
6. Weakly analytic vectors

6.1. Weakly analytic vectors and Harish-Chandra’s analytic-
ity. Let G be a Lie group and V a continuous representation of G.

Definition 6.1. A vector v ∈ V is called weakly analytic if for each
h ∈ V ∗ the matrix coefficient h(gv) is a real analytic function of g.

Example 6.2. Let V = L2(S1) and G = S1 act by rotations. So if
v(x) =

∑
n∈Z vne

inx and h(x) =
∑

n∈Z hne
−inx then for g = eiθ we have

h(g(θ)v) =
∑
n∈Z

hnvne
inθ.

Thus v is a weakly analytic vector iff the sequence hnvn decays expo-
nentially for any `2-sequence {hn}, which is equivalent to saying that
vn decays exponentially, i.e., v(θ) is analytic.

Theorem 6.3. (Harish-Chandra’s analyticity theorem) If V is an ad-
missible representation of a semisimple Lie group G with maximal com-
pact subgroup K then every v ∈ V K−fin is a weakly analytic vector.

Theorem 6.3 is proved in the next two subsections.

6.2. Elliptic regularity. The proof of Theorem 6.3 is based on the
analytic elliptic regularity theorem, which is a fundamental result
in analysis (see [Ca]). To state it, let X be a smooth manifold, and
D(X) the algebra of (real) differential operators on X. This algebra
has a filtration by order: D0(X) = C∞(X) ⊂ D1(X) ⊂ ..., such that

Dn(X) = {D ∈ EndCC
∞(X) : [D, f ] ∈ Dn−1(X)∀f ∈ C∞(X)}, n ≥ 1,

and grD(X) = ⊕n≥0Γ(X,SnTX), where Γ takes sections of the vector
bundle. Thus for every differential operator D on X of order n we have
its symbol σ(D) ∈ grnD(X) = Γ(X,SnTX). For every x ∈ X, σ(D)x
is thus a homogeneous polynomial of degree n on T ∗xX.

Definition 6.4. We say that D is elliptic at x if σ(D)x(p) 6= 0 for
nonzero p ∈ T ∗xX. We say that D is elliptic (on X) if it is elliptic at
all points x ∈ X.

Example 6.5. 1. If dimX = 1 then any differential operator with
nonvanishing symbol is elliptic.

2. Fix a Riemannian metric on X and let ∆ be the corresponding
Laplace operator, ∆f = div(gradf). Then ∆ is elliptic.

3. If D is elliptic then for any nonzero polynomial P ∈ R[t] the
operator P (D) is elliptic.
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Note that ellipticity is an open condition, since it is equivalent to
non-vanishing of σ(D)x on the unit sphere in T ∗xX (under some inner
product). Thus the set of x ∈ X on which a given operator D is elliptic
is open in X.

Theorem 6.6. (Elliptic regularity) Suppose D is an elliptic operator
with real analytic coefficients on an open set U ⊂ RN , and f(x) is a
smooth solution of the PDE

Df = 0

on U . Then f is real analytic on U .

Corollary 6.7. Let X be a real analytic manifold and D an elliptic
operator on X with analytic coefficients. Then every smooth solution
of the equation Df = 0 on X is actually real analytic.

Remark 6.8. 1. This is, in fact, true much more generally, when f is
a weak (i.e., distributional) solution of the equation Df = 0. Also the
equation Df = 0 can be replaced by a more general inhomogeneous
equation Df = g, where g is analytic.

2. If D is not elliptic, there is an obvious counterexample: the

equation ∂2f
∂x∂y

= 0 on R2 has smooth non-analytic solutions of the form

f(x) + g(y), f, g ∈ C∞(R).

Example 6.9. 1. For N = 1 this theorem just says that a solution of
an ODE

f (n)(x) + a1(x)f (n−1)(x) + ....+ an(x)f(x) = 0

with real analytic coefficients is itself real analytic, a classical fact about
ODE.

2. Let N = 2 and D = ∆ be the Laplace operator on U ⊂ R2 with
respect to some Riemannian metric with real analytic coefficients. This
metric defines a conformal structure with real analytic local complex
coordinate z. Then every harmonic function f (i.e., one satisfying
∆f = 0) is a real part of a holomorphic function of z, hence is real
analytic, which proves elliptic regularity in this special case.

3. Suppose f, g are Schwartz functions on Rn and D = Q(∂) is an
elliptic operator with constant coefficients, where Q is a real polynomial
(so the leading term of Q is nonvanishing for nonzero vectors). Then
elliptic regularity says that if g is analytic, so is f . This can be easily
proved using Fourier transform. Indeed, for Fourier transforms we get

Q(p)f̂(p) = ĝ(p). Thus ĝ(p) = f̂(p)
Q(p)

, so this must be a smooth function.

Note that |Q(p)| → ∞ as p→∞ because Q has non-vanishing leading
34



term. So, since g is analytic, ĝ decays exponentially at infinity, hence

so does f̂ . Thus f is analytic.

6.3. Proof of Harish-Chandra’s analyticity Theorem. We are
now ready to prove Theorem 6.3. Let g = LieG and b ∈ U(g). Then
we have a linear operator π∗(b) : V ∞ → V ∞, which we will write just
as b for short. Moreover, if b ∈ U(g)K then it preserves the subspace
V ρ ⊂ V ∞ for each irreducible representation ρ of K. Therefore, since
all V ρ are finite dimensional, for any v ∈ V K−fin there exists a nonzero
polynomial P ∈ R[t] such that P (b)v = 0 (e.g., we can take P to be
the product of the characteristic polynomial of b on Kv by its complex
conjugate).

Now recall that U(g) can be thought of as the algebra of left-invariant
real differential operators on G. Let ψh,v(g) := h(gv) be the matrix
coefficient function. We know that this function is smooth, and we
have

(P (b)ψh,v)(g) = h(gP (b)v) = 0.

Thus if b is an elliptic differential operator on G, it will follow from
Corollary 6.7 that ψh,v is real analytic, as desired.

It remains to find b ∈ U(g)K which defines an elliptic operator on
G. For this purpose fix a left-invariant Riemannian metric on G, and
make it K-invariant (under right, or, equivalently, adjoint action) by
averaging over K. Then the Laplace operator ∆ corresponding to this
metric is elliptic and given by some element ∆ ∈ U(g)K , so we may
take b = ∆. This proves Theorem 6.3.

Remark 6.10. If G is simple, there exists a unique up to scaling
two-sided invariant metric on G. This metric, however, is pseudo-
Riemannian rather than Riemannian if G is not compact. Thus the
corresponding Laplace operator is hyperbolic rather than elliptic, so
not suitable for our purposes.

6.4. Applications of weakly analytic vectors.

Corollary 6.11. The action of G on V is completely determined by
the corresponding (g, K)-module V K−fin.

Proof. Since V K−fin is dense in V , it suffices to specify gv for v ∈
V K−fin. For this it suffices to specify h(gv) for all h ∈ V ∗. By Theorem
6.3 and the analytic continuation principle, this is determined by the
derivatives of all orders of h(gv) at g = 1. But these have the form
h(bv) where b ∈ U(g), so are determined by bv. �

Corollary 6.12. Let W ⊂ V K−fin be a sub-(g, K)-module. Then the
closure W ⊂ V is G-invariant.
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Proof. Let w ∈ W , g ∈ G. It suffices to show that gw ∈ W . If not,
then the space W ′ := W ⊕ Cgw is a closed subspace of V containing
W as a subspace of codimension 1. So there exists a unique continuous
linear functional h : W ′ → C such that h(gw) = 1 and h|W = 0. By
the Hahn-Banach theorem, h can be extended to an element of V ∗.
Thus to get a contradiction, it is enough to show that for every h ∈ V ∗
that vanishes on W , we have h(gw) = 0. But by Theorem 6.3, this
function is analytic in g. So it suffices to check that its derivatives at
g = 1 vanish. But these derivatives are of the form h(bw) for b ∈ U(g),
so vanish since bw ∈ W . �

Corollary 6.13. Let V be an admissible representation of G. There
is a bijection between subrepresentations of V and (g, K)-submodules
of V K−fin, given by α : U ⊂ V 7→ UK−fin. The inverse is given by
β : W 7→ W .

Proof. Since UK−fin is dense in U , we have β ◦ α = Id. To show that

α◦β = Id, we need to show that W
K−fin

= W . Clearly W
K−fin

contains
W , so we just need to prove the opposite inclusion. Let w ∈ W ρ

, then
we have a sequence wn → w, wn ∈ W . Now apply the projector ξρ:

w′n := π(ξρ)wn → π(ξρ)w = w, n→∞,
and w′n ∈ W ρ. Thus w ∈ W ρ = W ρ, since W ρ is finite dimensional.

Hence W
K−fin

= W . �

Corollary 6.14. If V is irreducible then V K−fin is an irreducible (g, K)-
module, and vice versa.

Corollary 6.15. If V is of finite length then V K−fin is a Harish-
Chandra module.

Proof. By Corollary 6.13, V K−fin is a finite length (g, K)-module. But
any finite length (g, K)-module is finitely generated over U(g), hence
a Harish-Chandra module. �

Let RepG denote the category of admissible representations of G of
finite length, and HCG the category of Harish-Chandra modules for G.
Thus we obtain

Theorem 6.16. The assignment V 7→ V K−fin defines an exact, faithful
functor RepG→ HCG, which maps irreducibles to irreducibles.
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