9. Representations of $SL_2(\mathbb{R})$

9.1. Irreducible (\mathfrak{g}, K) -modules for $SL_2(\mathbb{R})$. Let us now apply the general theory to the simplest example – representations of the group $G = SL_2(\mathbb{R})$ of real 2 by 2 matrices with determinant 1. Note that $SL_2(\mathbb{R}) \cong SU(1,1)$, and in this realization the maximal compact subgroup SO(2) becomes U(1). So we have $\text{Lie}(G) = \mathfrak{g} = \mathfrak{su}(1,1)$, hence $\mathfrak{g}_{\mathbb{C}} = \mathfrak{sl}_2(\mathbb{C})$ with standard basis e, f, h, so that a maximal compact subgroup K of G consists of elements e^{ith} , $t \in [0, 2\pi)$. Thus a (\mathfrak{g}, K) -module is the same thing as a $\mathfrak{g}_{\mathbb{C}}$ -module with a weight decomposition and integer weights.

Let us classify irreducible (\mathfrak{g}, K) -modules M. To this end, recall that we have the central Casimir element $C \in U(\mathfrak{g}_{\mathbb{C}})$ given by

$$C = fe + \frac{(h+1)^2}{4},$$

and note that by the PBW theorem, $U(\mathfrak{g}_{\mathbb{C}})$ is free as a right module over the commutative subalgebra $\mathbb{C}[h, fe] = \mathbb{C}[h, C]$ with basis $1, f^n, e^n$, $n \geq 1$. Thus if v is a nonzero weight vector of M then M is spanned by $v, f^n v, e^n v$. It follows that weight subspaces of M are 1-dimensional, and P(M) is an arithmetic progression with step 2. Thus we have four cases:

1. P(M) is finite. Then $M = L_m$, the m + 1-dimensional irreducible representation.

2. P(M) is infinite, bounded above. In this case let v have the maximal weight m. Then $f^n v$, $n \ge 0$ is a basis of M, and we have hv = mv, ev = 0. Thus $M = M_m$ is the Verma module with highest weight $m \in \mathbb{Z}$. This module is irreducible iff m < 0 (Exercise 8.11). Thus in this case we get modules $M_{-m} = M_{-m}^+, m \ge 1$.

3. P(M) is infinite, bounded below. The situation is completely parallel (with f replaced by e) and we obtain lowest weight Verma modules M_m^- for $m \ge 1$. The (\mathfrak{g}, K) -modules M_m^-, M_{-m}^+ are called the **discrete series modules** for $m \ge 2$, and **limit of discrete series** for m = 1.

4. P(M) is unbounded on both sides. Let c be the scalar by which C acts on M. We have two cases – the even case $P(M) = 2\mathbb{Z}$ and the odd case $P(M) = 2\mathbb{Z} + 1$. In both cases we have a basis $v_n, n \in P(M)$ such that

(4)
$$hv_n = nv_n, fv_n = v_{n-2}, ev_n = \Lambda_n v_{n+2},$$

where $\Lambda_n \neq 0$. To compute Λ_n , we write

$$\Lambda_n v_n = f e v_n = \left(C - \frac{(h+1)^2}{4}\right) v_n = \left(c - \frac{(h+1)^2}{4}\right) v_n.$$

Thus

$$\Lambda_n = c - \frac{(n+1)^2}{4}.$$

Let $c = \frac{s^2}{4}$. Then

(5)
$$\Lambda_n = \frac{1}{4}(s-1-n)(s+1+n).$$

Thus we can replace v_n by its multiple w_n so that

$$hw_n = nw_n, \ fw_n = \frac{1}{2}(s-1+n)w_{n-2}, \ ew_n = \frac{1}{2}(s-1-n)w_{n+2}.$$

These formulas define $\mathfrak{g}_{\mathbb{C}}$ -modules for any $s \in \mathbb{C}$. We will denote these modules by $P_{\pm}(s)$ (plus for the even case, minus for the odd case). The (\mathfrak{g}, K) -modules $P_{\pm}(s)$ are called the **principal series modules**. We see that $P_{+}(s)$ is irreducible if $s \notin 2\mathbb{Z} + 1$ and $P_{-}(s)$ is irreducible iff $s \notin 2\mathbb{Z}$, and $P_{\pm}(s) = P_{\pm}(-s)$ in this case.

Moreover, when these conditions fail, we have short exact sequences

 $0 \to L_{2m} \to P_{+}(2m+1) \to M^{+}_{-2m-2} \oplus M^{-}_{2m+2} \to 0, \ m \in \mathbb{Z}_{\geq 0},$ $0 \to M^{+}_{-2m-2} \oplus M^{-}_{2m+2} \to P_{+}(-2m-1) \to L_{2m} \to 0, \ m \in \mathbb{Z}_{\geq 0},$ $0 \to L_{2m+1} \to P_{-}(2m+2) \to M^{+}_{-2m-3} \oplus M^{-}_{2m+3} \to 0, \ m \in \mathbb{Z}_{\geq 0},$

 $0 \to M^+_{-2m-3} \oplus M^-_{2m+3} \to P_-(-2m-2) \to L_{2m+1} \to 0, \ m \in \mathbb{Z}_{\geq 0},$ and for s = 0 we have an isomorphism

$$P_{-}(0) \cong M_{-1}^{+} \oplus M_{1}^{-}.$$

All these modules except $P_{-}(0)$ are indecomposable. Thus we see that $P_{\pm}(s) \ncong P_{\pm}(-s)$ when it is reducible and $s \neq 0$.

As a result, we get

Proposition 9.1. The simple (\mathfrak{g}, K) -modules (or equivalently, Harish-Chandra modules) are $L_m, m \in \mathbb{Z}_{\geq 0}, M_m^-, M_{-m}^+, m \in \mathbb{Z}_{\geq 1}, and P_+(s), s \notin 2\mathbb{Z} + 1, P_-(s), s \notin 2\mathbb{Z}, with the only isomorphisms <math>P_{\pm}(s) \cong P_{\pm}(-s)$.

Exercise 9.2. Let $\widetilde{P}_+(s)$, $\widetilde{P}_-(s)$ be the modules defined by (4),(5); so they are isomorphic to $P_+(s)$, $P_-(s)$ when s is not an odd integer, respectively not a nonzero even integer. But we will consider $\widetilde{P}_+(s)$ when s = 2k + 1 and $\widetilde{P}_-(s)$ when s = 2k, $k \neq 0$ (where k is an integer).

(i) Compute the Jordan-Hölder series of $\widetilde{P}_+(s)$, $\widetilde{P}_-(s)$ and show that they are uniserial, i.e., have a unique filtration with irreducible successive quotients.

(ii) Do there exist isomorphisms $\widetilde{P}_+(s)\cong P_+(s),\,\widetilde{P}_-(s)\cong P_-(s)?$

9.2. **Realizations.** Let us discuss realizations of these representations by admissible representations of G. For L_m there is nothing to discuss, so we'll focus on principal series and discrete series.

The realization of principal series has already been discussed in Example 5.3. Namely, let $B \subset G$ be the subgroup of upper triangular matrices b with diagonal entries $(t(b), t(b)^{-1})$. As before we consider the spaces

$$\mathbb{V}_{+}(s) = \{ F \in C^{\infty}(G) : F(gb) = F(g)|t(b)|^{s-1} \},\$$
$$\mathbb{V}_{-}(s) = \{ F \in C^{\infty}(G) : F(gb) = F(g)|t(b)|^{s-1} \mathrm{sign}(t(b)) \}.$$

These are admissible representations of G acting by left multiplication. Let us compute $\mathbb{V}_{\pm}(s)^{\text{fin}}$. To this end, note that the group $K = U(1) = S^1$ acts transitively on G/B with stabilizer $\mathbb{Z}/2 = \{\pm 1\}$. Thus, pulling the function F back to K, we can realize $\mathbb{V}_{\pm}(s)$ as the space \mathbb{V}_{\pm} of functions $F \in C^{\infty}(S^1)$ such $F(-z) = \pm F(z)$.

A more geometric way of thinking about this is the following. Given a Lie group G and a closed subgroup B with Lie algebras $\mathfrak{g}, \mathfrak{b}$, every finite-dimensional representation V of B gives rise to a vector bundle $E_V := (G \times V)/B$ over G/B, where the action of B on $G \times V$ is given by $(g, v)b = (gb, b^{-1}v)$. For example, the tangent bundle T(G/B) is obtained from the representation $V = \mathfrak{g}/\mathfrak{b}$. In our example, $\mathfrak{g}/\mathfrak{b}$ is the 1-dimensional representation of B given by $b \mapsto t(b)^{-2}$. Thus sections of the tangent bundle on G/B (i.e., vector fields) can be interpreted as functions F on G such that

$$F(gb) = F(g)t(b)^2.$$

It follows that elements of $\mathbb{V}_+(s)$ can be interpreted as sections of the bundle $\mathrm{K}^{\frac{1-s}{2}}$ where $\mathrm{K} = T^*(G/B)$ is the canonical bundle, which coincides with the cotangent bundle since $\dim(G/B) = 1$ (this bundle is trivial topologically but the action of diffeomorphisms of $G/B = S^1$, in particular, of elements of $SL_2(\mathbb{R})$ on its sections depends on s). In other words, elements of $\mathbb{V}_+(s)$ can be interpreted as "tensor fields of non-integer rank": $\phi(u)(d \arg u)^{\frac{1-s}{2}}$, where $u = e^{i\theta}$, θ is the angle coordinate on $G/B = \mathbb{RP}^1$ and ϕ is a smooth function. Similarly, elements of $\mathbb{V}_-(s)$ can be interpreted as expressions $u^{\frac{1}{2}}\phi(u)(d \arg u)^{\frac{1-s}{2}}$, i.e., two-valued smooth sections of the same bundle which change sign when one goes around the circle. Thus the Lie algebra action on these modules is by the vector fields

$$h = 2u\partial_u, \ f = \partial_u, \ e = -u^2\partial_u,$$

but they act on elements of $\mathbb{V}_{\pm}(s)$ not as on functions but as on tensor fields. Thus $\mathbb{V}_{\pm}(s)^{\text{fin}} \subset \mathbb{V}_{\pm}(s)$ is the subspace of vectors such that

 $\phi \in \mathbb{C}[u, u^{-1}]$. Taking the basis $w_{2k} = u^k (d \operatorname{arg} u)^{\frac{1-s}{2}}$ in the even case and $w_{2k+1} = u^{k+\frac{1}{2}} (d \operatorname{arg} u)^{\frac{1-s}{2}}$ in the odd case, we have

$$hw_n = nw_n, \ fw_n = \frac{1}{2}(s-1+n)w_{n-2}, \ ew_n = \frac{1}{2}(s-1-n)w_{n+2}.$$

Thus we get that $\mathbb{V}_+(s)^{\text{fin}} \cong P_+(s)$ for all $s \in \mathbb{C}$.

In particular, at points where $P_{\pm}(s)$ are reducible, this gives realizations of the discrete series. Namely, consider the modules $\mathbb{V}_+(-r)$ for odd $r \ge 1$ and $\mathbb{V}_{-}(-r)$ for even $r \ge 1$. The space $\mathbb{V}_{+}(-r)$ consists of elements $\phi(u)(\frac{du}{iu})^{\frac{1+r}{2}}$ where ϕ is smooth (note that $d \arg u = \frac{du}{iu}$). So it has the subrepresentation $\mathbb{V}^{0}_{+}(-r)$ of forms that extend holomorphically to the disk $|u| \leq 1$. Thus means that $\phi(u) = \sum_{N \geq 0} a_N u^{N + \frac{1+r}{2}}$, where a_N is a rapidly decaying sequence (faster than any power of N). In other words, $\mathbb{V}^0_+(-r)$ consists of elements $\psi(u)(du)^{\frac{1+r}{2}}$, where ψ is smooth on the disk $|u| \leq 1$ and holomorphic for |u| < 1. Thus the eigenvalues of h on $\mathbb{V}^0_+(-r)$ are 1+r+2N, hence $\mathbb{V}^0_+(-r)^{\text{fin}}=M^-_{r+1}$.

Also, $\mathbb{V}_+(-r)$ has a subrepresentation $\mathbb{V}^{\infty}_+(-r)$ of forms that extend holomorphically to $|u| \ge 1$ (including infinity), which means that $\phi(u) = \sum_{N\ge 0} a_N u^{-N-\frac{1+r}{2}}$. In other words, $\mathbb{V}^{\infty}_+(-r)$ consists of elements $\psi(u^{-1})(du^{-1})^{\frac{1+r}{2}}$, where ψ is smooth on the disk $|u| \leq 1$ and holomorphic for |u| < 1. Thus we get $\mathbb{V}^{\infty}_{+}(-r)^{\text{fin}} = M^{+}_{-r-1}$. Similarly, for even r we get $\mathbb{V}^{0}_{-}(-r)^{\text{fin}} = M^{-}_{r+1}$, $\mathbb{V}^{\infty}_{-}(-r)^{\text{fin}} = M^{+}_{-r-1}$.

9.3. Unitary representations. These Fréchet space realizations can easily be made Hilbert space realizations, by completing with respect to the usual L^2 -norm given by

$$\|\phi\|^2 = \frac{1}{2\pi} \int_0^{2\pi} |\phi(e^{i\theta})|^2 d\theta.$$

However, this norm is only preserved by G when s is imaginary. In this case we obtain that the completed representations $\widehat{\mathbb{V}}_{\pm}(s)$, in particular $\widehat{\mathbb{V}}^{0}_{-}(0), \widehat{\mathbb{V}}^{\infty}_{-}(0)$, are unitary. It follows that the Harish-Chandra modules $P_{\pm}(s)$ for $s \in i\mathbb{R}$ and M_1^-, M_{-1}^+ are unitary.

It turns out, however, that there are other irreducible unitary representations. Let us classify them. It suffices to classify irreducible unitary Harish-Chandra modules. Note that the relevant anti-involution on g is given by $e^{\dagger} = -f$, $f^{\dagger} = -e$, $h^{\dagger} = h$. Let M be irreducible and $v \in M$ a vector of weight n. Then if (,) is an invariant Hermitian form on M then

$$(ev, ev) = -(fev, v) = ((\frac{n+1}{2})^2 - c)(v, v),$$

51

where c is a Casimir eigenvalue on M. We see that a nonzero invariant Hermitian form exists iff $c = \frac{s^2}{4} \in \mathbb{R}$, and such a form can be chosen positive definite iff $c < (\frac{n+1}{2})^2$ for every $n \in P(M)$. This shows that all discrete series representations are unitary and also determines the unitarity range of s for the principal series representations. Thus we obtain the following theorem.

Theorem 9.3. (Gelfand-Naimark [GN], Bargmann [Ba]). The irreducible unitary representations of $SL_2(\mathbb{R})$ are Hilbert space completions of the following unitary Harish-Chandra modules:

- Discrete series and limit of discrete series $M_m^-, M_{-m}^+, m \in \mathbb{Z}_{\geq 1}$;
- Unitary principal series $P_{\pm}(s), s \in i\mathbb{R}, s \neq 0$;
- The complementary series $P_+(s)$, $s \in \mathbb{R}$, 0 < |s| < 1;
- The trivial representation \mathbb{C} .
- Here $P_{\pm}(s) \cong P_{\pm}(-s)$ and there are no other isomorphisms.

Let us discuss explicit Hilbert space realizations of the unitary representations. We have already described such unitary realizations of principal series in $L^2(S^1)$, except the complementary series. For discrete series we only gave realizations for m = 1, as M_1^-, M_{-1}^+ are direct summands in $P_-(0)$. However, one can give a realization for any m. To this end, note that $G = SL_2(\mathbb{R})$ acts by fractional linear transformations on the disk $|u| \leq 1$. Moreover, we have the Poincaré (hyperbolic) metric on the disk which is G-invariant. The volume element for this metric looks like

$$\mu = \frac{dud\overline{u}}{(1-|u|^2)^2}$$

Thus for expressions $\omega = \psi(u)(du)^{\frac{m}{2}}$ where $m \ge 2$ is an integer and $\psi(u)$ is holomorphic for |u| < 1 we may define the *G*-invariant norm

$$\|\omega\|^2 = \int_{|u|<1} \frac{\omega\overline{\omega}}{\mu^{\frac{m}{2}-1}} = \int_{|u|<1} |\psi(u)|^2 (1-|u|^2)^{m-2} du d\overline{u}.$$

Hence the Hilbert space completion \widehat{M}_m^- may be realized as the space H_m of holomorphic $\frac{m}{2}$ -forms $\omega = \psi(u)(du)^{\frac{m}{2}}$ for |u| < 1 for which $\|\omega\|^2 < \infty$ (note that this space is nonzero only if $m \geq 2$).

Likewise, \widehat{M}_{-m}^+ can be similarly realized via antiholomorphic forms. Indeed, conjugation by the matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ (of determinant -1) defines an outer automorphism of $SL_2(\mathbb{R})$ which is induced by complex conjugation on the unit disk, and this automorphism exchanges M_m^- with M_{-m}^+ . **Exercise 9.4.** Let G_{ℓ} be the ℓ -fold cover of $PSL_2(\mathbb{R})$ (for example, $G_1 = PSL_2(\mathbb{R}), G_2 = SL_2(\mathbb{R})$). Classify irreducible admissible representations (up to infinitesimal equivalence) and irreducible unitary representations of G_{ℓ} for all ℓ .

Hint. The maximal compact subgroup of G_{ℓ} is K_{ℓ} , the ℓ -fold cover of PSO(2). Thus irreducible Harish-Chandra modules for G_{ℓ} are irreducible $\mathfrak{sl}_2(\mathbb{C})$ -modules on which the element h acts diagonalizably with eigenvalues in $\frac{2}{\ell}\mathbb{Z}$.

Exercise 9.5. Compute the matrix coefficients of the principal series modules, $\psi_{m,n}(g) = (w_m, gw_n), g \in SL_2(\mathbb{R}).$

Hint. Write g as $g = U_1 D U_2$ where

$$U_k = \exp(i\theta_k h) \in SO(2), \ \theta_k \in \mathbb{R}/2\pi\mathbb{Z}$$

for k = 1, 2 and $D = \text{diag}(a, a^{-1})$ is diagonal, and express $\psi_{m,n}(g)$ as $e^{i(n\theta_2 - m\theta_1)}\psi(m, n, a, s)$. Write the function $\psi(m, n, a, s)$ in terms of the Gauss hypergeometric function ${}_2F_1$.

Exercise 9.6. (i) Show that for -1 < s < 0 the formula

$$(f,g)_s := \int_{\mathbb{R}^2} f(y)\overline{g(z)}|y-z|^{-s-1}dydz$$

defines a positive definite inner product on the space $C_0(\mathbb{R})$ of continuous functions $f : \mathbb{R} \to \mathbb{C}$ with compact support (*Hint*: pass to Fourier transforms).

(ii) Deduce that if f is a measurable function on \mathbb{R} then

$$0 \le (f, f)_s \le \infty,$$

so measurable functions f with $(f, f)_s < \infty$ modulo those for which $(f, f)_s = 0$ form a Hilbert space \mathcal{H}_s with inner product $(,)_s$, which is the completion of $C_0(\mathbb{R})$ under $(,)_s$.

(iii) Let us view \mathcal{H}_s as the space of tensor fields $f(y)(dy)^{\frac{1-s}{2}}$, where f is as in (ii). Show that the complementary series unitary representation $\widehat{P}_+(s)$ of $SL_2(\mathbb{R})$ may be realized in \mathcal{H}_s with G acting naturally on such tensor fields. (*Hint:* show that the differential form $\frac{dydz}{(y-z)^2}$ is invariant under simultaneous Möbius transformations of y, z by the same matrix).

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.