
11. Proof of the CST theorem, part I

11.1. Proof of the CST theorem, part I, the “if” direction. We
first need a lemma from invariant theory. Let G ⊂ GL(V ) be a finite
subgroup, and I ⊂ C[V ] be the ideal generated by positive degree
elements of C[V ]G. Let f1, ..., fr ∈ C[V ]G be homogeneous generators
of I (which exist by the Hilbert basis theorem).

Lemma 11.1. The algebra C[V ]G is generated by f1, ..., fr; in partic-
ular, it is finitely generated.

Proof. We need to show that every homogeneous f ∈ C[V ]G is a poly-
nomial of f1, ..., fr. The proof is by induction in d = deg f . The base
d = 0 is obvious. If d > 0, we have f ∈ I, so

f = s1f1 + ...+ srfr

where si ∈ C[V ] are homogeneous of degrees < d.
For h ∈ C[V ] let h∗ := 1

|G|
∑

g∈G gh ∈ C[V ]G be the G-average of h.

Then we have
f = s∗1f1 + ...+ s∗rfr.

But by the induction assumption, s∗i are polynomials of f1, .., fr, which
proves the lemma. �

Remark 11.2. Let A be a finitely generated commutative C-algebra
with an action of a finite group G. Lemma 11.1 implies that the algebra
AG is also finitely generated (the Hilbert-Noether lemma). Indeed,
pick generators a1, ..., am of A and let V ⊂ A be the (finite dimensional)
G-submodule generated by them. Then AG is a quotient of (SV )G =
C[V ∗]G, which is finitely generated by Lemma 11.1.

The next lemma establishes a special property of algebras of invari-
ants of complex reflection groups which will allow us to prove that they
are polynomial algebras.

Lemma 11.3. Assume that G is a complex reflection group. Let I
be as above, F1, ..., Fm ∈ C[V ]G be homogeneous, and suppose that F1

does not belong to the ideal in C[V ]G generated by F2, ..., Fm. Suppose
gi ∈ C[V ] for 1 ≤ i ≤ m are homogeneous and

∑m
i=1 giFi = 0. Then

g1 ∈ I.

Proof. Let J = (F2, ..., Fm) ⊂ C[V ]. We claim that F1 /∈ J . Indeed, if
F1 = s2F2 + ...+ smFm then F1 = s∗2F2 + ...+ s∗mFm, contradicting our
assumption.

We prove the lemma by induction in D := deg g1. If D = 0 then
g1 = 0, as F1 /∈ J . This establishes the base of induction.
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Now assume D > 0. Let σ ∈ G be a complex reflection and α be
the linear function on V defining the reflection hyperplane V σ (i.e., the
eigenvector of σ in V ∗ with eigenvalue 6= 1). Then σgi− gi vanishes on
V σ, so is divisible by α. Thus

σgi − gi = hiα

for some polynomials hi with deg hi = deg gi−1, in particular deg h1 =
D − 1. Applying the operator σ − 1 to the relation

∑m
i=1 giFi = 0 and

dividing by α, we obtain

m∑
i=1

hiFi = 0.

By the induction assumption h1 ∈ I, so σg1 − g1 ∈ I. Since W is
generated by complex reflections, this implies that wg1 − g1 ∈ I
for any w ∈ G. Thus g∗1 − g1 ∈ I. But g∗1 is a positive degree invariant,
so g∗1 ∈ I. Hence g1 ∈ I, which justifies the induction step. �

Now we are ready to prove the “if” direction of the Chevalley-
Shephard-Todd theorem. Suppose that f1, ..., fr ∈ C[V ]G are homoge-
nous of positive degree and form a minimal set of homogeneous gener-
ators of I.

Lemma 11.4. f1, ..., fr are algebraically independent.

Proof. Assume the contrary, i.e.,

(7) h(f1, ..., fr) = 0,

where h(y1, ..., yr) is a nonzero polynomial. Let di := deg fi. We may
assume that h is quasi-homogeneous (with deg yi = di), of the lowest
possible degree. Let xk be linear coordinates on V , ∂k := ∂

∂xk
. Differ-

entiating (7) with respect to xk and using the chain rule, we get

(8)
r∑
j=1

hj(f)∂kfj = 0,

where f := (f1, ..., fr) and hj := ∂h
∂yj

. By renumbering fj if needed,

we may assume that h1(f), ..., hm(f) is a minimal generating set of the
ideal (h1(f), ..., hr(f)) ⊂ C[V ]. Moreover, since h is of lowest degree,
hi(f) 6= 0 for some i, so m ≥ 1. Then for i > m we have

hi(f) =
m∑
j=1

gijhj(f)
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for some homogeneous polynomials gij ∈ C[V ] of degree

deg hi − deg hj = dj − di.

Substituting this into (8), we get

m∑
j=1

pjhj(f) = 0,

where

pj := ∂kfj +
r∑

i=m+1

gij∂kfi.

Since h1(f) /∈ (h2(f), ..., hm(f)), by Lemma 11.3 applied to Fi = hi(f),
1 ≤ i ≤ m, we have p1 ∈ I. Thus

∂kf1 +
r∑

i=m+1

gi1∂kfi =
r∑
i=1

qikfi,

where qik ∈ C[V ] are homogeneous of degree d1−di−1. Let us multiply
this equation by xk and add over all k. Then we get

(9) d1f1 +
r∑

i=m+1

gi1difi =
r∑
i=1

qifi,

where qi :=
∑

k xkqik. In particular, qi are homogeneous of strictly
positive degree. All terms in this equation are homogeneous of the
same degree d1, so we must have q1 = 0. Thus (9) implies that f1 ∈
(f2, ..., fr), a contradiction with our minimality assumption. �

Now, by Lemmas 11.4 and 11.1, we have C[V ]G = C[f1, ..., fr]. This
proves the “if” direction of the Chevalley-Shephard-Todd theorem.

Remark 11.5. Note that r = trdeg(C(V )G) = trdeg(C(V )) = n,
where n = dimV and trdeg denotes the transcendence degree of a field,
since transcendence degree does not change under finite extensions.

11.2. A lemma on group actions.

Lemma 11.6. Let U be an affine space over C and G a finite group
acting on U by polynomial automorphisms.

(i) Let u ∈ U be a point with trivial stabilizer in G. Then there exists
a local coordinate system on U near u consisting of elements of C[U ]G.

(ii) Maximal ideals in C[U ]G (i.e., characters χ : C[U ]G → C) are in
bijection with G-orbits on U , which assigns to an orbit Gu the character
χu(f) := f(u). Thus the set of maximal ideals in C[U ]G is U/G.
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Proof. (i) Pick a basis {ei} of T ∗uU . Since gu 6= u for any g ∈ G, g 6= 1,
there exist yi ∈ C[U ], 1 ≤ i ≤ dimU such that the linear approximation
of yi at gu is zero for all g 6= 1, yi(u) = 0, and dyi(u) = ei. Let y∗i be
the average of yi over G. Then {y∗i } form a required coordinate system.

(ii) Suppose v, u ∈ U, v /∈ Gu, then Gu ∩ Gv = ∅, so there exists
f ∈ C[U ] such that f |Gv = 0, f |Gu = 1. Moreover, by replacing f by
f ∗, we may choose such f ∈ C[U ]G. Then χv(f) = 0 while χu(f) = 1, so
χu 6= χv, hence u 7→ χu is injective. To show that it’s also surjective,
take a maximal ideal m ⊂ C[U ]G. It generates an ideal I ⊂ C[U ]
whose projection to C[U ]G is m. Thus I is a proper ideal, so by the
Nullstellensatz, its zero set Z ⊂ U is non-empty. Let u ∈ Z, then for
any f ∈ m, χu(f) = f(u) = 0. Hence m = Kerχu, as desired. �

11.3. Proof of the CST theorem, part I, the “only if” direction.
15

Let G ⊂ GL(V ) be a finite subgroup. Let H be the normal subgroup
of G generated by the complex reflections of G. Then by the “if” part
of the theorem, C[V ]H is a polynomial algebra with an action of G/H.
In other words, using Lemma 11.6(ii), U := V/H is an affine space
with a (possibly non-linear) action of G/H.

Moreover, we claim that G/H acts freely on U outside of a set of
codimension ≥ 2. Indeed, if 1 6= s ∈ G/H then hs is not a reflection
for any h ∈ H, so Ys := ∪h∈HV hs has codimension ≥ 2. Now, for any
v in the preimage of U s in V we have sv = h−1v for some h ∈ H, thus
hsv = v and v ∈ Ys. Thus U s is contained in the image of Ys in U ,
hence codim(U s) ≥ 2, as claimed.

Now assume that C[V ]G is a polynomial algebra, and let V/G = W
be the corresponding affine space. Consider the natural regular map
η : V/H = U → V/G = W between n-dimensional affine spaces, and
let J ∈ C[U ] be the Jacobian of this map (well defined up to scaling).
If u ∈ U and the stabilizer of u in G/H is trivial then by Lemma 11.6,
η is étale at u, hence J(u) 6= 0. But as shown above, the complement
of such points has codimension ≥ 2. This implies that J = const, as
a nonconstant polynomial would vanish on a subset of codimension 1.
Thus by the inverse function theorem η is an isomorphism near 0, in
particular bijective, hence H = G.

Remark 11.7. Let X be an smooth affine algebraic variety over C
and G be a finite group of automorphisms of X. Then by the Hilbert-
Noether lemma, C[X]G is finitely generated, so X/G := SpecC[X]G

is an affine algebraic variety. The Chevalley-Shephard-Todd theorem

15This proof uses some very basic algebraic geometry.
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implies that X/G is smooth at the image x∗ ∈ X/G of x ∈ X if and
only if the stabilizer Gx of x is a complex reflection group in GL(TxX).
In particular, X/G is smooth iff all stabilizers are complex reflection
groups. This follows from the formal Cartan lemma: any action of a
finite group G on a formal polydisk D over a field of characteristic zero
is equivalent to its linearization (i.e., to the action of G on the formal
neighborhood of 0 in the tangent space to D at its unique geometric
point).
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