8. Highest weight modules and Verma modules

8.1. \mathfrak{g}-modules with a weight decomposition. Let us recall basic results on highest weight modules and Verma modules for a complex semisimple Lie algebra \mathfrak{g}.

Let $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$be a triangular decomposition and $\lambda \in \mathfrak{h}^{*}$ be a weight. We have $\mathfrak{n}_{ \pm}=\oplus_{\alpha \in R_{ \pm}} \mathfrak{g}_{\alpha}$, where $R_{ \pm}$are the sets of positive and negative roots. Let $Q \subset \mathfrak{h}^{*}$ be the root lattice of \mathfrak{g} spanned by its roots. Let $e_{i}, f_{i}, h_{i}, i=1, \ldots, r$ be the Chevalley generators of \mathfrak{g}. Let $P \subset \mathfrak{h}^{*}$ be the weight lattice, consisting of $\lambda \in \mathfrak{h}^{*}$ with $\lambda\left(h_{i}\right) \in \mathbb{Z}$ for all i and $P_{+} \subset P$ be the set of dominant integral weights, defined by the condition $\lambda\left(h_{i}\right) \in \mathbb{Z}_{\geq 0}$ for all i. Finally, let $Q_{+} \subset Q$ be the set of sums of positive roots.

Definition 8.1. Let V a representation of \mathfrak{g} (possibly infinite dimensional). Then a vector $v \in V$ is said to have weight λ if $h v=\lambda(h) v$ for all $h \in \mathfrak{h}$. The subspace of such vectors is denoted by $V[\lambda]$. If $V[\lambda] \neq 0$, we say that λ is a weight of V, and the set of weights of V is denoted by $P(V)$.

It is easy to see that $\mathfrak{g}_{\alpha} V[\lambda] \subset V[\lambda+\alpha]$.
Let $V^{\prime} \subset V$ be the span of all weight vectors in V. Then it is clear that $V^{\prime}=\oplus_{\lambda \in \mathfrak{h}^{*}} V[\lambda]$.
Definition 8.2. We say that V has a weight decomposition (with respect to a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$), or is \mathfrak{h}-semisimple if $V^{\prime}=V$, i.e., if $V=\oplus_{\lambda \in \mathfrak{h}^{*}} V[\lambda]$.

Note that not every representation of \mathfrak{g} has a weight decomposition (e.g., for $V=U(\mathfrak{g})$ with \mathfrak{g} acting by left multiplication all weight subspaces are zero).

Definition 8.3. A vector v in $V[\lambda]$ is called a singular (or highest weight) vector of weight λ if $e_{i} v=0$ for all i, i.e., if $\mathfrak{n}_{+} v=0$. A representation V of \mathfrak{g} is a highest weight representation with highest weight λ if it is generated by such a nonzero vector.
8.2. Verma modules. The Verma module M_{λ} is defined as "the largest highest weight module with highest weight λ ". Namely, it is generated by a single highest weight vector v_{λ} with defining relations $h v=\lambda(h) v$ for $h \in \mathfrak{h}$ and $e_{i} v=0$. More formally, we make the following definition.

Definition 8.4. Let $I_{\lambda} \in U(\mathfrak{g})$ be the left ideal generated by the elements $h-\lambda(h), h \in \mathfrak{h}$ and $e_{i}, i=1, \ldots, r$. Then the Verma module M_{λ} is the quotient $U(\mathfrak{g}) / I_{\lambda}$.

In this realization, the highest weight vector v_{λ} is just the class of the unit 1 of $U(\mathfrak{g})$.
Proposition 8.5. The map $\phi: U\left(\mathfrak{n}_{-}\right) \rightarrow M_{\lambda}$ given by $\phi(x)=x v_{\lambda}$ is an isomorphism of left $U\left(\mathfrak{n}_{-}\right)$-modules.
Proof. By the PBW theorem, the multiplication map

$$
\xi: U\left(\mathfrak{n}_{-}\right) \otimes U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right) \rightarrow U(\mathfrak{g})
$$

is a linear isomorphism. It is easy to see that $\xi^{-1}\left(I_{\lambda}\right)=U\left(\mathfrak{n}_{-}\right) \otimes K_{\lambda}$, where

$$
K_{\lambda}:=\sum_{i} U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right)\left(h_{i}-\lambda\left(h_{i}\right)\right)+\sum_{i} U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right) e_{i}
$$

is the kernel of the homomorphism $\chi_{\lambda}: U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right) \rightarrow \mathbb{C}$ given by $\chi_{\lambda}(h)=\lambda(h), h \in \mathfrak{h}, \chi_{\lambda}\left(e_{i}\right)=0$. Thus, we have a natural isomorphism of left $U\left(\mathfrak{n}_{-}\right)$-modules

$$
U\left(\mathfrak{n}_{-}\right)=U\left(\mathfrak{n}_{-}\right) \otimes U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right) / K_{\lambda} \rightarrow M_{\lambda}
$$

as claimed.
Remark 8.6. The definition of M_{λ} means that it is the induced module $U(\mathfrak{g}) \otimes_{U\left(\mathfrak{h} \oplus \mathfrak{n}_{+}\right)} \mathbb{C}_{\lambda}$, where \mathbb{C}_{λ} is the one-dimensional representation of $\mathfrak{h} \oplus \mathfrak{n}_{+}$on which it acts via χ_{λ}.

Corollary 8.7. M_{λ} has a weight decomposition with $P\left(M_{\lambda}\right)=\lambda-Q_{+}$, $\operatorname{dim} M_{\lambda}[\lambda]=1$, and weight subspaces of M_{λ} are finite dimensional.

Proposition 8.8. (i) If V is a representation of \mathfrak{g} and $v \in V$ is a vector such that $h v=\lambda(h) v$ for $h \in h$ and $e_{i} v=0$ then there is a unique homomorphism $\eta: M_{\lambda} \rightarrow V$ such that $\eta\left(v_{\lambda}\right)=v$. In particular, if V is generated by such $v \neq 0$ (i.e., V is a highest weight representation with highest weight vector v) then V is a quotient of M_{λ}.
(ii) Every highest weight representation has a weight decomposition into finite dimensional weight subspaces.
(iii) Every highest weight representation V has a unique highest weight generator, up to scaling.

Proof. (i) Uniqueness follows from the fact that v_{λ} generates M_{λ}. To construct η, note that we have a natural map of \mathfrak{g}-modules $\widetilde{\eta}: U(\mathfrak{g}) \rightarrow$ V given by $\widetilde{\eta}(x)=x v$. Moreover, $\left.\widetilde{\eta}\right|_{I_{\lambda}}=0$ thanks to the relations satisfied by v, so $\widetilde{\eta}$ descends to a map $\eta: U(\mathfrak{g}) / I_{\lambda}=M_{\lambda} \rightarrow V$. Moreover, if V is generated by v then this map is surjective, as desired.
(ii) This follows from (i) since a quotient of any representation with a weight decomposition must itself have a weight decomposition.
(iii) Suppose v, w are two highest weight generators of V of weights λ, μ. If $\lambda=\mu$ then they are proportional since $\operatorname{dim} V[\lambda] \leq \operatorname{dim} M_{\lambda}[\lambda]=$ 1 , as V is a quotient of M_{λ}. On the other hand, if $\lambda \neq \mu$, then we can assume without loss of generality that $\lambda-\mu \notin Q_{+}$(otherwise switch $\lambda, \mu)$. Then $\mu \notin \lambda-Q_{+}$, hence $\mu \notin P(V)$, a contradiction.

8.3. Irreducible highest weight \mathfrak{g}-modules.

Proposition 8.9. For every $\lambda \in \mathfrak{h}^{*}$, the Verma module M_{λ} has a unique irreducible quotient L_{λ}. Moreover, L_{λ} is a quotient of every highest weight \mathfrak{g}-module V with highest weight λ.

Proof. Let $Y \subset M_{\lambda}$ be a proper submodule. Then Y has a weight decomposition, and cannot contain a nonzero multiple of v_{λ} (as otherwise $\left.Y=M_{\lambda}\right)$, so $P(Y) \subset\left(\lambda-Q_{+}\right) \backslash\{\lambda\}$. Now let J_{λ} be the sum of all proper submodules $Y \subset M_{\lambda}$. Then $P\left(J_{\lambda}\right) \subset\left(\lambda-Q_{+}\right) \backslash\{\lambda\}$, so J_{λ} is also a proper submodule of M_{λ} (the maximal one). Thus, $L_{\lambda}:=M_{\lambda} / J_{\lambda}$ is an irreducible highest weight module with highest weight λ. Moreover, if V is any nonzero quotient of M_{λ} then the kernel K of the map $M_{\lambda} \rightarrow V$ is a proper submodule, hence contained in J_{λ}. Thus the surjective map $M_{\lambda} \rightarrow L_{\lambda}$ descends to a surjective map $V \rightarrow L_{\lambda}$. The kernel of this map is a proper submodule of V, hence zero if V is irreducible. Thus in the latter case $V \cong L_{\lambda}$.

Corollary 8.10. Irreducible highest weight \mathfrak{g}-modules are classified by their highest weight $\lambda \in \mathfrak{h}^{*}$, via the bijection $\lambda \mapsto L_{\lambda}$.

Exercise 8.11. Let $\mathfrak{g}=\mathfrak{s l}_{2}$ with standard generators e, f, h and identify $\mathfrak{h}^{*} \cong \mathbb{C}$ via $\lambda \mapsto \lambda(h)$. Show that M_{λ} is irreducible if $\lambda \notin \mathbb{Z}_{\geq 0}$, while for λ a nonnegative integer we have $J_{\lambda}=M_{-\lambda-2}$, so L_{λ} is the $\lambda+1$-dimensional irreducible representation of $\mathfrak{s l}_{2}$.

It is known from the theory of finite dimensional representations of \mathfrak{g} that its irreducible finite dimensional representations are L_{λ} with $\lambda \in P_{+}$. Thus we have

Proposition 8.12. L_{λ} is finite dimensional if and only if $\lambda \in P_{+}$.
Note that the "only if" direction of this proposition follows immediately from Exercise 8.11.

8.4. Exercises.

Exercise 8.13. Let \mathfrak{g} be a finite dimensional simple complex Lie algebra, and V a finite dimensional representation of \mathfrak{g}. Let $\lambda, \mu \in \mathfrak{h}^{*}$ be weights for \mathfrak{g}, and X, Y be representations of \mathfrak{g} with $P(X) \subset \lambda-Q_{+}$, $P(Y) \subset \mu-Q_{+}$, and $X[\lambda]=\mathbb{C} v_{\lambda}, Y[\mu]=\mathbb{C} v_{\mu}$ for nonzero vectors
v_{λ}, v_{μ}. Given a linear map $\Phi: X \rightarrow V \otimes Y$, let the expectation value of Φ be defined by

$$
\langle\Phi\rangle:=\left(\operatorname{Id} \otimes v_{\mu}^{*}, \Phi v_{\lambda}\right) \in V
$$

where $v_{\mu}^{*} \in Y[\mu]^{*}$ is such that $\left(v_{\mu}^{*}, v_{\mu}\right)=1$. In other words, we have

$$
\Phi v_{\lambda}=\langle\Phi\rangle \otimes v_{\mu}+\text { lower terms }
$$

where the lower terms have lower weight than μ in the second component.
(i) Show that if Φ is a homomorphism then $\langle\Phi\rangle$ has weight $\lambda-\mu$.
(ii) Let M_{λ} be the Verma module with highest weight $\lambda \in \mathfrak{h}^{*}$, and $\bar{M}_{-\mu}$ be the lowest weight Verma module with lowest weight $-\mu$, i.e., generated by a vector $v_{-\mu}$ with defining relations $h v_{-\mu}=-\mu(h) v_{-\mu}$ for $h \in \mathfrak{h}$ and $f_{i} v_{-\mu}=0$. Show that the map $\Phi \mapsto\langle\Phi\rangle$ defines an isomorphism

$$
\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, V \otimes \bar{M}_{-\mu}^{*}\right) \cong V[\lambda-\mu]
$$

where $*$ denotes the restricted dual (the direct sum of duals of all weight subspaces).
(iii) Let $\lambda \in P_{+}$and $V[\nu]_{\lambda}$ be the subspace of vectors $v \in V[\nu]$ of weight ν which satisfy the equalities $f_{i}^{\left(\lambda, \alpha_{i}^{V}\right)+1} v=0$ for all i. Show that a map $\Phi \in \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda}, V \otimes \bar{M}_{-\mu}^{*}\right)$ factors through L_{λ} iff $\langle\Phi\rangle \in V[\lambda-\mu]_{\lambda}$, i.e., $f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1}\langle\Phi\rangle=0$ (for this, use that $e_{j} f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1} v_{\lambda}=0$, and that the kernel of $M_{\lambda} \rightarrow L_{\lambda}$ is generated by the vectors $\left.f_{i}^{\left(\lambda, \alpha_{i}^{\vee}\right)+1} v_{\lambda}\right)$. Deduce that the map $\Phi \mapsto\langle\Phi\rangle$ defines an isomorphism $\operatorname{Hom}_{\mathfrak{g}}\left(L_{\lambda}, V \otimes \bar{M}_{-\mu}^{*}\right) \cong$ $V[\lambda-\mu]_{\lambda}$.
(iv) Now let both λ, μ be in P_{+}. Show that every homomorphism $L_{\lambda} \rightarrow V \otimes \bar{M}_{-\mu}^{*}$ in fact lands in $V \otimes L_{\mu} \subset V \otimes \bar{M}_{-\mu}^{*}$. Deduce that the map $\Phi \mapsto\langle\Phi\rangle$ defines an isomorphism

$$
\operatorname{Hom}_{\mathfrak{g}}\left(L_{\lambda}, V \otimes L_{\mu}\right) \cong V[\lambda-\mu]_{\lambda}
$$

(v) Let $V=\mathbb{C}^{n}$ be the vector representation of $S L_{n}(\mathbb{C})$. Determine the weight subspaces of $S^{m} V$, and compute the decomposition of $S^{m} V \otimes L_{\mu}$ into irreducibles for all $\mu \in P_{+}$(use (iv)).
(vi) For any \mathfrak{g}, compute the decomposition of $\mathfrak{g} \otimes L_{\mu}, \mu \in P_{+}$, where \mathfrak{g} is the adjoint representation of \mathfrak{g} (again use (iv)).

In both (v) and (vi) you should express the answer in terms of the numbers k_{i} such that $\mu=\sum_{i} k_{i} \omega_{i}$ and the Cartan matrix entries of \mathfrak{g}.
Exercise 8.14. (D. N. Verma) (i) Let $\mathfrak{g}=\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$be a finite dimensional simple complex Lie algebra, and $\lambda, \mu \in \mathfrak{h}^{*}$. Show that every nonzero homomorphism $M_{\mu} \rightarrow M_{\lambda}$ is injective. (Use that $U\left(\mathfrak{n}_{-}\right)$
has no zero divisors). Deduce that if M_{λ} is reducible then there exists $\lambda^{\prime} \in \lambda-Q_{+}, \lambda^{\prime} \neq \lambda$ with $M_{\lambda^{\prime}} \subset M_{\lambda}$.
(ii) Show that for every $\lambda \in \mathfrak{h}^{*}$ there is $\lambda^{\prime} \in \lambda-Q_{+}$with $M_{\lambda^{\prime}} \subset M_{\lambda}$ and $M_{\lambda^{\prime}}$ irreducible. (Assume the contrary and construct an infinite sequence of proper inclusions

$$
\ldots M_{\lambda_{2}} \subset M_{\lambda_{1}} \subset M_{\lambda}
$$

Then derive a contradiction by looking at the eigenvalues of the quadratic Casimir $C \in U(\mathfrak{g}))$.
(iii) Show that if M_{μ} is irreducible then $\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(M_{\mu}, M_{\lambda}\right) \leq 1$. (Look at the growth of the dimensions of weight subspaces).
(iv) Show that $\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(M_{\mu}, M_{\lambda}\right) \leq 1$ for any $\lambda, \mu \in \mathfrak{h}^{*}$. (Look at the restriction of a homomorphism $M_{\mu} \rightarrow M_{\lambda}$ to $M_{\mu^{\prime}} \subset M_{\mu}$ which is irreducible).

Exercise 8.15. (i) Keep the notation of Exercise 8.14. Let $\lambda \in \mathfrak{h}^{*}$ be such that $\left(\lambda, \alpha_{i}^{\vee}\right)=n-1$ for a positive integer n and simple root α_{i}. Show that there is an inclusion $M_{\lambda-n \alpha_{i}} \hookrightarrow M_{\lambda}$.
(ii) Let ρ be the sum of fundamental weights of \mathfrak{g} and W be the Weyl group of \mathfrak{g}. For $w \in W, \lambda \in \mathfrak{h}^{*}$ let $w \bullet \lambda:=w(\lambda+\rho)-\rho$ (the shifted action of W). Deduce from (i) that if $\lambda \in P_{+}$then for every $w \in W$, there is an inclusion $\iota_{w}: M_{w \bullet \lambda} \hookrightarrow M_{\lambda}$, and that if $w=w_{1} w_{2}$ with $\ell(w)=\ell\left(w_{1}\right)+\ell\left(w_{2}\right)$ (where $\ell(w)$ is the length of $\left.w\right)$ then ι_{w} factors through $\iota_{w_{2}}$. In particular, we have an inclusion $M_{w \bullet \lambda} \hookrightarrow M_{w_{2} \bullet \lambda}$.
(iii) Show that M_{λ} is irreducible unless $\left(\lambda+\rho, \alpha^{\vee}\right)=1$ for some $\alpha \in Q_{+} \backslash 0$, where $\alpha^{\vee}:=\frac{2 \alpha}{(\alpha, \alpha)}$ (look at the eigenvalues of the quadratic Casimir).
(iv) For $\beta \in Q_{+}$define the Kostant partition function $K(\beta)$ to be the number of unordered representations of β as a sum of positive roots of \mathfrak{g} (thus $\left.K(\beta)=\operatorname{dim} U\left(\mathfrak{n}_{+}\right)[\beta]\right)$. Also define the Shapovalov pairing

$$
B_{\beta}(\lambda): U\left(\mathfrak{n}_{+}\right)[\beta] \times U\left(\mathfrak{n}_{-}\right)[-\beta] \rightarrow \mathbb{C}
$$

by the formula

$$
x y v_{\lambda}=B_{\beta}(\lambda)(x, y) v_{\lambda},
$$

where $x \in U\left(\mathfrak{n}_{+}\right)[\beta], y \in U\left(\mathfrak{n}_{-}\right)[-\beta]$, and v_{λ} is the highest weight vector of M_{λ}. Let

$$
D_{\beta}(\lambda):=\operatorname{det} B_{\beta}(\lambda),
$$

the determinant of the matrix of $B_{\beta}(\lambda)$ in some bases of $U\left(\mathfrak{n}_{+}\right)[\beta], U\left(\mathfrak{n}_{-}\right)[-\beta]$. This is a (non-homogeneous) polynomial in λ well defined up to scaling.

Show that the leading term of D_{β} is

$$
D_{\beta}^{0}(\lambda)=\mathrm{const} \cdot \prod_{\alpha \in R_{+}}\left(\lambda, \alpha^{\vee}\right)^{\sum_{n \geq 1} K(\beta-n \alpha)}
$$

(Hint: show that the leading term comes from the product of the diagonal entries of the matrix of the Shapovalov pairing in the PBW bases).
(v) Show that

$$
D_{\beta}(\lambda)=\text { const } \cdot \prod_{\alpha \in Q_{+} \backslash 0}\left(\left(\lambda+\rho, \alpha^{\vee}\right)-1\right)^{m_{\alpha}}
$$

for some nonnegative integers $m_{\alpha}=m_{\alpha}(\beta)$. Then use (iv) to show that moreover $m_{\alpha}=0$ unless α is a multiple of a positive root.
(vi) Let V, U be finite dimensional vector spaces over a field k of dimension n and $B(t): V \times U \rightarrow k[[t]]$ be a bilinear form. Denote by $V_{0} \subset V, U_{0} \subset U$ the left and right kernels of $B(0)$. Suppose that $B^{\prime}(0)$ is a perfect pairing $V_{0} \times U_{0} \rightarrow k$. Show that the vanishing order of $\operatorname{det} B(t)$ at $t=0$ (computed with respect to any bases of V, U) equals $\operatorname{dim} V_{0}=\operatorname{dim} U_{0}$. (Hint: Pick a basis e_{1}, \ldots, e_{m} of V_{0}, complete it to a basis e_{1}, \ldots, e_{n} of V. Choose vectors $f_{m+1}, \ldots, f_{n} \in U$ such that $B(0)\left(e_{i}, f_{j}\right)=\delta_{i j}$ for $m<i, j \leq n$. Let f_{1}, \ldots, f_{m} be the basis U_{0} dual to e_{1}, \ldots, e_{m} with respect to $B^{\prime}(0)$. Show that $\left\{f_{i}\right\}$ is a basis of U and the determinant of $B(t)$ in the bases $\left\{e_{i}\right\},\left\{f_{i}\right\}$ equals $t^{m}+O\left(t^{m+1}\right)$.)
(vii) Show that if λ is generic on the hyperplane $\left(\lambda+\rho, \alpha^{\vee}\right)=n$ for $n \in \mathbb{Z}_{>0}$ and $\alpha \in R_{+}$and $m_{n \alpha}(\beta)>0$ then M_{λ} contains an irreducible submodule $M_{\lambda-n \alpha}$ and the quotient $M_{\lambda} / M_{\lambda-n \alpha}$ is irreducible. (Use Casimir eigenvalues to show that the only irreducible modules which could occur in the composition series of M_{λ} are L_{λ} and $L_{\lambda-n \alpha}$ and apply Exercise 8.14).
(viii) Let λ be as in (vii) and let $B(\beta, t):=B_{\beta}(\lambda+t \alpha)$. Show that $B(\beta, t)$ satisfies the assumption of (vi) for all β.

Hint: Use that $\oplus_{\beta} \operatorname{Ker} B(\beta, 0)$ is naturally identified with $M_{\lambda-n \alpha}$ and $B^{\prime}(\beta, 0)$ restricts on it to a multiple of its Shapovalov form, and show that one has $B_{n \alpha}^{\prime}(0)\left(v_{\lambda-n \alpha}, v_{\lambda-n \alpha}\right) \neq 0$. For the latter, assume the contrary and show that there exists a homogeneous lift u of $v_{\lambda-n \alpha}$ modulo t^{2} such that $B_{n \alpha}(t)(u, w)=0$ modulo t^{2} for all w of weight $\lambda+(t-n) \alpha$. Deduce that $e_{i} u$ vanishes modulo t^{2} for all i. Conclude that

$$
C u=\left((\lambda+(t-n) \alpha+\rho)^{2}-\rho^{2}\right) u+O\left(t^{2}\right)
$$

and derive a contradiction with

$$
C u=\left((\lambda+t \alpha+\rho)^{2}-\rho^{2}\right) u .
$$

(ix) Deduce that $m_{n \alpha}(\beta)=K(\beta-n \alpha)$; in particular, in general $m_{n \alpha}(\beta) \leq K(\beta-n \alpha)$.
(x) Prove the Shapovalov determinant formula:

$$
D_{\beta}(\lambda)=\prod_{\alpha \in R_{+}} \prod_{n \geq 1}\left(\left(\lambda+\rho, \alpha^{\vee}\right)-n\right)^{K(\beta-n \alpha)}
$$

up to scaling.
(xi) Determine all $\lambda \in \mathfrak{h}^{*}$ for which M_{λ} is irreducible.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

