
10. Chevalley restriction theorem and
Chevalley-Shephard-Todd theorem

10.1. Chevalley restriction theorem. Let g be a semisimple com-
plex Lie algebra with Cartan subalgebra h, and let W be the corre-
sponding Weyl group. Given F ∈ C[g]g, let Res(F ) be its restriction
to h.

Theorem 10.1. (Chevalley restriction theorem) (i) Res(F ) ∈ C[h]W .
(ii) The map Res : C[g]g → C[h]W is a graded algebra isomorpohism.

Proof. (i) Let G be the adjoint complex Lie group corresponding to
g. Then C[g]g = C[g]G, so F is G-invariant. Thus, denoting by H
the maximal torus in G with LieH = h, we see that the normalizer
N(H) preserves Res(F ). Since H acts trivially on h, we get that W =
N(H)/H preserves Res(F ), as desired.

(ii) It is clear that Res is a graded algebra homomorphism, so we just
need to show that it is bijective. The injectivity of this map follows
immediately from the fact that Res(F ) determines the values of F on
the subset of semisimple elements gs ⊂ g, and this subset is dense in g.

It remains to prove the surjectivity of Res. Consider the functions

Fλ,n(x) := TrLλ(xn) = χλ(x
n), x ∈ g

in C[g]g, where χλ is the character of Lλ. We’ll show that the functions
Res(Fλ,n) for various λ span C[h]W [n] = (Snh∗)W for each n, which
implies that Res is surjective.

To this end, for every dominant integral weight λ ∈ P+ let mλ be
the orbit sum

mλ :=
∑
µ∈Wλ

eµ ∈ C[P ]W .

We have
χλ =

∑
µ≤λ

Nλµmµ,

where µ ≤ λ means that λ − µ is a (possibly empty) sum of positive
roots, and Nλµ is the matrix of weight multiplicities (in particular,
Nλλ = 1). This matrix is triangular with ones on the diagonal, so we
can invert it and get

(6) mλ =
∑
µ≤λ

Ñλµχµ

for some integers Ñλµ. Now, for h ∈ h, let

Mλ,n(h) :=
∑
µ∈Wλ

µ(h)n =
|Wλ|
|W |

∑
w∈W

λ(wh)n.
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(note that µ(x)n = µ(xn)). By (6) we have

Mλ,n(h) =
∑
µ≤λ

ÑλµFµ,n(h).

Thus it suffices to show that Mλ,n(h) for various λ span (Snh∗)W [n] for
each n. Since averaging over W is a surjection Snh∗ → (Snh∗)W , it
suffices to show that the functions λn for λ ∈ P+ span Snh∗.

Denote the span of these functions by Y . Since P+ is Zariski dense
in h∗, we find that λn ∈ Y for all λ ∈ h∗. Thus Y ⊂ Snh∗ is a
subrepresentation of GL(h∗). But Snh∗ is an irreducible representation
of GL(h∗), hence Y = Snh∗. This completes the proof of (ii). �

Remark 10.2. 1. Since the Killing form allows us to identify g ∼= g∗

and h ∼= h∗, the Chevalley restriction theorem is equivalent to the
statement that the restriction map Res : C[g∗]g = (Sg)g → C[h∗]W =
(Sh)W is a graded algebra isomorphism.

2. The Chevalley restriction theorem trivially generalizes to reduc-
tive Lie algebras.

Example 10.3. Let g = gln(C). Then by the fundamental theorem
on symmetric functions, C[h]W = C[x1, ..., xn]Sn = C[e1, ..., en] where

ei(x1, ..., xn) =
∑

k1<...<ki

xk1 ...xki

are elementary symmetric functions. The Chevalley restriction the-
orem thus says that restriction defines an isomorphism between the
algebra C[g]g of conjugation-invariant polynomials of a single matrix
A and C[e1, ..., en]. Namely, let ai := Tr(∧iA) be the coefficients of the
characteristic polynomial of A (up to sign). Then C[g]g = C[a1, ..., an]
and ai|h = ei(x1, ..., xn). Another set of generators are bi := Tr(Ai),
1 ≤ i ≤ n; we have bi|h = pi(x1, ..., xn), where

pi(x1, ..., xn) :=
n∑
k=1

xik

are the power sums, another set of generators of the algebra of sym-
metric functions. Yet another generating set is ci := Tr(SiA) which
restrict to complete symmetric functions

hi(x1, ..., xn) =
∑

k1≤...≤ki

xk1 ...xki .

Thus

ai(A) = ei(x1, ...., xn), bi(A) = pi(x1, ..., xn), ci(A) = hi(x1, ..., xn),
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where x1, ..., xn are the eigenvalues of A. Note that a1(A) = b1(A) =
c1(A) = Tr(A) and an(A) = detA.

For g = sln (type An−1), the story is the same, except that e1 = p1 =
h1 = 0 and a1 = b1 = c1 = 0, so they should be removed.

Example 10.4. Similarly, for g = so2n+1(C) and g = sp2n(C) (types
Bn and Cn) we have

C[h]W = C[x1, ..., xn]Snn(Z/2)n =

C[x2
1, ..., x

2
n]Sn = C[e2, e4, ..., e2n] = C[p2, p4, ..., p2n] = C[h2, h4, ..., h2n],

where ek, pk, hk are symmetric functions of 2n variables evaluated at the
point (x1, ..., xn,−xn, ...,−x1), and e2i = a2i|h, p2i = b2i|h, h2i = c2i|h
(note that the odd-indexed symmetric functions evaluate to 0). This
is so because the eigenvalues of A are x1, ..., xn,−xn, ...,−x1, and also
0 in the orthogonal case.

The case g = so2n(C) (type Dn) is a bit trickier. In this case the
Weyl group is W = Sn n (Z/2)n+, where (Z/2)n+ is the group of binary
n-dimensional vectors with zero sum of coordinates. Thus it is easy to
check that

C[h]W = C[e2, ..., e2n−2,
√
e2n].

where ej = ej(x1, ..., xn,−xn, ...,−x1). The polynomial
√
e2n = inx1...xn

is the restriction of the Pfaffian Pf(A) =
√

detA. Thus

C[g]g = C[a2(A), ..., a2n−2(A),Pf(A)].

The generators of C[g]g for exceptional g are less explicit, however.

10.2. Chevalley-Shephard-Todd theorem, part I. In Examples
10.3, 10.4 we observe that the algebras C[h]W of Weyl group invariant
polynomials for classical groups are free (polynomial) algebras. This
is not true for a general finite group: e.g. if G = Z/2 acting on C2

by (x, y) 7→ (−x,−y) then the ring of invariants C[x, y]Z/2 is C[a, b, c]
where a = x2, b = xy, c = y2, and it is not free – it has a relation ac = b2

(and the set of generators is minimal). It turns out, however, that this is
true for all Weyl groups and more generally complex reflection groups.

Definition 10.5. A diagonalizable automorphism g : V → V of a finite
dimensional complex vector space V is called a complex reflection
if rank(g − 1) = 1; in other words, in some basis g = diag(λ, 1, ..., 1)
where λ 6= 0, 1. A complex reflection group is a finite subgroup
G ⊂ GL(V ) generated by complex reflections.

For example, the Weyl group W ⊂ GL(h) of a semisimple Lie algebra
g and, more generally, a finite Coxeter group is a complex reflection
group, but there are others, e.g. Snn (Z/m)n acting on Cn for m > 2,
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or, more generally, the subgroup G(m, d, n) in this group consisting of
elements for which the sum of Z/m-coordinates lies in d ·Z/m for some
divisor d of m.

It is easy to see that any complex reflection group is uniquely a prod-
uct of irreducible ones, and irreducible complex reflection groups were
classified by Shephard and Todd in 1954. Besides symmetric groups Sn
acting on Cn−1 and G(m, d, n) acting on Cn (which includes dihedral
groups), there are 34 exceptional groups, which include 19 subgroups of
GL2, 6 exceptional Coxeter groups of rank ≥ 3 (H3, H4, F4, E6, E7, E8),
and 9 other groups.

Theorem 10.6. (Chevalley-Shephard-Todd theorem, part I) Let V be
a finite dimensional complex vector space and G ⊂ GL(V ) be a finite
subgroup. Then C[V ]G is a polynomial algebra if and only if G is a
complex reflection group.

57



MIT OpenCourseWare
https://ocw.mit.edu 

18.757 Representations of Lie Groups 
Fall 2023  

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	18.757cover.pdf
	cover.pdf
	Blank Page





