8. Highest weight modules and Verma modules

8.1. \mathfrak{g} -modules with a weight decomposition. Let us recall basic results on highest weight modules and Verma modules for a complex semisimple Lie algebra \mathfrak{g} .

Let $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ be a triangular decomposition and $\lambda \in \mathfrak{h}^{*}$ be a weight. We have $\mathfrak{n}_{\pm} = \bigoplus_{\alpha \in R_{\pm}} \mathfrak{g}_{\alpha}$, where R_{\pm} are the sets of positive and negative roots. Let $Q \subset \mathfrak{h}^{*}$ be the root lattice of \mathfrak{g} spanned by its roots. Let $e_i, f_i, h_i, i = 1, ..., r$ be the Chevalley generators of \mathfrak{g} . Let $P \subset \mathfrak{h}^{*}$ be the weight lattice, consisting of $\lambda \in \mathfrak{h}^{*}$ with $\lambda(h_i) \in \mathbb{Z}$ for all i and $P_{+} \subset P$ be the set of dominant integral weights, defined by the condition $\lambda(h_i) \in \mathbb{Z}_{\geq 0}$ for all i. Finally, let $Q_{+} \subset Q$ be the set of sums of positive roots.

Definition 8.1. Let V a representation of \mathfrak{g} (possibly infinite-dimensional). Then a vector $v \in V$ is said to have **weight** λ if $hv = \lambda(h)v$ for all $h \in \mathfrak{h}$. The subspace of such vectors is denoted by $V[\lambda]$. If $V[\lambda] \neq 0$, we say that λ is a weight of V, and the set of weights of V is denoted by P(V).

It is easy to see that $\mathfrak{g}_{\alpha}V[\lambda] \subset V[\lambda + \alpha]$.

Let $V' \subset V$ be the span of all weight vectors in V. Then it is clear that $V' = \bigoplus_{\lambda \in \mathfrak{h}^*} V[\lambda]$.

Definition 8.2. We say that V has a weight decomposition (with respect to a Cartan subalgebra $\mathfrak{h} \subset \mathfrak{g}$), or is \mathfrak{h} -semisimple if V' = V, i.e., if $V = \bigoplus_{\lambda \in \mathfrak{h}^*} V[\lambda]$.

Note that not every representation of \mathfrak{g} has a weight decomposition (e.g., for $V = U(\mathfrak{g})$ with \mathfrak{g} acting by left multiplication all weight subspaces are zero).

Definition 8.3. A vector v in $V[\lambda]$ is called a singular (or highest weight) vector of weight λ if $e_i v = 0$ for all i, i.e., if $\mathfrak{n}_+ v = 0$. A representation V of \mathfrak{g} is a highest weight representation with highest weight λ if it is generated by such a nonzero vector.

8.2. Verma modules. The Verma module M_{λ} is defined as "the largest highest weight module with highest weight λ ". Namely, it is generated by a single highest weight vector v_{λ} with defining relations $hv = \lambda(h)v$ for $h \in \mathfrak{h}$ and $e_iv = 0$. More formally, we make the following definition.

Definition 8.4. Let $I_{\lambda} \in U(\mathfrak{g})$ be the left ideal generated by the elements $h - \lambda(h), h \in \mathfrak{h}$ and $e_i, i = 1, ..., r$. Then the **Verma module** M_{λ} is the quotient $U(\mathfrak{g})/I_{\lambda}$.

In this realization, the highest weight vector v_{λ} is just the class of the unit 1 of $U(\mathfrak{g})$.

Proposition 8.5. The map $\phi : U(\mathfrak{n}_{-}) \to M_{\lambda}$ given by $\phi(x) = xv_{\lambda}$ is an isomorphism of left $U(\mathfrak{n}_{-})$ -modules.

Proof. By the PBW theorem, the multiplication map

 $\xi: U(\mathfrak{n}_{-}) \otimes U(\mathfrak{h} \oplus \mathfrak{n}_{+}) \to U(\mathfrak{g})$

is a linear isomorphism. It is easy to see that $\xi^{-1}(I_{\lambda}) = U(\mathfrak{n}_{-}) \otimes K_{\lambda}$, where

$$K_{\lambda} := \sum_{i} U(\mathfrak{h} \oplus \mathfrak{n}_{+})(h_{i} - \lambda(h_{i})) + \sum_{i} U(\mathfrak{h} \oplus \mathfrak{n}_{+})e_{i}$$

is the kernel of the homomorphism $\chi_{\lambda} : U(\mathfrak{h} \oplus \mathfrak{n}_{+}) \to \mathbb{C}$ given by $\chi_{\lambda}(h) = \lambda(h), h \in \mathfrak{h}, \chi_{\lambda}(e_{i}) = 0$. Thus, we have a natural isomorphism of left $U(\mathfrak{n}_{-})$ -modules

$$U(\mathfrak{n}_{-}) = U(\mathfrak{n}_{-}) \otimes U(\mathfrak{h} \oplus \mathfrak{n}_{+})/K_{\lambda} \to M_{\lambda},$$

as claimed.

Remark 8.6. The definition of M_{λ} means that it is the **induced module** $U(\mathfrak{g}) \otimes_{U(\mathfrak{h} \oplus \mathfrak{n}_+)} \mathbb{C}_{\lambda}$, where \mathbb{C}_{λ} is the one-dimensional representation of $\mathfrak{h} \oplus \mathfrak{n}_+$ on which it acts via χ_{λ} .

Corollary 8.7. M_{λ} has a weight decomposition with $P(M_{\lambda}) = \lambda - Q_+$, dim $M_{\lambda}[\lambda] = 1$, and weight subspaces of M_{λ} are finite-dimensional.

Proposition 8.8. (i) If V is a representation of \mathfrak{g} and $v \in V$ is a vector such that $hv = \lambda(h)v$ for $h \in h$ and $e_iv = 0$ then there is a unique homomorphism $\eta : M_{\lambda} \to V$ such that $\eta(v_{\lambda}) = v$. In particular, if V is generated by such $v \neq 0$ (i.e., V is a highest weight representation with highest weight vector v) then V is a quotient of M_{λ} .

(ii) Every highest weight representation has a weight decomposition into finite-dimensional weight subspaces.

(iii) Every highest weight representation V has a unique highest weight generator, up to scaling.

Proof. (i) Uniqueness follows from the fact that v_{λ} generates M_{λ} . To construct η , note that we have a natural map of \mathfrak{g} -modules $\tilde{\eta} : U(\mathfrak{g}) \to V$ given by $\tilde{\eta}(x) = xv$. Moreover, $\tilde{\eta}|_{I_{\lambda}} = 0$ thanks to the relations satisfied by v, so $\tilde{\eta}$ descends to a map $\eta : U(\mathfrak{g})/I_{\lambda} = M_{\lambda} \to V$. Moreover, if V is generated by v then this map is surjective, as desired.

(ii) This follows from (i) since a quotient of any representation with a weight decomposition must itself have a weight decomposition.

(iii) Suppose v, w are two highest weight generators of V of weights λ, μ . If $\lambda = \mu$ then they are proportional since dim $V[\lambda] \leq \dim M_{\lambda}[\lambda] = 1$, as V is a quotient of M_{λ} . On the other hand, if $\lambda \neq \mu$, then we can assume without loss of generality that $\lambda - \mu \notin Q_+$ (otherwise switch λ, μ). Then $\mu \notin \lambda - Q_+$, hence $\mu \notin P(V)$, a contradiction. \Box

8.3. Irreducible highest weight g-modules.

Proposition 8.9. For every $\lambda \in \mathfrak{h}^*$, the Verma module M_{λ} has a unique irreducible quotient L_{λ} . Moreover, L_{λ} is a quotient of every highest weight \mathfrak{g} -module V with highest weight λ .

Proof. Let $Y \subset M_{\lambda}$ be a proper submodule. Then Y has a weight decomposition, and cannot contain a nonzero multiple of v_{λ} (as otherwise $Y = M_{\lambda}$), so $P(Y) \subset (\lambda - Q_{+}) \setminus \{\lambda\}$. Now let J_{λ} be the sum of all proper submodules $Y \subset M_{\lambda}$. Then $P(J_{\lambda}) \subset (\lambda - Q_{+}) \setminus \{\lambda\}$, so J_{λ} is also a proper submodule of M_{λ} (the maximal one). Thus, $L_{\lambda} := M_{\lambda}/J_{\lambda}$ is an irreducible highest weight module with highest weight λ . Moreover, if V is any nonzero quotient of M_{λ} then the kernel K of the map $M_{\lambda} \to V$ is a proper submodule, hence contained in J_{λ} . Thus the surjective map $M_{\lambda} \to L_{\lambda}$ descends to a surjective map $V \to L_{\lambda}$. The kernel of this map is a proper submodule of V, hence zero if V is irreducible. Thus in the latter case $V \cong L_{\lambda}$.

Corollary 8.10. Irreducible highest weight \mathfrak{g} -modules are classified by their highest weight $\lambda \in \mathfrak{h}^*$, via the bijection $\lambda \mapsto L_{\lambda}$.

Exercise 8.11. Let $\mathfrak{g} = \mathfrak{sl}_2$ with standard generators e, f, h and identify $\mathfrak{h}^* \cong \mathbb{C}$ via $\lambda \mapsto \lambda(h)$. Show that M_{λ} is irreducible if $\lambda \notin \mathbb{Z}_{\geq 0}$, while for λ a nonnegative integer we have $J_{\lambda} = M_{-\lambda-2}$, so L_{λ} is the $\lambda + 1$ -dimensional irreducible representation of \mathfrak{sl}_2 .

It is known from the theory of finite-dimensional representations of \mathfrak{g} that its irreducible finite-dimensional representations are L_{λ} with $\lambda \in P_+$. Thus we have

Proposition 8.12. L_{λ} is finite-dimensional if and only if $\lambda \in P_+$.

Note that the "only if" direction of this proposition follows immediately from Exercise 8.11.

8.4. Exercises.

Exercise 8.13. Let \mathfrak{g} be a finite-dimensional simple complex Lie algebra, and V a finite-dimensional representation of \mathfrak{g} . Let $\lambda, \mu \in \mathfrak{h}^*$ be weights for \mathfrak{g} , and X, Y be representations of \mathfrak{g} with $P(X) \subset \lambda - Q_+$, $P(Y) \subset \mu - Q_+$, and $X[\lambda] = \mathbb{C}v_{\lambda}$, $Y[\mu] = \mathbb{C}v_{\mu}$ for nonzero vectors

 v_{λ}, v_{μ} . Given a linear map $\Phi: X \to V \otimes Y$, let the **expectation value** of Φ be defined by

$$\langle \Phi \rangle := (\mathrm{Id} \otimes v_{\mu}^*, \Phi v_{\lambda}) \in V$$

where $v_{\mu}^* \in Y[\mu]^*$ is such that $(v_{\mu}^*, v_{\mu}) = 1$. In other words, we have

$$\Phi v_{\lambda} = \langle \Phi \rangle \otimes v_{\mu} + \text{lower terms}$$

where the lower terms have lower weight than μ in the second component.

(i) Show that if Φ is a homomorphism then $\langle \Phi \rangle$ has weight $\lambda - \mu$.

(ii) Let M_{λ} be the Verma module with highest weight $\lambda \in \mathfrak{h}^*$, and $\overline{M}_{-\mu}$ be the **lowest weight** Verma module with lowest weight $-\mu$, i.e., generated by a vector $v_{-\mu}$ with defining relations $hv_{-\mu} = -\mu(h)v_{-\mu}$ for $h \in \mathfrak{h}$ and $f_i v_{-\mu} = 0$. Show that the map $\Phi \mapsto \langle \Phi \rangle$ defines an isomorphism

$$\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes \overline{M}_{-\mu}^{*}) \cong V[\lambda - \mu]$$

where * denotes the restricted dual (the direct sum of duals of all weight subspaces).

(iii) Let $\lambda \in P_+$ and $V[\nu]_{\lambda}$ be the subspace of vectors $v \in V[\nu]$ of weight ν which satisfy the equalities $f_i^{(\lambda,\alpha_i^{\vee})+1}v = 0$ for all *i*. Show that a map $\Phi \in \operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes \overline{M}_{-\mu}^{*})$ factors through L_{λ} iff $\langle \Phi \rangle \in V[\lambda - \mu]_{\lambda}$, i.e., $f_i^{(\lambda,\alpha_i^{\vee})+1}\langle\Phi\rangle = 0$ (for this, use that $e_j f_i^{(\lambda,\alpha_i^{\vee})+1} v_{\lambda} = 0$, and that the kernel of $M_{\lambda} \to L_{\lambda}$ is generated by the vectors $f_i^{(\lambda,\alpha_i^{\vee})+1}v_{\lambda}$). Deduce that the map $\Phi \mapsto \langle \Phi \rangle$ defines an isomorphism $\operatorname{Hom}_{\mathfrak{q}}(L_{\lambda}, V \otimes \overline{M}_{-\mu}^{*}) \cong$ $V[\lambda - \mu]_{\lambda}.$

(iv) Now let both λ, μ be in P_+ . Show that every homomorphism $L_{\lambda} \to V \otimes \overline{M}_{-\mu}^*$ in fact lands in $V \otimes L_{\mu} \subset V \otimes \overline{M}_{-\mu}^*$. Deduce that the map $\Phi \mapsto \langle \Phi \rangle$ defines an isomorphism

$$\operatorname{Hom}_{\mathfrak{g}}(L_{\lambda}, V \otimes L_{\mu}) \cong V[\lambda - \mu]_{\lambda}.$$

(v) Let $V = \mathbb{C}^n$ be the vector representation of $SL_n(\mathbb{C})$. Determine the weight subspaces of $S^m V$, and compute the decomposition of $S^m V \otimes L_\mu$ into irreducibles for all $\mu \in P_+$ (use (iv)).

(vi) For any \mathfrak{g} , compute the decomposition of $\mathfrak{g} \otimes L_{\mu}$, $\mu \in P_+$, where \mathfrak{g} is the adjoint representation of \mathfrak{g} (again use (iv)).

In both (v) and (vi) you should express the answer in terms of the numbers k_i such that $\mu = \sum_i k_i \omega_i$ and the Cartan matrix entries of \mathfrak{g} .

Exercise 8.14. (D. N. Verma) (i) Let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be a finitedimensional simple complex Lie algebra, and $\lambda, \mu \in \mathfrak{h}^*$. Show that every nonzero homomorphism $M_{\mu} \to M_{\lambda}$ is injective. (Use that $U(\mathfrak{n}_{-})$ ₄₄ has no zero divisors). Deduce that if M_{λ} is reducible then there exists $\lambda' \in \lambda - Q_+, \ \lambda' \neq \lambda$ with $M_{\lambda'} \subset M_{\lambda}$.

(ii) Show that for every $\lambda \in \mathfrak{h}^*$ there is $\lambda' \in \lambda - Q_+$ with $M_{\lambda'} \subset M_{\lambda}$ and $M_{\lambda'}$ irreducible. (Assume the contrary and construct an infinite sequence of proper inclusions

$$..M_{\lambda_2} \subset M_{\lambda_1} \subset M_{\lambda}.$$

Then derive a contradiction by looking at the eigenvalues of the quadratic Casimir $C \in U(\mathfrak{g})$.

(iii) Show that if M_{μ} is irreducible then dim Hom_g $(M_{\mu}, M_{\lambda}) \leq 1$. (Look at the growth of the dimensions of weight subspaces).

(iv) Show that dim Hom_g $(M_{\mu}, M_{\lambda}) \leq 1$ for any $\lambda, \mu \in \mathfrak{h}^*$. (Look at the restriction of a homomorphism $M_{\mu} \to M_{\lambda}$ to $M_{\mu'} \subset M_{\mu}$ which is irreducible).

Exercise 8.15. (i) Keep the notation of Exercise 8.14. Let $\lambda \in \mathfrak{h}^*$ be such that $(\lambda, \alpha_i^{\vee}) = n - 1$ for a positive integer n and simple root α_i . Show that there is an inclusion $M_{\lambda - n\alpha_i} \hookrightarrow M_{\lambda}$.

(ii) Let ρ be the sum of fundamental weights of \mathfrak{g} and W be the Weyl group of \mathfrak{g} . For $w \in W$, $\lambda \in \mathfrak{h}^*$ let $w \bullet \lambda := w(\lambda + \rho) - \rho$ (the **shifted action** of W). Deduce from (i) that if $\lambda \in P_+$ then for every $w \in W$, there is an inclusion $\iota_w : M_{w \bullet \lambda} \hookrightarrow M_{\lambda}$, and that if $w = w_1 w_2$ with $\ell(w) = \ell(w_1) + \ell(w_2)$ (where $\ell(w)$ is the length of w) then ι_w factors through ι_{w_2} . In particular, we have an inclusion $M_{w \bullet \lambda} \hookrightarrow M_{w_2 \bullet \lambda}$.

(iii) Show that M_{λ} is irreducible unless $(\lambda + \rho, \alpha^{\vee}) = 1$ for some $\alpha \in Q_+ \setminus 0$, where $\alpha^{\vee} := \frac{2\alpha}{(\alpha, \alpha)}$ (look at the eigenvalues of the quadratic Casimir).

(iv) For $\beta \in Q_+$ define the **Kostant partition function** $K(\beta)$ to be the number of unordered representations of β as a sum of positive roots of \mathfrak{g} (thus $K(\beta) = \dim U(\mathfrak{n}_+)[\beta]$). Also define the **Shapovalov** pairing

$$B_{\beta}(\lambda): U(\mathfrak{n}_+)[\beta] \times U(\mathfrak{n}_-)[-\beta] \to \mathbb{C}$$

by the formula

$$xyv_{\lambda} = B_{\beta}(\lambda)(x,y)v_{\lambda},$$

where $x \in U(\mathfrak{n}_+)[\beta], y \in U(\mathfrak{n}_-)[-\beta]$, and v_{λ} is the highest weight vector of M_{λ} . Let

$$D_{\beta}(\lambda) := \det B_{\beta}(\lambda),$$

the determinant of the matrix of $B_{\beta}(\lambda)$ in some bases of $U(\mathfrak{n}_{+})[\beta], U(\mathfrak{n}_{-})[-\beta]$. This is a (non-homogeneous) polynomial in λ well defined up to scaling. Show that the leading term of D_{β} is

$$D^0_{\beta}(\lambda) = \text{const} \cdot \prod_{\alpha \in R_+} (\lambda, \alpha^{\vee})^{\sum_{n \ge 1} K(\beta - n\alpha)}.$$

(Hint: show that the leading term comes from the product of the diagonal entries of the matrix of the Shapovalov pairing in the PBW bases).

(v) Show that

$$D_{\beta}(\lambda) = \operatorname{const} \cdot \prod_{\alpha \in Q_+ \setminus 0} ((\lambda + \rho, \alpha^{\vee}) - 1)^{m_{\alpha}}$$

for some nonnegative integers $m_{\alpha} = m_{\alpha}(\beta)$. Then use (iv) to show that moreover $m_{\alpha} = 0$ unless α is a multiple of a positive root.

(vi) Let V, U be finite-dimensional vector spaces over a field k of dimension n and $B(t) : V \times U \to k[[t]]$ be a bilinear form. Denote by $V_0 \subset V, U_0 \subset U$ the left and right kernels of B(0). Suppose that B'(0) is a perfect pairing $V_0 \times U_0 \to k$. Show that the vanishing order of det B(t) at t = 0 (computed with respect to any bases of V, U) equals dim $V_0 = \dim U_0$. (*Hint:* Pick a basis $e_1, ..., e_m$ of V_0 , complete it to a basis $e_1, ..., e_n$ of V. Choose vectors $f_{m+1}, ..., f_n \in U$ such that $B(0)(e_i, f_j) = \delta_{ij}$ for $m < i, j \leq n$. Let $f_1, ..., f_m$ be the basis U_0 dual to $e_1, ..., e_m$ with respect to B'(0). Show that $\{f_i\}$ is a basis of U and the determinant of B(t) in the bases $\{e_i\}, \{f_i\}$ equals $t^m + O(t^{m+1})$.)

(vii) Show that if λ is generic on the hyperplane $(\lambda + \rho, \alpha^{\vee}) = n$ for $n \in \mathbb{Z}_{>0}$ and $\alpha \in R_+$ and $m_{n\alpha}(\beta) > 0$ then M_{λ} contains an irreducible submodule $M_{\lambda-n\alpha}$ and the quotient $M_{\lambda}/M_{\lambda-n\alpha}$ is irreducible. (Use Casimir eigenvalues to show that the only irreducible modules which could occur in the composition series of M_{λ} are L_{λ} and $L_{\lambda-n\alpha}$ and apply Exercise 8.14).

(viii) Let λ be as in (vii) and let $B(\beta, t) := B_{\beta}(\lambda + t\alpha)$. Show that $B(\beta, t)$ satisfies the assumption of (vi) for all β .

Hint: Use that $\bigoplus_{\beta} \operatorname{Ker} B(\beta, 0)$ is naturally identified with $M_{\lambda-n\alpha}$ and $B'(\beta, 0)$ restricts on it to a multiple of its Shapovalov form, and show that one has $B'_{n\alpha}(0)(v_{\lambda-n\alpha}, v_{\lambda-n\alpha}) \neq 0$. For the latter, assume the contrary and show that there exists a homogeneous lift u of $v_{\lambda-n\alpha}$ modulo t^2 such that $B_{n\alpha}(t)(u, w) = 0$ modulo t^2 for all w of weight $\lambda + (t - n)\alpha$. Deduce that $e_i u$ vanishes modulo t^2 for all i. Conclude that

$$Cu = ((\lambda + (t-n)\alpha + \rho)^2 - \rho^2)u + O(t^2)$$

and derive a contradiction with

$$Cu = ((\lambda + t\alpha + \rho)^2 - \rho^2)u.$$
46

(ix) Deduce that $m_{n\alpha}(\beta) = K(\beta - n\alpha)$; in particular, in general $m_{n\alpha}(\beta) \leq K(\beta - n\alpha)$.

(x) Prove the Shapovalov determinant formula:

$$D_{\beta}(\lambda) = \prod_{\alpha \in R_{+}} \prod_{n \ge 1} ((\lambda + \rho, \alpha^{\vee}) - n)^{K(\beta - n\alpha)}$$

up to scaling.

(xi) Determine all $\lambda \in \mathfrak{h}^*$ for which M_{λ} is irreducible.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.