10. Chevalley restriction theorem and
Chevalley-Shephard-Todd theorem

10.1. Chevalley restriction theorem. Let g be a semisimple com-
plex Lie algebra with Cartan subalgebra b, and let W be the corre-
sponding Weyl group. Given F' € C|g]?, let Res(F') be its restriction
to b.

Theorem 10.1. (Chevalley restriction theorem) (i) Res(F) € C[h]".
(ii) The map Res : C[g]® — C[h]" is a graded algebra isomorpohism.

Proof. (i) Let G be the adjoint complex Lie group corresponding to
g. Then Clg]? = Cl[g]%, so F is G-invariant. Thus, denoting by H
the maximal torus in G with LieH = h, we see that the normalizer
N(H) preserves Res(F'). Since H acts trivially on b, we get that W =
N(H)/H preserves Res(F'), as desired.

(ii) It is clear that Res is a graded algebra homomorphism, so we just
need to show that it is bijective. The injectivity of this map follows
immediately from the fact that Res(F') determines the values of F' on
the subset of semisimple elements g; C g, and this subset is dense in g.

It remains to prove the surjectivity of Res. Consider the functions

FA,n(x) = TrLA('Tn) = X)\(xn)v reg
in C[g]9, where x, is the character of Ly. We’ll show that the functions
Res(F),,) for various A span C[h]"[n] = (S"H*)" for each n, which
implies that Res is surjective.

To this end, for every dominant integral weight A\ € P, let m) be
the orbit sum

my = Z et e ClP|V.
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X\ = Z N ATy,
u<A
where p < X means that A — p is a (possibly empty) sum of positive
roots, and N, is the matrix of weight multiplicities (in particular,
Ny = 1). This matrix is triangular with ones on the diagonal, so we
can invert it and get

(6) my = Z N/\MXM

n<A

We have

for some integers N,\#. Now, for h € b, let

Maalh)i= 3 )" = S Y Ay

pneWA weW
54



(note that pu(z)" = u(z™)). By (6) we have

Myn(h) = NapFun(h).

p<A

Thus it suffices to show that M, ,,(h) for various A span (S"h*)"[n] for
each n. Since averaging over W is a surjection S™h* — (S"h*)", it
suffices to show that the functions A" for A € P, span S"h*.

Denote the span of these functions by Y. Since P, is Zariski dense
in b*, we find that A\ € Y for all A € h*. Thus ¥ C S"h* is a
subrepresentation of GL(h*). But S"bh* is an irreducible representation
of GL(h*), hence Y = S™h*. This completes the proof of (ii). O

Remark 10.2. 1. Since the Killing form allows us to identify g & g*
and h = b* the Chevalley restriction theorem is equivalent to the
statement that the restriction map Res : C[g*]? = (Sg)* — C[h*]"V =
(SH)W is a graded algebra isomorphism.

2. The Chevalley restriction theorem trivially generalizes to reduc-
tive Lie algebras.

Example 10.3. Let g = gl (C). Then by the fundamental theorem
on symmetric functions, C[h]" = C[zy, ..., 2,]°» = Cley, ..., €,] where

ei(T1y ..y Ty) = Z Ty .. T,

are elementary symmetric functions. The Chevalley restriction the-
orem thus says that restriction defines an isomorphism between the
algebra C[g]? of conjugation-invariant polynomials of a single matrix
A and Cley, ..., €,]. Namely, let a; := Tr(A*A) be the coefficients of the
characteristic polynomial of A (up to sign). Then C|g|® = Clay, ..., a,)
and a;]y = €;(x1,...,2,). Another set of generators are b; := Tr(A"),
1 <i < mn; we have b;|y = p;(x1, ..., ), where

n
pi(xh ceey I’n) = sz
k=1

are the power sums, another set of generators of the algebra of sym-
metric functions. Yet another generating set is ¢; := Tr(S*A) which
restrict to complete symmetric functions

hi(x1, ..y xp) = Z Thoy oL -

a;(A) = e;(x1, ..., ), bi(A) = pi(xy, ..., 2,), ¢;(A) = hi(z1, ..., x),



where x1, ..., x, are the eigenvalues of A. Note that a;(A) = b1(A) =
c1(A) = Tr(A) and a,(A) = det A.

For g = sl,, (type A,_1), the story is the same, except that e; = p; =
hy =0 and a; = b; = ¢; = 0, so they should be removed.

Example 10.4. Similarly, for g = 502,.1(C) and g = spy, () (types
B,, and C,,) we have

ClH)" = Clay, ..., 2] < E2" =
C[x%a ceey xi]sn — C[€27 (S P 62n] = C[p27p47 -'-;an] = C[hz, h4, ceny h’QTLL

where ey, pr, hi are symmetric functions of 2n variables evaluated at the

point (o1, ..., Tn, —Tn, ..., —71), and ey = a2z’|b7 P2i = b2i|b; hai = C2z’|h
(note that the odd-indexed symmetric functions evaluate to 0). This
is so because the eigenvalues of A are x4, ..., z,, —2,, ..., —21, and also

0 in the orthogonal case.

The case g = 505,(C) (type D,) is a bit trickier. In this case the
Weyl group is W = S,, x (Z/2)%, where (Z/2)% is the group of binary
n-dimensional vectors with zero sum of coordinates. Thus it is easy to

check that
C[h]" = Cley, ..., €2n_2, v/€2n)-
where e; = e;(21, ..., Ln, —Zn, ..., —21). The polynomial /€3, = i"x1...2,
is the restriction of the Pfaffian Pf(A) = v/det A. Thus
Clg]® = Claz(A), ..., azn—2(A4), PL(A)].
The generators of Clg]? for exceptional g are less explicit, however.

10.2. Chevalley-Shephard-Todd theorem, part I. In Examples
10.3, 10.4 we observe that the algebras C[h]"" of Weyl group invariant
polynomials for classical groups are free (polynomial) algebras. This
is not true for a general finite group: e.g. if G = Z/2 acting on C?
by (z,9) — (—x,—y) then the ring of invariants C[z,y]%/? is C[a, b, |
where a = 22,0 = 2y, ¢ = 9%, and it is not free — it has a relation ac = b?
(and the set of generators is minimal). It turns out, however, that this is
true for all Weyl groups and more generally complex reflection groups.

Definition 10.5. A diagonalizable automorphism g : V. — V of a
finite-dimensional complex vector space V' is called a complex reflec-
tion if rank(g—1) = 1; in other words, in some basis g = diag(\, 1, ..., 1)
where A # 0,1. A complex reflection group is a finite subgroup
G C GL(V) generated by complex reflections.

For example, the Weyl group W C GL(b) of a semisimple Lie algebra
g and, more generally, a finite Coxeter group is a complex reflection

group, but there are others, e.g. S, X (Z/m)"™ acting on C" for m > 2,
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or, more generally, the subgroup G(m,d,n) in this group consisting of
elements for which the sum of Z/m-coordinates lies in d - Z/m for some
divisor d of m.

It is easy to see that any complex reflection group is uniquely a prod-
uct of irreducible ones, and irreducible complex reflection groups were
classified by Shephard and Todd in 1954. Besides symmetric groups S,
acting on C"! and G(m,d, n) acting on C" (which includes dihedral
groups), there are 34 exceptional groups, which include 19 subgroups of
G L, 6 exceptional Coxeter groups of rank > 3 (Hs, Hy, Fy, Eg, F7, Eg),
and 9 other groups.

Theorem 10.6. (Chevalley-Shephard-Todd theorem, part I, [Che], [ST])
Let V' be a finite-dimensional complex vector space and G C GL(V') be
a finite subgroup. Then C[V1]¢ is a polynomial algebra if and only if G
is a complex reflection group.
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