11. Proof of the CST theorem, part I

11.1. Proof of the CST theorem, part I, the “if’ direction. We
first need a lemma from invariant theory. Let G C GL(V') be a finite
subgroup, and I C C[V] be the ideal generated by positive degree
elements of C[V]%. Let fi,..., f» € C[V]¢ be homogeneous generators
of I (which exist by the Hilbert basis theorem).

Lemma 11.1. The algebra C[V]¢ is generated by fi, ..., fr; in partic-
ular, it is finitely generated.

Proof. We need to show that every homogeneous f € C[V]% is a poly-
nomial of fi,..., f.. The proof is by induction in d = deg f. The base
d = 0 is obvious. If d > 0, we have f € I, so

f=s1fi+..+sfr

where s; € C[V] are homogeneous of degrees < d.
For h € C[V] let h* := ﬁ > gec9h € C[V]% be the G-average of h.
Then we have
f = Sifl + ...+ S:fr.
But by the induction assumption, s; are polynomials of fi, .., f,, which
proves the lemma. O

Remark 11.2. Let A be a finitely generated commutative C-algebra
with an action of a finite group G. Lemma 11.1 implies that the algebra
A% is also finitely generated (the Hilbert-Noether lemma). Indeed,
pick generators ay, ..., a,, of A andlet V' C A be the (finite-dimensional)
G-submodule generated by them. Then AY is a quotient of (SV)¢ =
C[V*]¢, which is finitely generated by Lemma 11.1.

The next lemma establishes a special property of algebras of invari-
ants of complex reflection groups which will allow us to prove that they
are polynomial algebras.

Lemma 11.3. Assume that G is a complex reflection group. Let I
be as above, I, ..., F,, € C[V]® be homogeneous, and suppose that I}
does not belong to the ideal in C[V]¢ generated by Fy, ..., Fy,. Suppose
gi € ClV] for 1 <1i < m are homogeneous and »_." | ¢;F; = 0. Then
g1 € 1.

Proof. Let J = (Fy, ..., F,) C C[V]. We claim that F} ¢ J. Indeed, if
Fy = s9Fy + ...+ s, Fy, then Fy = s3Fy + ... + 57 F,,, contradicting our
assumption.

We prove the lemma by induction in D := degg;. If D = 0 then

g1 =0, as I} ¢ J. This establishes the base of induction.
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Now assume D > 0. Let o € GG be a complex reflection and « be
the linear function on V' defining the reflection hyperplane V7 (i.e., the
eigenvector of o in V* with eigenvalue # 1). Then og; — g; vanishes on
V7, so is divisible by a. Thus

0g; — gi = hi

for some polynomials h; with deg h; = deg g; — 1, in particular deg h, =
D — 1. Applying the operator o — 1 to the relation )", ¢;F; = 0 and
dividing by «, we obtain

Zm: hiF; = 0.
i=1

By the induction assumption h; € I, so 0g; — g1 € I. Since W is
generated by complex reflections, this implies that wg; — g1 € [
for any w € G. Thus gf —¢1 € I. But gj is a positive degree invariant,
so g7 € I. Hence g; € I, which justifies the induction step. U

Now we are ready to prove the “if” direction of the Chevalley-
Shephard-Todd theorem. Suppose that fi, ..., f, € C[V]¢ are homoge-
nous of positive degree and form a minimal set of homogeneous gener-
ators of .

Lemma 11.4. f,..., f, are algebraically independent.

Proof. Assume the contrary, i.e.,

(7) h(fla--~>fr):()7

where h(yi, ...,y,) is a nonconstant polynomial. Let d; := deg f;. We
may assume that h is quasi-homogeneous (with degy; = d;), of the
lowest possible degree. Let x be linear coordinates on V', 0y := %.
Differentiating (7) with respect to xj and using the chain rule, we get

(8) > hiE)9ef; =0,

where f := (f1,.... fr) and h; = 6%-‘ By renumbering f; if needed,
we may assume that hy(f), ..., h,,(f) is a minimal generating set of the
ideal (hy(f), ..., h.(f)) C C[V]. Moreover, since h is nonconstant, h; # 0
for some j € [1,7], and since h is of lowest degree, this implies that

h;(f) # 0. So m > 1. Then for i > m we have

hi(f) = Zgijhj(f)
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for some homogeneous polynomials g;; € C[V] of degree
deg hz — deg hj = dj — dl
Substituting this into (8), we get

> pihi(f) =0,
j=1

where
,

pj=0fi+ Y GOkt
=m-+1
Since hy(f) & (ho(f), ..., hy(f)), by Lemma 11.3 applied to F; = h;(f),
1 <i <m, we have p; € I. Thus

Ok f1 + Z 9O fi = Z%’kfi:
i=m+1 =1

where ¢;, € C[V] are homogeneous of degree d; —d; — 1. Let us multiply
this equation by x; and add over all k. Then we get

(9) difi + Z gindi fi = Z%‘fi?
i=1

i=m+1

where ¢; := ), zxqx. In particular, ¢; are homogeneous of strictly
positive degree. All terms in this equation are homogeneous of the
same degree dj, so we must have ¢ = 0. Thus (9) implies that f; €
(f2 -, fr), a contradiction with our minimality assumption. O

Now, by Lemmas 11.4 and 11.1, we have C[V] = C[fi, ..., f.]. This
proves the “if” direction of the Chevalley-Shephard-Todd theorem.

Remark 11.5. Note that r = trdeg(C(V)%) = trdeg(C(V)) = n,
where n = dim V' and trdeg denotes the transcendence degree of a field,
since transcendence degree does not change under finite extensions.

11.2. A lemma on group actions.

Lemma 11.6. Let U be an affine space over C and G a finite group
acting on U by polynomial automorphisms.
(i) Let uw € U be a point with trivial stabilizer in G. Then there ezists
a local coordinate system on U near u consisting of elements of C[U]%.
(i) Mazimal ideals in C[U]® (i.e., characters x : C[U]Y — C) are in
bijection with G-orbits on U, which assigns to an orbit Gu the character

Xu(f) := f(u). Thus the set of mazimal ideals in C[U]® is U/G.
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Proof. (i) Pick a basis {e;} of T;'U. Since gu # wu for any g € G, g # 1,
there exist y; € C[U], 1 <7 < dim U such that the linear approximation
of y; at gu is zero for all g # 1, y;(u) = 0, and dy;(u) = e;. Let y} be
the average of y; over G. Then {y;} form a required coordinate system.

(i) Suppose v,u € U,v ¢ Gu, then Gu N Gv = (), so there exists
f € C[U] such that f|g, =0, f|lgu = 1. Moreover, by replacing f by
f*, we may choose such f € C[U]%. Then x,(f) = 0 while x,(f) = 1, so
Xu # Xv, hence u — ¥, is injective. To show that it’s also surjective,
take a maximal ideal m C C[U]“. It generates an ideal I C C[U]
whose projection to C[U]% is m. Thus I is a proper ideal, so by the
Nullstellensatz, its zero set Z C U is non-empty. Let u € Z, then for
any f € m, x,(f) = f(u) = 0. Hence m = Kery,, as desired. O

11.3. Proof of the CST theorem, part I, the “only if” direction.
14

Let G C GL(V) be a finite subgroup. Let H be the normal subgroup
of G generated by the complex reflections of G. Then by the “if” part
of the theorem, C[V] is a polynomial algebra with an action of G/H.
In other words, using Lemma 11.6(ii), U := V/H is an affine space
with a (possibly non-linear) action of G/H.

Moreover, we claim that G/H acts freely on U outside of a set of
codimension > 2. Indeed, if 1 # s € G/H and a € s then a is not a
reflection, so Y} := U,c,V* has codimension > 2. Now, for any v in the
preimage of U in V and a € s we have av = h~'v for some h € H,
thus hav = v and v € Y. Thus U? is contained in the image of Y in
U, hence codim(U®) > 2, as claimed.

Now assume that C[V]% is a polynomial algebra, and let V/G = W
be the corresponding affine space. Consider the natural regular map
n:V/H=U — V/G =W between n-dimensional affine spaces, and
let J € C[U] be the Jacobian of this map (well defined up to scaling).
If w € U and the stabilizer of u in G/H is trivial then by Lemma 11.6,
n is étale at u, hence J(u) # 0. But as shown above, the complement
of such points has codimension > 2. This implies that J = const, as
a nonconstant polynomial would vanish on a subset of codimension 1.
Thus by the inverse function theorem 7 is an isomorphism near 0, in
particular bijective, hence H = G.

Remark 11.7. Let X be an smooth affine algebraic variety over C
and G be a finite group of automorphisms of X. Then by the Hilbert-
Noether lemma, C[X]% is finitely generated, so X/G := SpecC[X]
is an affine algebraic variety. The Chevalley-Shephard-Todd theorem

s proof uses some very basic algebraic geometry.
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implies that X/G is smooth at the image z* € X/G of x € X if and
only if the stabilizer G, of x is a complex reflection group in GL(T,X).
In particular, X/G is smooth iff all stabilizers are complex reflection
groups. This follows from the formal Cartan lemma: any action of a
finite group G on a formal polydisk D over a field of characteristic zero
is equivalent to its linearization (i.e., to the action of G on the formal
neighborhood of 0 in the tangent space to D at its unique geometric
point).
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