8. Highest weight modules and Verma modules

8.1. g-modules with a weight decomposition. Let us recall basic
results on highest weight modules and Verma modules for a complex
semisimple Lie algebra g.

Let g =n_ @ bhdn, be a triangular decomposition and A € h* be
a weight. We have ny = @®,cp, g4, where Ry are the sets of positive
and negative roots. Let () C h* be the root lattice of g spanned by its
roots. Let e;, fi, hi,i = 1,...,7 be the Chevalley generators of g. Let
P C b* be the weight lattice, consisting of A € bh* with \(h;) € Z for
all 7 and P, C P be the set of dominant integral weights, defined by
the condition \(h;) € Zsq for all i. Finally, let @, C @ be the set of
sums of positive roots.

Definition 8.1. Let V arepresentation of g (possibly infinite-dimensional).
Then a vector v € V is said to have weight A if hv = A(h)v for all

h € b. The subspace of such vectors is denoted by VI[\]. If V[A] # 0,

we say that A is a weight of V', and the set of weights of V' is denoted

by P(V).

It is easy to see that g,V [\ C V[A + a].
Let V' C V be the span of all weight vectors in V. Then it is clear
that V/ = @)\Gb*v[)‘]'

Definition 8.2. We say that V has a weight decomposition (with
respect to a Cartan subalgebra h C g), or is h-semisimple if V' =V
i.e.7 if V — @Aeh*v[)\].

Note that not every representation of g has a weight decomposition
(e.g., for V. = U(g) with g acting by left multiplication all weight
subspaces are zero).

Definition 8.3. A vector v in V[)] is called a singular (or highest
weight) vector of weight X if ;o = 0 for all 4, ie., if n,o = 0.
A representation V' of g is a highest weight representation with
highest weight \ if it is generated by such a nonzero vector.

8.2. Verma modules. The Verma module M), is defined as “the
largest highest weight module with highest weight A\”. Namely, it is
generated by a single highest weight vector v, with defining relations
hv = A(h)v for h € h and e;v = 0. More formally, we make the following
definition.

Definition 8.4. Let I, € U(g) be the left ideal generated by the
elements h— A(h),h € hand e;, i = 1,...,r. Then the Verma module
M, is the quotient U(g)/I,.
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In this realization, the highest weight vector v, is just the class of
the unit 1 of U(g).

Proposition 8.5. The map ¢ : Un_) — M), given by ¢(x) = zvy is
an isomorphism of left U(n_)-modules.

Proof. By the PBW theorem, the multiplication map
E:Um)@U(h@ny) — Ulg)

is a linear isomorphism. It is easy to see that £71(Iy) = U(n_) ® K,
where

K, _ZU b @ ny)(hi — Mk +ZUh@n+

is the kernel of the homomorphism x, : U(h & n,) — C given by
Xa(h) = A(h), h € b, xr(e;) = 0. Thus, we have a natural isomorphism
of left U(n_)-modules

Un_)=Um_)@U(h®ny)/Ky— My,
as claimed. O

Remark 8.6. The definition of M, means that it is the induced mod-
ule Uf(g) ®u(pan,) Cx, where C, is the one-dimensional representation
of h @& ny, on which it acts via .

Corollary 8.7. M, has a weight decomposition with P(My) = A—Q,
dim My[A] = 1, and weight subspaces of M) are finite-dimensional.

Proposition 8.8. (i) If V is a representation of g andv € V is a vector
such that hv = X h)v for h € h and e;u = 0 then there is a unique
homomorphism n : My — V' such that n(vy) = v. In particular, if V
is generated by such v # 0 (i.e., V is a highest weight representation
with highest weight vector v) then V is a quotient of M.

(11) Every highest weight representation has a weight decomposition
into finite-dimensional weight subspaces.

(i1i) Every highest weight representation V' has a unique highest
weight generator, up to scaling.

Proof. (i) Uniqueness follows from the fact that vy generates M. To
construct 7, note that we have a natural map of g-modules 77 : U(g) —
V' given by 7(x) = xv. Moreover, 7j|;, = 0 thanks to the relations sat-
isfied by v, so 17 descends to a map n : U(g)/I\ = M, — V. Moreover,
if V' is generated by v then this map is surjective, as desired.

(i) This follows from (i) since a quotient of any representation with

a weight decomposition must itself have a weight decomposition.
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(iii) Suppose v, w are two highest weight generators of V' of weights
A, . If A = p then they are proportional since dim V[\] < dim My[\] =
1, as V is a quotient of M. On the other hand, if A\ # p, then we can
assume without loss of generality that A — p ¢ Q4 (otherwise switch
A ). Then p ¢ X — Q4 hence u ¢ P(V), a contradiction. O

8.3. Irreducible highest weight g-modules.

Proposition 8.9. For every A € b*, the Verma module M), has a
unique irreducible quotient Ly. Moreover, Ly is a quotient of every
highest weight g-module V' with highest weight X.

Proof. Let Y C M, be a proper submodule. Then Y has a weight de-
composition, and cannot contain a nonzero multiple of v, (as otherwise
Y = M,),so P(Y) C (A—Qy)\ {\}. Now let J\ be the sum of all
proper submodules Y C M,. Then P(Jy,) C (A — Q) \ {\}, so Jy is
also a proper submodule of M) (the maximal one). Thus, Ly := M,/ J,
is an irreducible highest weight module with highest weight A\. More-
over, if V is any nonzero quotient of M), then the kernel K of the
map M, — V is a proper submodule, hence contained in J,. Thus
the surjective map M) — L, descends to a surjective map V' — L.
The kernel of this map is a proper submodule of V', hence zero if V is
irreducible. Thus in the latter case V = L,. O

Corollary 8.10. Irreducible highest weight g-modules are classified by
their highest weight A € b*, via the bijection X\ +— L.

Exercise 8.11. Let g = sl with standard generators e, f, h and iden-
tify b* = C via A — A(h). Show that M, is irreducible if A\ ¢ Z>,,
while for A a nonnegative integer we have Jy, = M_,_5, so L, is the
A + 1-dimensional irreducible representation of sls.

It is known from the theory of finite-dimensional representations of
g that its irreducible finite-dimensional representations are L, with
A € P,. Thus we have

Proposition 8.12. L, is finite-dimensional if and only if A € P,.

Note that the “only if” direction of this proposition follows immedi-
ately from Exercise 8.11.

8.4. Exercises.

Exercise 8.13. Let g be a finite-dimensional simple complex Lie alge-
bra, and V' a finite-dimensional representation of g. Let A, u € b* be
weights for g, and X, Y be representations of g with P(X) C A — Q,

P(Y) C p— Q4, and X[\ = Cu,, Y[u] = Cu, for nonzero vectors
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vy, v,. Given a linear map ® : X — V®Y, let the expectation value
of ® be defined by

(@) :== (Id® vy, Pvy) €V
where vy € Y[u]* is such that (v};,v,) = 1. In other words, we have
Pvy = (P) ® v, + lower terms

where the lower terms have lower weight than p in the second compo-
nent.

(i) Show that if ® is a homomorphism then (®) has weight A — .

(ii) Let M) be the Verma module with highest weight A\ € b*, and
M—u be the lowest weight Verma module with lowest weight —p, i.e.,
generated by a vector v_, with defining relations hv_, = —u(h)v_,
for h € b and fiv_, = 0. Show that the map ® — (®) defines an
isomorphism

Homgy (M), V ®Miu) = VA =yl
where * denotes the restricted dual (the direct sum of duals of all weight
subspaces).

(iii) Let A € P, and V[v], be the subspace of vectors v € V[v] of
weight v which satisfy the equalities fi(A’aiv)Hv = 0 for all <. Show that
amap ® € Homy(M,, V®M;) factors through L, iff (®) € VA —p],,
ie., fi()"aiv)+1(¢>> = 0 (for this, use that ejfi(/\’a"v)ﬂv,\ = 0, and that the
kernel of M, — L, is generated by the vectors fi(A’aiv)Hv,\). Deduce
that the map ® — (®) defines an isomorphism Homg(Ly, V ®Mi#) =
VA= s

(iv) Now let both A, be in P,. Show that every homomorphism
Ly—>V ®Miu in fact landsin V® L, CV ®M*—u' Deduce that the
map ¢ — (®) defines an isomorphism

Homgy(Ly,V ® L,,) = VX — pl.

(v) Let V.= C" be the vector representation of SL,(C). Deter-
mine the weight subspaces of S™V, and compute the decomposition of
S™V ® L, into irreducibles for all p € P, (use (iv)).

(vi) For any g, compute the decomposition of g&® L, 1 € P;, where
g is the adjoint representation of g (again use (iv)).

In both (v) and (vi) you should express the answer in terms of the
numbers k; such that © = ), k;w; and the Cartan matrix entries of g.

Exercise 8.14. (D. N. Verma) (i) Let g = n_ @ h @ n be a finite-
dimensional simple complex Lie algebra, and A\, € h*. Show that

every nonzero homomorphism M, — M), is injective. (Use that U(n_)
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has no zero divisors). Deduce that if M, is reducible then there exists
NeXx—Q., N # X with My C M,.

(ii) Show that for every A € h* there is N € A — Q. with My C M,
and M) irreducible. (Assume the contrary and construct an infinite
sequence of proper inclusions

...]\4)\2 C M)q C M,.

Then derive a contradiction by looking at the eigenvalues of the qua-
dratic Casimir C' € U(g)).

(iii) Show that if M, is irreducible then dim Homg(M,, M) < 1.
(Look at the growth of the dimensions of weight subspaces).

(iv) Show that dim Homgy(M,, M,) < 1 for any A, u € h*. (Look at
the restriction of a homomorphism M, — M, to M,y C M, which is
irreducible).

Exercise 8.15. (i) Keep the notation of Exercise 8.14. Let A € h* be
such that (A, o) = n — 1 for a positive integer n and simple root «;.
Show that there is an inclusion My_,q,, < M.

(ii) Let p be the sum of fundamental weights of g and W be the Weyl
group of g. For w € W, A € h* let w e X\ := w(A + p) — p (the shifted
action of W). Deduce from (i) that if A € P, then for every w € W,
there is an inclusion ¢, : Myex < M), and that if w = wyw, with
l(w) = L(wy) + £(wy) (where ¢(w) is the length of w) then ¢, factors
through ¢,,. In particular, we have an inclusion M ey <= M-

(iii) Show that M) is irreducible unless (A + p,a") = 1 for some
a € Q4 \0, where o := (i‘”‘a) (look at the eigenvalues of the quadratic

Casimir).

(iv) For f € Q4 define the Kostant partition function K(3) to
be the number of unordered representations of 5 as a sum of positive
roots of g (thus K(5) = dimU(n)[5]). Also define the Shapovalov
pairing

Bs(A) : Uny)[B] x U(n)[=f] = C
by the formula
zyox = Ba(M) (@, y)ux,
where z € U(ny)[8],y € U(n_)[—p], and v, is the highest weight vector
of M,. Let
Dg(X) := det Bg(\),

the determinant of the matrix of Bz(\) in some bases of U(n.)[5], U(n_)[—/5].

This is a (non-homogeneous) polynomial in A well defined up to scaling.
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Show that the leading term of Dj is
DY(A) = comst - [] (A, @¥)Fwz K=,

acER

(Hint: show that the leading term comes from the product of the di-
agonal entries of the matrix of the Shapovalov pairing in the PBW
bases).

(v) Show that

Dg(\) = const - H (A +p,a¥) = 1)me
a€Q4\0

for some nonnegative integers m, = mq(8). Then use (iv) to show
that moreover m, = 0 unless « is a multiple of a positive root.

(vi) Let V,U be finite-dimensional vector spaces over a field k of
dimension n and B(t) : V x U — Ek[[t]] be a bilinear form. Denote
by Vo € V,Uy C U the left and right kernels of B(0). Suppose that
B'(0) is a perfect pairing Vy x Uy — k. Show that the vanishing order
of det B(t) at t = 0 (computed with respect to any bases of V,U)
equals dim Vy = dim Uy. (Hint: Pick a basis ey, ..., e, of Vg, complete
it to a basis ey, ..., e, of V. Choose vectors f,, i1, ..., fn € U such that
B(0)(e;, f;) = d;5 for m < i,5 < n. Let fi,..., f, be the basis Uy dual
to eq, ..., e, with respect to B’(0). Show that {f;} is a basis of U and
the determinant of B(t) in the bases {e;}, {fi} equals t™ + O(t™*1).)

(vii) Show that if A is generic on the hyperplane (A + p,a") = n for
n € Zso and o € Ry and m,,(5) > 0 then M, contains an irreducible
submodule M,_,, and the quotient M) /My_,, is irreducible. (Use
Casimir eigenvalues to show that the only irreducible modules which
could occur in the composition series of M, are L, and L,_,, and
apply Exercise 8.14).

(viii) Let A be as in (vii) and let B(8,t) := Bs(A + tar). Show that
B(p,t) satisfies the assumption of (vi) for all j.

Hint: Use that ®&zKerB(f,0) is naturally identified with My_,,
and B'(/3,0) restricts on it to a multiple of its Shapovalov form, and
show that one has B (0)(Vr—na,Vr—na) # 0. For the latter, assume
the contrary and show that there exists a homogeneous lift u of vy_,q
modulo #? such that B, (t)(u,w) = 0 modulo t* for all w of weight
A+ (t — n)a. Deduce that e;u vanishes modulo t? for all . Conclude
that

Cu=((A+(t—n)a+p)? —p*lu+ O(*)
and derive a contradiction with

Cu = (A +ta+ p)* — p*)u.
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(ix) Deduce that m,.(5) = K(8 — na); in particular, in general

Mna () < K(f — na).
(x) Prove the Shapovalov determinant formula:

Ds(\) = [T TT(A+p.aY) — n)KE7e

up to scaling.
(xi) Determine all A € h* for which M), is irreducible.
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