9. Representations of $S L_{2}(\mathbb{R})$

9.1. Irreducible (\mathfrak{g}, K)-modules for $S L_{2}(\mathbb{R})$. Let us now apply the general theory to the simplest example - representations of the group $G=S L_{2}(\mathbb{R})$ of real 2 by 2 matrices with determinant 1 . Note that $S L_{2}(\mathbb{R}) \cong S U(1,1)$, and in this realization the maximal compact subgroup $S O(2)$ becomes $U(1)$. So we have $\operatorname{Lie}(G)=\mathfrak{g}=\mathfrak{s u}(1,1)$, hence $\mathfrak{g}_{\mathbb{C}}=\mathfrak{s l}_{2}(\mathbb{C})$ with standard basis e, f, h, so that a maximal compact subgroup K of G consists of elements $e^{i t h}, t \in[0,2 \pi)$. Thus a (\mathfrak{g}, K) module is the same thing as a $\mathfrak{g}_{\mathbb{C}}$-module with a weight decomposition and integer weights.

Let us classify irreducible (\mathfrak{g}, K)-modules M. To this end, recall that we have the central Casimir element $C \in U\left(\mathfrak{g}_{\mathbb{C}}\right)$ given by

$$
C=f e+\frac{(h+1)^{2}}{4}
$$

and note that by the PBW theorem, $U\left(\mathfrak{g}_{\mathbb{C}}\right)$ is free as a right module over the commutative subalgebra $\mathbb{C}[h, f e]=\mathbb{C}[h, C]$ with basis $1, f^{n}, e^{n}$, $n \geq 1$. Thus if v is a nonzero weight vector of M then M is spanned by $v, f^{n} v, e^{n} v$. It follows that weight subspaces of M are 1-dimensional, and $P(M)$ is an arithmetic progression with step 2 . Thus we have four cases:

1. $P(M)$ is finite. Then $M=L_{m}$, the $m+1$-dimensional irreducible representation.
2. $P(M)$ is infinite, bounded above. In this case let v have the maximal weight m. Then $f^{n} v, n \geq 0$ is a basis of M, and we have $h v=m v, e v=0$. Thus $M=M_{m}$ is the Verma module with highest weight $m \in \mathbb{Z}$. This module is irreducible iff $m<0$ (Exercise8.11). Thus in this case we get modules $M_{-m}=M_{-m}^{+}, m \geq 1$.
3. $P(M)$ is infinite, bounded below. The situation is completely parallel (with f replaced by e) and we obtain lowest weight Verma modules M_{m}^{-}for $m \geq 1$. The (\mathfrak{g}, K)-modules M_{m}^{-}, M_{-m}^{+}are called the discrete series modules. ${ }^{14}$
4. $P(M)$ is unbounded on both sides. Let c be the scalar by which C acts on M. We have two cases - the even case $P(M)=2 \mathbb{Z}$ and the odd case $P(M)=2 \mathbb{Z}+1$. In both cases we have a basis $v_{n}, n \in P(M)$ such that

$$
\begin{equation*}
h v_{n}=n v_{n}, f v_{n}=v_{n-2}, e v_{n}=\Lambda_{n} v_{n+2}, \tag{4}
\end{equation*}
$$

[^0]where $\Lambda_{n} \neq 0$. To compute Λ_{n}, we write
$$
\Lambda_{n} v_{n}=f e v_{n}=\left(C-\frac{(h+1)^{2}}{4}\right) v_{n}=\left(c-\frac{(n+1)^{2}}{4}\right) v_{n}
$$

Thus

$$
\Lambda_{n}=c-\frac{(n+1)^{2}}{4} .
$$

Let $c=\frac{s^{2}}{4}$. Then

$$
\begin{equation*}
\Lambda_{n}=\frac{1}{4}(s-1-n)(s+1+n) . \tag{5}
\end{equation*}
$$

Thus we can replace v_{n} by its multiple w_{n} so that

$$
h w_{n}=n w_{n}, f w_{n}=\frac{1}{2}(s-1+n) w_{n-2}, e w_{n}=\frac{1}{2}(s-1-n) w_{n+2} .
$$

These formulas define $\mathfrak{g}_{\mathbb{C}}$-modules for any $s \in \mathbb{C}$. We will denote these modules by $P_{ \pm}(s)$ (plus for the even case, minus for the odd case). The (\mathfrak{g}, K)-modules $P_{ \pm}(s)$ are called the principal series modules. We see that $P_{+}(s)$ is irreducible if $s \notin 2 \mathbb{Z}+1$ and $P_{-}(s)$ is irreducible iff $s \notin 2 \mathbb{Z}$, and $P_{ \pm}(s)=P_{ \pm}(-s)$ in this case.

Moreover, when these conditions fail, we have short exact sequences

$$
\begin{gathered}
0 \rightarrow L_{2 m} \rightarrow P_{+}(2 m+1) \rightarrow M_{-2 m-2}^{+} \oplus M_{2 m+2}^{-} \rightarrow 0, m \in \mathbb{Z}_{\geq 0} \\
0 \rightarrow M_{-2 m-2}^{+} \oplus M_{2 m+2}^{-} \rightarrow P_{+}(-2 m-1) \rightarrow L_{2 m} \rightarrow 0, m \in \mathbb{Z}_{\geq 0} \\
0 \rightarrow L_{2 m+1} \rightarrow P_{-}(2 m+2) \rightarrow M_{-2 m-3}^{+} \oplus M_{2 m+3}^{-} \rightarrow 0, m \in \mathbb{Z}_{\geq 0} \\
0 \rightarrow M_{-2 m-3}^{+} \oplus M_{2 m+3}^{-} \rightarrow P_{-}(-2 m-2) \rightarrow L_{2 m+1} \rightarrow 0, m \in \mathbb{Z}_{\geq 0},
\end{gathered}
$$

and for $s=0$ we have an isomorphism

$$
P_{-}(0) \cong M_{-1}^{+} \oplus M_{1}^{-}
$$

All these modules except $P_{-}(0)$ are indecomposable. Thus we see that $P_{ \pm}(s) \not \not P_{ \pm}(-s)$ when it is reducible and $s \neq 0$.

As a result, we get
Proposition 9.1. The simple (\mathfrak{g}, K)-modules (or equivalently, HarishChandra modules) are $L_{m}, m \in \mathbb{Z}_{\geq 0}, M_{m}^{-}, M_{-m}^{+}, m \in \mathbb{Z}_{\geq 1}$, and $P_{+}(s)$, $s \notin 2 \mathbb{Z}+1, P_{-}(s), s \notin 2 \mathbb{Z}$, with the only isomorphisms $P_{ \pm}(s) \cong$ $P_{ \pm}(-s)$.

Exercise 9.2. Let $\widetilde{P}_{+}(s), \widetilde{P}_{-}(s)$ be the modules defined by (4),(5); so they are isomorphic to $P_{+}(s), P_{-}(s)$ when s is not an odd integer, respectively not a nonzero even integer. But we will consider $\widetilde{P}_{+}(s)$ when $s=2 k+1$ and $\widetilde{P}_{-}(s)$ when $s=2 k, k \neq 0$ (where k is an integer).
(i) Compute the Jordan-Hölder series of $\widetilde{P}_{+}(s), \widetilde{P}_{-}(s)$ and show that they are uniserial, i.e., have a unique filtration with irreducible successive quotients.
(ii) Do there exist isomorphisms $\widetilde{P}_{+}(s) \cong P_{+}(s), \widetilde{P}_{-}(s) \cong P_{-}(s)$?
9.2. Realizations. Let us discuss realizations of these representations by admissible representations of G. For L_{m} there is nothing to discuss, so we'll focus on principal series and discrete series.

The realization of principal series has already been discussed in Example 5.3. Namely, let $B \subset G$ be the subgroup of upper triangular matrices b with diagonal entries $\left(t(b), t(b)^{-1}\right)$. As before we consider the spaces

$$
\begin{gathered}
\mathbb{V}_{+}(s)=\left\{F \in C^{\infty}(G): F(g b)=F(g)|t(b)|^{s-1}\right\} \\
\mathbb{V}_{-}(s)=\left\{F \in C^{\infty}(G): F(g b)=F(g)|t(b)|^{s-1} \operatorname{sign}(t(b))\right\} .
\end{gathered}
$$

These are admissible representations of G acting by left multiplication. Let us compute $\mathbb{V}_{ \pm}(s)^{\text {fin }}$. To this end, note that the group $K=U(1)=S^{1}$ acts transitively on G / B with stabilizer $\mathbb{Z} / 2=\{ \pm 1\}$. Thus, pulling the function F back to K, we can realize $\mathbb{V}_{ \pm}(s)$ as the space $\mathbb{V}_{ \pm}$of functions $F \in C^{\infty}\left(S^{1}\right)$ such $F(-z)= \pm F(z)$.

A more geometric way of thinking about this is the following. Given a Lie group G and a closed subgroup B with Lie algebras $\mathfrak{g}, \mathfrak{b}$, every finite dimensional representation V of B gives rise to a vector bundle $E_{V}:=(G \times V) / B$ over G / B, where the action of B on $G \times V$ is given by $(g, v) b=\left(g b, b^{-1} v\right)$. For example, the tangent bundle $T(G / B)$ is obtained from the representation $V=\mathfrak{g} / \mathfrak{b}$. In our example, $\mathfrak{g} / \mathfrak{b}$ is the 1 -dimensional representation of B given by $b \mapsto t(b)^{-2}$. Thus sections of the tangent bundle on G / B (i.e., vector fields) can be interpreted as functions F on G such that

$$
F(g b)=F(g) t(b)^{2} .
$$

It follows that elements of $\mathbb{V}_{+}(s)$ can be interpreted as sections of the bundle $\mathrm{K}^{\frac{1-s}{2}}$ where $\mathrm{K}=T^{*}(G / B)$ is the canonical bundle, which coincides with the cotangent bundle since $\operatorname{dim}(G / B)=1$ (this bundle is trivial topologically but the action of diffeomorphisms of $G / B=S^{1}$, in particular, of elements of $S L_{2}(\mathbb{R})$ on its sections depends on $\left.s\right)$. In other words, elements of $\mathbb{V}_{+}(s)$ can be interpreted as "tensor fields of non-integer rank": $\phi(u)(d \arg u)^{\frac{1-s}{2}}$, where $u=e^{i \theta}, \theta$ is the angle coordinate on $G / B=\mathbb{R} \mathbb{P}^{1}$ and ϕ is a smooth function. Similarly, elements of $\mathbb{V}_{-}(s)$ can be interpreted as expressions $u^{\frac{1}{2}} \phi(u)(d \arg u)^{\frac{1-s}{2}}$, i.e., twovalued smooth sections of the same bundle which change sign when one goes around the circle. Thus the Lie algebra action on these modules is by the vector fields

$$
h=2 u \partial_{u}, f=\partial_{u}, e=-u^{2} \partial_{u},
$$

but they act on elements of $\mathbb{V}_{ \pm}(s)$ not as on functions but as on tensor fields. Thus $\mathbb{V}_{ \pm}(s)^{\text {fin }} \subset \mathbb{V}_{ \pm}(s)$ is the subspace of vectors such that
$\phi \in \mathbb{C}\left[u, u^{-1}\right]$. Taking the basis $w_{2 k}=u^{k}(d \arg u)^{\frac{1-s}{2}}$ in the even case and $w_{2 k+1}=u^{k+\frac{1}{2}}(d \arg u)^{\frac{1-s}{2}}$ in the odd case, we have

$$
h w_{n}=n w_{n}, f w_{n}=\frac{1}{2}(s-1+n) w_{n-2}, e w_{n}=\frac{1}{2}(s-1-n) w_{n+2} .
$$

Thus we get that $\mathbb{V}_{ \pm}(s)^{\text {fin }} \cong P_{ \pm}(s)$ for all $s \in \mathbb{C}$.
In particular, at points where $P_{ \pm}(s)$ are reducible, this gives realizations of the discrete series. Namely, consider the modules $\mathbb{V}_{+}(-r)$ for odd $r \geq 1$ and $\mathbb{V}_{-}(-r)$ for even $r \geq 1$. The space $\mathbb{V}_{+}(-r)$ consists of elements $\phi(u)\left(\frac{d u}{i u}\right)^{\frac{1+r}{2}}$ where ϕ is smooth (note that $\left.d \arg u=\frac{d u}{i u}\right)$. So it has the subrepresentation $\mathbb{V}_{+}^{0}(-r)$ of forms that extend holomorphically to the disk $|u| \leq 1$. Thus means that $\phi(u)=\sum_{N \geq 0} a_{N} u^{N+\frac{1+r}{2}}$, where a_{N} is a rapidly decaying sequence (faster than any power of N). In other words, $\mathbb{V}_{+}^{0}(-r)$ consists of elements $\psi(u)(d u)^{\frac{1+r}{2}}$, where ψ is smooth on the disk $|u| \leq 1$ and holomorphic for $|u|<1$. Thus the eigenvalues of h on $\mathbb{V}_{+}^{0}(-r)$ are $1+r+2 N$, hence $\mathbb{V}_{+}^{0}(-r)^{\mathrm{fin}}=M_{r+1}^{-}$.

Also, $\mathbb{V}_{+}(-r)$ has a subrepresentation $\mathbb{V}_{+}^{\infty}(-r)$ of forms that extend holomorphically to $|u| \geq 1$ (including infinity), which means that $\phi(u)=\sum_{N \geq 0} a_{N} u^{-N-\frac{1+r}{2}}$. In other words, $\mathbb{V}_{+}^{\infty}(-r)$ consists of elements $\psi\left(u^{-1}\right)\left(d u^{-1}\right)^{\frac{1+r}{2}}$, where ψ is smooth on the disk $|u| \leq 1$ and holomorphic for $|u|<1$. Thus we get $\mathbb{V}_{+}^{\infty}(-r)^{\text {fin }}=M_{-r-1}^{+}$.

Similarly, for even r we get $\mathbb{V}_{-}^{0}(-r)^{\mathrm{fin}}=M_{r+1}^{-}, \mathbb{V}_{-}^{\infty}(-r)^{\mathrm{fin}}=M_{-r-1}^{+}$.
9.3. Unitary representations. These Fréchet space realizations can easily be made Hilbert space realizations, by completing with respect to the usual L^{2}-norm given by

$$
\|\phi\|^{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\phi\left(e^{i \theta}\right)\right|^{2} d \theta
$$

However, this norm is only preserved by G when s is imaginary. In this case we obtain that the completed representations $\widehat{\mathbb{V}}_{ \pm}(s)$, in particular $\widehat{\mathbb{V}}_{-}^{0}(0), \widehat{\mathbb{V}}_{-}^{\infty}(0)$, are unitary. It follows that the Harish-Chandra modules $P_{ \pm}(s)$ for $s \in i \mathbb{R}$ and M_{1}^{-}, M_{-1}^{+}are unitary.

It turns out, however, that there are other irreducible unitary representations. Let us classify them. It suffices to classify irreducible unitary Harish-Chandra modules. Note that the relevant anti-involution on \mathfrak{g} is given by $e^{\dagger}=-f, f^{\dagger}=-e, h^{\dagger}=h$. Let M be irreducible and $v \in M$ a vector of weight n. Then if $($,$) is an invariant Hermitian form$ on M then

$$
(e v, e v)=-(f e v, v)=\left(\left(\frac{n+1}{2}\right)^{2}-c\right)(v, v),
$$

where c is a Casimir eigenvalue on M. We see that a nonzero invariant Hermitian form exists iff $c=\frac{s^{2}}{4} \in \mathbb{R}$, and such a form can be chosen positive definite iff $c<\left(\frac{n+1}{2}\right)^{2}$ for every $n \in P(M)$. This shows that all discrete series representations are unitary and also determines the unitarity range of s for the principal series representations. Thus we obtain the following theorem.

Theorem 9.3. (Gelfand-Naimark, Bargmann). The irreducible unitary representations of $S L_{2}(\mathbb{R})$ are Hilbert space completions of the following unitary Harish-Chandra modules:

- Discrete series $M_{m}^{-}, M_{-m}^{+}, m \in \mathbb{Z}_{\geq 1}$;
- Unitary principal series $P_{-}(s), s \in i \mathbb{R}, s \neq 0$;
- Unitary principal series $P_{+}(s), s \in i \mathbb{R}$, or $s \in \mathbb{R}, 0<|s|<1$;
- The trivial representation \mathbb{C}.

Here $P_{ \pm}(s) \cong P_{ \pm}(-s)$ and there are no other isomorphisms.
The principal series representations $P_{+}(s)$ for $0<s<1$ are called the complementary series.

Let us discuss explicit Hilbert space realizations of the unitary representations. We have already described such unitary realizations of principal series in $L^{2}\left(S^{1}\right)$, except the complementary series. For discrete series we only gave realizations for $m=1$, as M_{1}^{-}, M_{-1}^{+}are direct summands in $P_{-}(0)$. However, one can give a realization for any m. To this end, note that $G=S L_{2}(\mathbb{R})$ acts by fractional linear transformations on the disk $|u| \leq 1$. Moreover, we have the Poincaré (hyperbolic) metric on the disk which is G-invariant. The volume element for this metric looks like

$$
\mu=\frac{d u d \bar{u}}{\left(1-|u|^{2}\right)^{2}} .
$$

Thus for expressions $\omega=\psi(u)(d u)^{\frac{m}{2}}$ where $m \geq 2$ is an integer and $\psi(u)$ is holomorphic for $|u|<1$ we may define the G-invariant norm

$$
\|\omega\|^{2}=\int_{|u|<1} \frac{\omega \bar{\omega}}{\mu^{\frac{m}{2}-1}}=\int_{|u|<1}|\psi(u)|^{2}\left(1-|u|^{2}\right)^{m-2} d u d \bar{u} .
$$

Hence the Hilbert space completion \widehat{M}_{m}^{-}may be realized as the space H_{m} of holomorphic $\frac{m}{2}$-forms $\omega=\psi(u)(d u)^{\frac{m}{2}}$ for $|u|<1$ for which $\|\omega\|^{2}<\infty$ (note that this space is nonzero only if $m \geq 2$).

Likewise, \widehat{M}_{-m}^{+}can be similarly realized via antiholomorphic forms. Indeed, conjugation by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ (of determinant -1) defines
an outer automorphism of $S L_{2}(\mathbb{R})$ which is induced by complex conjugation on the unit disk, and this automorphism exchanges M_{m}^{-}with M_{-m}^{+}.

Exercise 9.4. Let G_{ℓ} be the ℓ-fold cover of $P S L_{2}(\mathbb{R})$ (for example, $\left.G_{1}=P S L_{2}(\mathbb{R}), G_{2}=S L_{2}(\mathbb{R})\right)$. Classify irreducible admissible representations (up to infinitesimal equivalence) and irreducible unitary representations of G_{ℓ} for all ℓ.

Hint. The maximal compact subgroup of G_{ℓ} is K_{ℓ}, the ℓ-fold cover of $P S O(2)$. Thus irreducible Harish-Chandra modules for G_{ℓ} are irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-modules on which the element h acts diagonalizably with eigenvalues in $\frac{2}{\ell} \mathbb{Z}$.
Exercise 9.5. Compute the matrix coefficients of the principal series modules, $\psi_{m, n}(g)=\left(w_{m}, g w_{n}\right), g \in S L_{2}(\mathbb{R})$.

Hint. Write g as $g=U_{1} D U_{2}$ where

$$
U_{k}=\exp \left(i \theta_{k} h\right) \in S O(2), \theta_{k} \in \mathbb{R} / 2 \pi \mathbb{Z}
$$

for $k=1,2$ and $D=\operatorname{diag}\left(a, a^{-1}\right)$ is diagonal, and express $\psi_{m, n}(g)$ as $e^{i\left(n \theta_{2}-m \theta_{1}\right)} \psi(m, n, a, s)$. Write the function $\psi(m, n, a, s)$ in terms of the Gauss hypergeometric function ${ }_{2} F_{1}$.

Exercise 9.6. (i) Show that for $-1<s<0$ the formula

$$
(f, g)_{s}:=\int_{\mathbb{R}^{2}} f(y) \overline{g(z)}|y-z|^{-s-1} d y d z
$$

defines a positive definite inner product on the space $C_{0}(\mathbb{R})$ of continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ with compact support (Hint: pass to Fourier transforms).
(ii) Deduce that if f is a measurable function on \mathbb{R} then

$$
0 \leq(f, f)_{s} \leq \infty
$$

so measurable functions f with $(f, f)_{s}<\infty$ modulo those for which $(f, f)_{s}=0$ form a Hilbert space \mathcal{H}_{s} with inner product $(,)_{s}$, which is the completion of $C_{0}(\mathbb{R})$ under $(,)_{s}$.
(iii) Let us view \mathcal{H}_{s} as the space of tensor fields $f(y)(d y)^{\frac{1-s}{2}}$, where f is as in (ii). Show that the complementary series unitary representation $\widehat{P}_{+}(s)$ of $S L_{2}(\mathbb{R})$ may be realized in \mathcal{H}_{s} with G acting naturally on such tensor fields. (Hint: show that the differential form $\frac{d y d z}{(y-z)^{2}}$ is invariant under simultaneous Möbius transformations of y, z by the same matrix).

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{14}$ More precisely, they are called so for $m \geq 2$, and called limit of discrete series for $m=1$.

