks as follows (realizing elements
of Vs as functions on R or C, removing the point at infinity):((

a b
c d

)−1

f

)
(z) = f

(
az + b

cz + d

)
|cz + d|−m(1+2is),

where m = 1 in the real case and m = 2 in the complex case.

Proposition 5.4. If V is K-admissible then V K-fin ⊂ V ∞, and it is a
g-submodule (although not in general a G-submodule).

Proof. For a finite-dimensional irreducible representation ρ of K, let
V ρ := Hom(ρ, V )⊗ ρ be the isotypic component of ρ.

We claim that for any continuous representation V the space V ∞∩V ρ

is dense in V ρ. Indeed, let ψρ ∈ L2(K)fin be the character of ρ given
by

ψρ =
∑
i

ψρii.

Let ξρ be the pushforward of ψρdx from K to G (a measure on G sup-
ported on K). Then π(ξρ) is the projector to V ρ annihilating ⊕η 6=ρV η.
Let φn → δ1 be a smooth Dirac sequence on G. Then for v ∈ V ρ,

π(ξρ ∗ φn)v = π(ξρ)π(φn)v → π(ξρ)v = v

as n→∞. However, ξρ ∗ φn is smooth, so π(ξρ ∗ φn)v ∈ V ∞ ∩ V ρ.
Thus if V ρ is finite-dimensional (which happens for K-admissible V )

then V ∞ ∩ V ρ = V ρ, so V ρ ⊂ V ∞. Hence V K-fin ⊂ V ∞.
Finally, it is clear that for b ∈ g and v ∈ V ρ, the vector bv generates

a K-submodule of a multiple of g ⊗ ρ, so bv ∈ V K-fin. It follows that
V K-fin is a g-submodule. �

Example 5.5. If G = SL2(R), K = SO(2), V = Vs = L2(S1) is
a spherical principal series representation, then V K-fin is the space of
trigonometric polynomials. Note that this space is not invariant under
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the action of G. However, the Lie algebra g = sl2(R) does act on this
space.

Exercise 5.6. Compute this Lie algebra action in the basis vn = einθ

and write it as first order differential operators in the angle θ. (Pick
generators e, h, f in gC so that h acts diagonally in the basis vi).

5.2. (g, K)-modules. This motivates the following definition. Let K
be a compact connected Lie group and k = LieK. Let g be a finite-
dimensional real Lie algebra containing k, and suppose the adjoint ac-
tion of k on g integrates to an action of K. In this case we say that
(g, K) is a Harish-Chandra pair.

Definition 5.7. Let (g, K) be a Harish-Chandra pair.
(i) A (g, K)-module is a vector space M with actions of K and g

such that
• M is a direct sum of finite-dimensional continuous K-modules;
• the two actions of k on M (coming from the actions of g and K)

coincide.
(ii) Such a module is said to be admissible if for every ρ ∈ IrrK we

have dim HomK(ρ,M) <∞.
(iii) An admissible (g, K)-module which is finitely generated over

U(g) is called a Harish-Chandra module.

Exercise 5.8. Show that if M is a (g, K)-module then for every g ∈
K, a ∈ g, v ∈M we have

gav = Ad(g)(a)gv,

where Ad denotes the K-action on g.

In fact, a (g, K)-module is a purely algebraic object, since finite-
dimensional K-modules can be described as algebraic representations
of the complex reductive group KC. Moreover, we can represent them
even more algebraically in terms of the action of k. Namely, let us say
that a finite-dimensional representation of k is integrable to K if it
corresponds to a representation of K (note that this is automatic if K is
simply connected). Then (g, K)-modules are simply g-modules which
are locally integrable to K when restricted to k (i.e., sum of integrable
modules). So if K is simply connected (in which case k is semisimple)
then a (g, K)-module is the same thing as a g-module which is locally
finite when restricted to k (i.e., sum of finite-dimensional modules).

Thus (g, K)-modules form an abelian category closed under exten-
sions (and this category can be defined over any algebraically closed
field of characteristic zero). The same applies to admissible (g, K)-
modules and to Harish-Chandra modules (the latter is closed under
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taking kernels of morphisms because the algebra U(g) is Noetherian,
as so is its associated graded Sg by the Hilbert basis theorem).

Example 5.9. Let G be a connected complex semisimple Lie group.
Then its maximal compact subgroup is the compact form K = Gc.
Thus a (g, K)-module is a g-module M which is locally finite for gc ⊂ g,
where gc = LieGc. Note that the action of g here is only real linear.
Thus we may pass to complexifications: (gc)C = g, gC = g ⊕ g, and
g sits inside g ⊕ g as the diagonal. Thus a (g, K)-module is simply a
g⊕ g-module which is locally finite for the diagonal copy of g. This is
the same as a g-bimodule12 with locally finite adjoint action

ad(b)m := [b,m] = bm−mb.
For example, if I is any two-sided ideal in U(g) then U(g)/I is a (g, K)-
module.

Thus we obtain the following proposition.

Proposition 5.10. If V is a K-admissible continuous representation
of G then V K-fin is an admissible (g, K)-module.

Exercise 5.11. Show that for any continuous representation V of G,
the intersection V ∞∩V K-fin is a (g, K)-module (not necessarily admis-
sible).

Exercise 5.12. Show that if V is an admissible representation of G
and L a finite-dimensional (continuous) representation of G then V ⊗L
is also admissible. Prove the same statement for (g, K)-modules.

5.3. Harish-Chandra’s admissibility theorem. We will now re-
strict our attention to semisimple Lie groups G. By this we will
mean a connected linear real Lie group G with semisimple Lie algebra
g. “Linear” means that it has a faithful finite-dimensional representa-
tion, i.e., is isomorphic to a closed subgroup of GLn(C). In other words,
G is the connected component of the identity in G(R), where G is a
semisimple algebraic group defined over R. Typical examples of such
groups include SLn(R) and SLn(C) (in the latter case G = SLn×SLn
and the real structure defined by the involution permuting the two
factors).

A fundamental result about the structure of semisimple Lie groups
is

Theorem 5.13. (E. Cartan) Every semisimple Lie group G has a max-
imal compact subgroup K ⊂ G which is unique up to conjugation.

12Indeed, every g⊕ g-module M with action (a, b, v) 7→ (a, b) ◦ v, a, b ∈ g, v ∈M
is a g-bimodule with av = (a, 0) ◦ v and vb = (0,−b) ◦ v, and vice versa.
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Example 5.14. For G = SLn(R) we have K = SO(n) and for G =
SLn(C) we have G = SU(n).

We will say that a continuous representation V of G is admissible if
it is K-admissible with respect to a maximal compact subgroup K ⊂ G
(does not matter which since they are all conjugate).

Theorem 5.15. (Harish-Chandra’s admissibility theorem, [HC2]) Ev-
ery irreducible unitary representation of a semisimple Lie group is ad-
missible.

We will not give a proof (see [HC2],[Ga]).

Remark 5.16. 1. This theorem extends straightforwardly to the more
general case of real reductive Lie groups.

2. Let G = S̃L2(R) be the universal covering of SL2(R). Then G is
not linear (why?) and so it is not viewed as a semisimple Lie group
according to our definition. In fact, Harish-Chandra’s theorem does
not hold as stated for this group, since it has no nontrivial compact
subgroups. This happens because when we take the universal cover,
the maximal compact subgroup SO(2) = S1 gets replaced by the non-
compact group R. However, if we take for K the universal cover of
SO(2) (even though it is not compact) then Harish-Chandra’s theorem
extends straightforwardly to this case.

Exercise 5.17. Let M be an admissible (g, K)-module and

M∨ := ⊕V ∈IrrK(Hom(V,M)⊗ V )∗ ⊂M∗

be the restricted dual to M . Show that M∨ has a natural structure of
an admissible (g, K)-module, and (M∨)∨ ∼= M .
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