6. Weakly analytic vectors

6.1. Weakly analytic vectors and Harish-Chandra's analyticity. Let G be a Lie group and V a continuous representation of G.

Definition 6.1. A vector $v \in V$ is called **weakly analytic** if for each $h \in V^*$ the matrix coefficient h(gv) is a real analytic function of g.

Example 6.2. Let $V = L^2(S^1)$ and $G = S^1$ act by rotations. So if $v(x) = \sum_{n \in \mathbb{Z}} v_n e^{inx}$ and $h(x) = \sum_{n \in \mathbb{Z}} h_n e^{-inx}$ then for $g = e^{i\theta}$ we have

$$h(g(\theta)v) = \sum_{n \in \mathbb{Z}} h_n v_n e^{in\theta}.$$

Thus v is a weakly analytic vector iff the sequence $h_n v_n$ decays exponentially for any ℓ_2 -sequence $\{h_n\}$, which is equivalent to saying that v_n decays exponentially, i.e., $v(\theta)$ is analytic.

Theorem 6.3. (Harish-Chandra's analyticity theorem) If V is an admissible representation of a semisimple Lie group G with maximal compact subgroup K then every $v \in V^{K-\text{fin}}$ is a weakly analytic vector.

Theorem 6.3 is proved in the next two subsections.

6.2. Elliptic regularity. The proof of Theorem 6.3 is based on the analytic elliptic regularity theorem, which is a fundamental result in analysis (see [Ca]). To state it, let X be a smooth manifold, and D(X) the algebra of (real) differential operators on X. This algebra has a filtration by order: $D_0(X) = C^{\infty}(X) \subset D_1(X) \subset ...$, such that

$$D_n(X) = \{ D \in \operatorname{End}_{\mathbb{C}} C^{\infty}(X) : [D, f] \in D_{n-1}(X) \forall f \in C^{\infty}(X) \}, \ n \ge 1 \}$$

and $\operatorname{gr} D(X) = \bigoplus_{n \ge 0} \Gamma(X, S^n TX)$, where Γ takes sections of the vector bundle. Thus for every differential operator D on X of order n we have its **symbol** $\sigma(D) \in \operatorname{gr}_n D(X) = \Gamma(X, S^n TX)$. For every $x \in X$, $\sigma(D)_x$ is thus a homogeneous polynomial of degree n on T_x^*X .

Definition 6.4. We say that D is **elliptic** at x if $\sigma(D)_x(p) \neq 0$ for nonzero $p \in T_x^*X$. We say that D is **elliptic** (on X) if it is elliptic at all points $x \in X$.

Example 6.5. 1. If dim X = 1 then any differential operator with nonvanishing symbol is elliptic.

2. Fix a Riemannian metric on X and let Δ be the corresponding Laplace operator, $\Delta f = \operatorname{div}(\operatorname{grad} f)$. Then Δ is elliptic.

3. If D is elliptic then for any nonzero polynomial $P \in \mathbb{R}[t]$ the operator P(D) is elliptic.

Note that ellipticity is an open condition, since it is equivalent to non-vanishing of $\sigma(D)_x$ on the unit sphere in T_x^*X (under some inner product). Thus the set of $x \in X$ on which a given operator D is elliptic is open in X.

Theorem 6.6. (Elliptic regularity) Suppose D is an elliptic operator with real analytic coefficients on an open set $U \subset \mathbb{R}^N$, and f(x) is a smooth solution of the PDE

$$Df = 0$$

on U. Then f is real analytic on U.

Corollary 6.7. Let X be a real analytic manifold and D an elliptic operator on X with analytic coefficients. Then every smooth solution of the equation Df = 0 on X is actually real analytic.

Remark 6.8. 1. This is, in fact, true much more generally, when f is a weak (i.e., distributional) solution of the equation Df = 0. Also the equation Df = 0 can be replaced by a more general inhomogeneous equation Df = g, where g is analytic.

2. If D is not elliptic, there is an obvious counterexample: the equation $\frac{\partial^2 f}{\partial x \partial y} = 0$ on \mathbb{R}^2 has smooth non-analytic solutions of the form $f(x) + g(y), f, g \in C^{\infty}(\mathbb{R})$.

Example 6.9. 1. For N = 1 this theorem just says that a solution of an ODE

$$f^{(n)}(x) + a_1(x)f^{(n-1)}(x) + \dots + a_n(x)f(x) = 0$$

with real analytic coefficients is itself real analytic, a classical fact about ODE.

2. Let N = 2 and $D = \Delta$ be the Laplace operator on $U \subset \mathbb{R}^2$ with respect to some Riemannian metric with real analytic coefficients. This metric defines a conformal structure with real analytic local complex coordinate z. Then every harmonic function f (i.e., one satisfying $\Delta f = 0$) is a real part of a holomorphic function of z, hence is real analytic, which proves elliptic regularity in this special case.

3. Suppose f, g are Schwartz functions on \mathbb{R}^n and $D = Q(\partial)$ is an elliptic operator with constant coefficients, where Q is a real polynomial (so the leading term of Q is nonvanishing for nonzero vectors). Then elliptic regularity says that if g is analytic, so is f. This can be easily proved using Fourier transform. Indeed, for Fourier transforms we get $Q(p)\widehat{f}(p) = \widehat{g}(p)$. Thus $\widehat{g}(p) = \frac{\widehat{f}(p)}{Q(p)}$, so this must be a smooth function. Note that $|Q(p)| \to \infty$ as $p \to \infty$ because Q has non-vanishing leading

term. So, since g is analytic, \hat{g} decays exponentially at infinity, hence so does \hat{f} . Thus f is analytic.

6.3. **Proof of Harish-Chandra's analyticity Theorem.** We are now ready to prove Theorem 6.3. Let $\mathfrak{g} = \operatorname{Lie} G$ and $b \in U(\mathfrak{g})$. Then we have a linear operator $\pi_*(b) : V^{\infty} \to V^{\infty}$, which we will write just as *b* for short. Moreover, if $b \in U(\mathfrak{g})^K$ then it preserves the subspace $V^{\rho} \subset V^{\infty}$ for each irreducible representation ρ of *K*. Therefore, since all V^{ρ} are finite dimensional, for any $v \in V^{K-\operatorname{fin}}$ there exists a nonzero polynomial $P \in \mathbb{R}[t]$ such that P(b)v = 0 (e.g., we can take *P* to be the product of the characteristic polynomial of *b* on Kv by its complex conjugate).

Now recall that $U(\mathfrak{g})$ can be thought of as the algebra of left-invariant real differential operators on G. Let $\psi_{h,v}(g) := h(gv)$ be the matrix coefficient function. We know that this function is smooth, and we have

$$(P(b)\psi_{h,v})(g) = h(gP(b)v) = 0.$$

Thus if b is an elliptic differential operator on G, it will follow from Corollary 6.7 that $\psi_{h,v}$ is real analytic, as desired.

It remains to find $b \in U(\mathfrak{g})^K$ which defines an elliptic operator on G. For this purpose fix a left-invariant Riemannian metric on G, and make it K-invariant (under right, or, equivalently, adjoint action) by averaging over K. Then the Laplace operator Δ corresponding to this metric is elliptic and given by some element $\Delta \in U(\mathfrak{g})^K$, so we may take $b = \Delta$. This proves Theorem 6.3.

Remark 6.10. If G is simple, there exists a unique up to scaling two-sided invariant metric on G. This metric, however, is pseudo-Riemannian rather than Riemannian if G is not compact. Thus the corresponding Laplace operator is hyperbolic rather than elliptic, so not suitable for our purposes.

6.4. Applications of weakly analytic vectors.

Corollary 6.11. The action of G on V is completely determined by the corresponding (\mathfrak{g}, K) -module $V^{K-\text{fin}}$.

Proof. Since $V^{K-\text{fin}}$ is dense in V, it suffices to specify gv for $v \in V^{K-\text{fin}}$. For this it suffices to specify h(gv) for all $h \in V^*$. By Theorem 6.3 and the analytic continuation principle, this is determined by the derivatives of all orders of h(gv) at g = 1. But these have the form h(bv) where $b \in U(\mathfrak{g})$, so are determined by bv.

Corollary 6.12. Let $W \subset V^{K-\text{fin}}$ be a sub- (\mathfrak{g}, K) -module. Then the closure $\overline{W} \subset V$ is G-invariant.

Proof. Let $w \in W$, $g \in G$. It suffices to show that $gw \in \overline{W}$. If not, then the space $W' := \overline{W} \oplus \mathbb{C}gw$ is a closed subspace of V containing \overline{W} as a subspace of codimension 1. So there exists a unique continuous linear functional $h: W' \to \mathbb{C}$ such that h(gw) = 1 and $h|_{\overline{W}} = 0$. By the Hahn-Banach theorem, h can be extended to an element of V^* . Thus to get a contradiction, it is enough to show that for every $h \in V^*$ that vanishes on \overline{W} , we have h(gw) = 0. But by Theorem 6.3, this function is analytic in g. So it suffices to check that its derivatives at g = 1 vanish. But these derivatives are of the form h(bw) for $b \in U(\mathfrak{g})$, so vanish since $bw \in W$.

Corollary 6.13. Let V be an admissible representation of G. There is a bijection between subrepresentations of V and (\mathfrak{g}, K) -submodules of $V^{K-\operatorname{fin}}$, given by $\alpha : U \subset V \mapsto U^{K-\operatorname{fin}}$. The inverse is given by $\beta : W \mapsto \overline{W}$.

Proof. Since $U^{K-\text{fin}}$ is dense in U, we have $\beta \circ \alpha = \text{Id.}$ To show that $\alpha \circ \beta = \text{Id}$, we need to show that $\overline{W}^{K-\text{fin}} = W$. Clearly $\overline{W}^{K-\text{fin}}$ contains W, so we just need to prove the opposite inclusion. Let $w \in \overline{W}^{\rho}$, then we have a sequence $w_n \to w$, $w_n \in W$. Now apply the projector ξ_{ρ} :

$$w'_n := \pi(\xi_\rho) w_n \to \pi(\xi_\rho) w = w, \ n \to \infty,$$

and $w'_n \in W^{\rho}$. Thus $w \in \overline{W^{\rho}} = W^{\rho}$, since W^{ρ} is finite dimensional. Hence $\overline{W}^{K-\text{fin}} = W$.

Corollary 6.14. If V is irreducible then $V^{K-\text{fin}}$ is an irreducible (\mathfrak{g}, K) -module, and vice versa.

Corollary 6.15. If V is of finite length then $V^{K-\text{fin}}$ is a Harish-Chandra module.

Proof. By Corollary 6.13, $V^{K-\text{fin}}$ is a finite length (\mathfrak{g}, K) -module. But any finite length (\mathfrak{g}, K) -module is finitely generated over $U(\mathfrak{g})$, hence a Harish-Chandra module.

Let Rep G denote the category of admissible representations of G of finite length, and \mathcal{HC}_G the category of Harish-Chandra modules for G. Thus we obtain

Theorem 6.16. The assignment $V \mapsto V^{K-\text{fin}}$ defines an exact, faithful functor Rep $G \to \mathcal{HC}_G$, which maps irreducibles to irreducibles.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.