
9. Representations of SL2(R)

9.1. Irreducible (g, K)-modules for SL2(R). Let us now apply the
general theory to the simplest example – representations of the group
G = SL2(R) of real 2 by 2 matrices with determinant 1. Note that
SL2(R) ∼= SU(1, 1), and in this realization the maximal compact sub-
group SO(2) becomes U(1). So we have Lie(G) = g = su(1, 1), hence
gC = sl2(C) with standard basis e, f, h, so that a maximal compact
subgroup K of G consists of elements eith, t ∈ [0, 2π). Thus a (g, K)-
module is the same thing as a gC-module with a weight decomposition
and integer weights.

Let us classify irreducible (g, K)-modules M . To this end, recall that
we have the central Casimir element C ∈ U(gC) given by

C = fe+
(h+ 1)2

4
,

and note that by the PBW theorem, U(gC) is free as a right module over
the commutative subalgebra C[h, fe] = C[h,C] with basis 1, fn, en,
n ≥ 1. Thus if v is a nonzero weight vector of M then M is spanned by
v, fnv, env. It follows that weight subspaces of M are 1-dimensional,
and P (M) is an arithmetic progression with step 2. Thus we have four
cases:

1. P (M) is finite. Then M = Lm, the m+ 1-dimensional irreducible
representation.

2. P (M) is infinite, bounded above. In this case let v have the
maximal weight m. Then fnv, n ≥ 0 is a basis of M , and we have
hv = mv, ev = 0. Thus M = Mm is the Verma module with highest
weight m ∈ Z. This module is irreducible iff m < 0 (Exercise 8.11).
Thus in this case we get modules M−m = M+

−m, m ≥ 1.
3. P (M) is infinite, bounded below. The situation is completely

parallel (with f replaced by e) and we obtain lowest weight Verma
modules M−

m for m ≥ 1. The (g, K)-modules M−
m,M

+
−m are called the

discrete series modules for m ≥ 2, and limit of discrete series
for m = 1.

4. P (M) is unbounded on both sides. Let c be the scalar by which
C acts on M . We have two cases – the even case P (M) = 2Z and the
odd case P (M) = 2Z+ 1. In both cases we have a basis vn, n ∈ P (M)
such that

(4) hvn = nvn, fvn = vn−2, evn = Λnvn+2,

where Λn 6= 0. To compute Λn, we write

Λnvn = fevn = (C − (h+1)2

4
)vn = (c− (n+1)2

4
)vn.

48



Thus

Λn = c− (n+1)2

4
.

Let c = s2

4
. Then

(5) Λn = 1
4
(s− 1− n)(s+ 1 + n).

Thus we can replace vn by its multiple wn so that

hwn = nwn, fwn = 1
2
(s− 1 + n)wn−2, ewn = 1

2
(s− 1− n)wn+2.

These formulas define gC-modules for any s ∈ C. We will denote these
modules by P±(s) (plus for the even case, minus for the odd case). The
(g, K)-modules P±(s) are called the principal series modules. We
see that P+(s) is irreducible if s /∈ 2Z + 1 and P−(s) is irreducible iff
s /∈ 2Z, and P±(s) = P±(−s) in this case.

Moreover, when these conditions fail, we have short exact sequences

0→ L2m → P+(2m+ 1)→M+
−2m−2 ⊕M−

2m+2 → 0, m ∈ Z≥0,

0→M+
−2m−2 ⊕M−

2m+2 → P+(−2m− 1)→ L2m → 0, m ∈ Z≥0,

0→ L2m+1 → P−(2m+ 2)→M+
−2m−3 ⊕M−

2m+3 → 0, m ∈ Z≥0,

0→M+
−2m−3 ⊕M−

2m+3 → P−(−2m− 2)→ L2m+1 → 0, m ∈ Z≥0,

and for s = 0 we have an isomorphism

P−(0) ∼= M+
−1 ⊕M−

1 .

All these modules except P−(0) are indecomposable. Thus we see that
P±(s) � P±(−s) when it is reducible and s 6= 0.

As a result, we get

Proposition 9.1. The simple (g, K)-modules (or equivalently, Harish-
Chandra modules) are Lm,m ∈ Z≥0, M−

m,M
+
−m, m ∈ Z≥1, and P+(s),

s /∈ 2Z + 1, P−(s), s /∈ 2Z, with the only isomorphisms P±(s) ∼=
P±(−s).

Exercise 9.2. Let P̃+(s), P̃−(s) be the modules defined by (4),(5);
so they are isomorphic to P+(s), P−(s) when s is not an odd integer,

respectively not a nonzero even integer. But we will consider P̃+(s)

when s = 2k+1 and P̃−(s) when s = 2k, k 6= 0 (where k is an integer).

(i) Compute the Jordan-Hölder series of P̃+(s), P̃−(s) and show that
they are uniserial, i.e., have a unique filtration with irreducible succes-
sive quotients.

(ii) Do there exist isomorphisms P̃+(s) ∼= P+(s), P̃−(s) ∼= P−(s)?
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9.2. Realizations. Let us discuss realizations of these representations
by admissible representations of G. For Lm there is nothing to discuss,
so we’ll focus on principal series and discrete series.

The realization of principal series has already been discussed in Ex-
ample 5.3. Namely, let B ⊂ G be the subgroup of upper triangular
matrices b with diagonal entries (t(b), t(b)−1). As before we consider
the spaces

V+(s) = {F ∈ C∞(G) : F (gb) = F (g)|t(b)|s−1},
V−(s) = {F ∈ C∞(G) : F (gb) = F (g)|t(b)|s−1sign(t(b))}.

These are admissible representations of G acting by left multipli-
cation. Let us compute V±(s)fin. To this end, note that the group
K = U(1) = S1 acts transitively on G/B with stabilizer Z/2 = {±1}.
Thus, pulling the function F back to K, we can realize V±(s) as the
space V± of functions F ∈ C∞(S1) such F (−z) = ±F (z).

A more geometric way of thinking about this is the following. Given
a Lie group G and a closed subgroup B with Lie algebras g, b, every
finite-dimensional representation V of B gives rise to a vector bundle
EV := (G× V )/B over G/B, where the action of B on G× V is given
by (g, v)b = (gb, b−1v). For example, the tangent bundle T (G/B) is
obtained from the representation V = g/b. In our example, g/b is the
1-dimensional representation of B given by b 7→ t(b)−2. Thus sections
of the tangent bundle on G/B (i.e., vector fields) can be interpreted as
functions F on G such that

F (gb) = F (g)t(b)2.

It follows that elements of V+(s) can be interpreted as sections of the

bundle K
1−s
2 where K = T ∗(G/B) is the canonical bundle, which co-

incides with the cotangent bundle since dim(G/B) = 1 (this bundle is
trivial topologically but the action of diffeomorphisms of G/B = S1,
in particular, of elements of SL2(R) on its sections depends on s). In
other words, elements of V+(s) can be interpreted as “tensor fields of

non-integer rank”: φ(u)(d argu)
1−s
2 , where u = eiθ, θ is the angle coor-

dinate on G/B = RP1 and φ is a smooth function. Similarly, elements

of V−(s) can be interpreted as expressions u
1
2φ(u)(d argu)

1−s
2 , i.e., two-

valued smooth sections of the same bundle which change sign when one
goes around the circle. Thus the Lie algebra action on these modules
is by the vector fields

h = 2u∂u, f = ∂u, e = −u2∂u,

but they act on elements of V±(s) not as on functions but as on tensor
fields. Thus V±(s)fin ⊂ V±(s) is the subspace of vectors such that
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φ ∈ C[u, u−1]. Taking the basis w2k = uk(d argu)
1−s
2 in the even case

and w2k+1 = uk+ 1
2 (d argu)

1−s
2 in the odd case, we have

hwn = nwn, fwn = 1
2
(s− 1 + n)wn−2, ewn = 1

2
(s− 1− n)wn+2.

Thus we get that V±(s)fin ∼= P±(s) for all s ∈ C.
In particular, at points where P±(s) are reducible, this gives realiza-

tions of the discrete series. Namely, consider the modules V+(−r) for
odd r ≥ 1 and V−(−r) for even r ≥ 1. The space V+(−r) consists of

elements φ(u)(du
iu

)
1+r
2 where φ is smooth (note that d argu = du

iu
). So

it has the subrepresentation V0
+(−r) of forms that extend holomorphi-

cally to the disk |u| ≤ 1. Thus means that φ(u) =
∑

N≥0 aNu
N+ 1+r

2 ,
where aN is a rapidly decaying sequence (faster than any power of N).

In other words, V0
+(−r) consists of elements ψ(u)(du)

1+r
2 , where ψ is

smooth on the disk |u| ≤ 1 and holomorphic for |u| < 1. Thus the
eigenvalues of h on V0

+(−r) are 1 + r + 2N , hence V0
+(−r)fin = M−

r+1.
Also, V+(−r) has a subrepresentation V∞+ (−r) of forms that ex-

tend holomorphically to |u| ≥ 1 (including infinity), which means that

φ(u) =
∑

N≥0 aNu
−N− 1+r

2 . In other words, V∞+ (−r) consists of ele-

ments ψ(u−1)(du−1)
1+r
2 , where ψ is smooth on the disk |u| ≤ 1 and

holomorphic for |u| < 1. Thus we get V∞+ (−r)fin = M+
−r−1.

Similarly, for even r we get V0
−(−r)fin = M−

r+1, V∞− (−r)fin = M+
−r−1.

9.3. Unitary representations. These Fréchet space realizations can
easily be made Hilbert space realizations, by completing with respect
to the usual L2-norm given by

‖φ‖2 =
1

2π

∫ 2π

0

|φ(eiθ)|2dθ.

However, this norm is only preserved by G when s is imaginary. In this

case we obtain that the completed representations V̂±(s), in particular

V̂0
−(0), V̂∞− (0), are unitary. It follows that the Harish-Chandra modules

P±(s) for s ∈ iR and M−
1 ,M

+
−1 are unitary.

It turns out, however, that there are other irreducible unitary repre-
sentations. Let us classify them. It suffices to classify irreducible uni-
tary Harish-Chandra modules. Note that the relevant anti-involution
on g is given by e† = −f , f † = −e, h† = h. Let M be irreducible and
v ∈M a vector of weight n. Then if (, ) is an invariant Hermitian form
on M then

(ev, ev) = −(fev, v) = ((n+1
2

)2 − c)(v, v),
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where c is a Casimir eigenvalue on M . We see that a nonzero invariant
Hermitian form exists iff c = s2

4
∈ R, and such a form can be chosen

positive definite iff c < (n+1
2

)2 for every n ∈ P (M). This shows that
all discrete series representations are unitary and also determines the
unitarity range of s for the principal series representations. Thus we
obtain the following theorem.

Theorem 9.3. (Gelfand-Naimark [GN], Bargmann [Ba]). The irre-
ducible unitary representations of SL2(R) are Hilbert space completions
of the following unitary Harish-Chandra modules:
• Discrete series and limit of discrete series M−

m,M
+
−m, m ∈ Z≥1;

• Unitary principal series P±(s), s ∈ iR, s 6= 0;
• The complementary series P+(s), s ∈ R, 0 < |s| < 1;
• The trivial representation C.
Here P±(s) ∼= P±(−s) and there are no other isomorphisms.

Let us discuss explicit Hilbert space realizations of the unitary rep-
resentations. We have already described such unitary realizations of
principal series in L2(S1), except the complementary series. For dis-
crete series we only gave realizations for m = 1, as M−

1 ,M
+
−1 are direct

summands in P−(0). However, one can give a realization for any m. To
this end, note that G = SL2(R) acts by fractional linear transforma-
tions on the disk |u| ≤ 1. Moreover, we have the Poincaré (hyperbolic)
metric on the disk which is G-invariant. The volume element for this
metric looks like

µ =
dudu

(1− |u|2)2
.

Thus for expressions ω = ψ(u)(du)
m
2 where m ≥ 2 is an integer and

ψ(u) is holomorphic for |u| < 1 we may define the G-invariant norm

‖ω‖2 =

∫
|u|<1

ωω

µ
m
2
−1

=

∫
|u|<1

|ψ(u)|2(1− |u|2)m−2dudu.

Hence the Hilbert space completion M̂−
m may be realized as the space

Hm of holomorphic m
2

-forms ω = ψ(u)(du)
m
2 for |u| < 1 for which

‖ω‖2 <∞ (note that this space is nonzero only if m ≥ 2).

Likewise, M̂+
−m can be similarly realized via antiholomorphic forms.

Indeed, conjugation by the matrix

(
0 1
1 0

)
(of determinant −1) defines

an outer automorphism of SL2(R) which is induced by complex con-
jugation on the unit disk, and this automorphism exchanges M−

m with
M+
−m.
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Exercise 9.4. Let G` be the `-fold cover of PSL2(R) (for example,
G1 = PSL2(R), G2 = SL2(R)). Classify irreducible admissible rep-
resentations (up to infinitesimal equivalence) and irreducible unitary
representations of G` for all `.

Hint. The maximal compact subgroup of G` is K`, the `-fold cover
of PSO(2). Thus irreducible Harish-Chandra modules for G` are ir-
reducible sl2(C)-modules on which the element h acts diagonalizably
with eigenvalues in 2

`
Z.

Exercise 9.5. Compute the matrix coefficients of the principal series
modules, ψm,n(g) = (wm, gwn), g ∈ SL2(R).

Hint. Write g as g = U1DU2 where

Uk = exp(iθkh) ∈ SO(2), θk ∈ R/2πZ
for k = 1, 2 and D = diag(a, a−1) is diagonal, and express ψm,n(g) as
ei(nθ2−mθ1)ψ(m,n, a, s). Write the function ψ(m,n, a, s) in terms of the
Gauss hypergeometric function 2F1.

Exercise 9.6. (i) Show that for −1 < s < 0 the formula

(f, g)s :=

∫
R2

f(y)g(z)|y − z|−s−1dydz

defines a positive definite inner product on the space C0(R) of continu-
ous functions f : R→ C with compact support (Hint: pass to Fourier
transforms).

(ii) Deduce that if f is a measurable function on R then

0 ≤ (f, f)s ≤ ∞,
so measurable functions f with (f, f)s < ∞ modulo those for which
(f, f)s = 0 form a Hilbert space Hs with inner product (, )s, which is
the completion of C0(R) under (, )s.

(iii) Let us view Hs as the space of tensor fields f(y)(dy)
1−s
2 , where

f is as in (ii). Show that the complementary series unitary representa-

tion P̂+(s) of SL2(R) may be realized in Hs with G acting naturally on
such tensor fields. (Hint: show that the differential form dydz

(y−z)2 is in-

variant under simultaneous Möbius transformations of y, z by the same
matrix).
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