
12. Chevalley-Shephard-Todd theorem, part II

12.1. Degrees of a complex reflection group. The degrees di of the
generators fi of C[V ]G for a complex reflection group G are uniquely
determined up to relabelings (even though fi themselves are not). In-
deed, recall that for a Z-graded vector space M with finite dimensional
homogeneous components its Hilbert series is

H(M, q) =
∑
i∈Z

dimM [i]qi

(also called Hilbert polynomial if dimM <∞). Then the Hilbert series
of C[V ]G is

H(C[V ]G, q) =
1∏r

i=1(1− qdi)
,

which uniquely determines di. These numbers are usually arranged in
non-decreasing order and are called the degrees of G. For instance,
for Weyl groups of classical simple Lie algebras we saw in Examples
10.3,10.4 that in type An−1 the degrees are 2, 3, ..., n, for Bn and Cn
they are 2, 4, ..., 2n, and for Dn they are 2, 4, ..., 2n − 2 and n. In
particular, in the last case, if n is even, the degree n occurs twice.

12.2. C[V ] as a C[V ]G-module. Let R be a commutative ring. Let A
be a commutative R-algebra with an R-linear action of a finite group
G.

Proposition 12.1. (Hilbert-Noether theorem) (i) A is integral
over AG. In particular, if A finitely generated then it is module-finite
over AG.

(ii) If R is Noetherian and A is finitely generated then so is AG.

Proof. (i) We will prove only the first statement, as the second one
then follows immediately. For a ∈ A, consider the monic polynomial

Pa(x) :=
∏
g∈G

(x− ga).

It is easy to see that Pa ∈ AG[x] and Pa(a) = 0, which implies the
statement.

(ii) This follows from (i) and the Artin-Tate lemma: If B ⊂ A is
an R-subalgebra of a finitely generated R-algebra A over a Noetherian
ring R and A is module-finite over B then B is finitely generated.16 �

16Recall the proof of the Artin-Tate lemma. Let x1, ..., xm generate A as an
R-algebra and let y1, ..., yn generate A as a B-module. Then we can write

xi =
∑
j

bijyj , yiyj =
∑
k

bijkyk
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This shows for any finite G ⊂ GL(V ), the algebra C[V ] is module-
finite over C[V ]G. Note that in (ii) we again proved that C[V ]G is
finitely generated.

Theorem 12.2. (Chevalley-Shephard-Todd theorem, part II) If G is
a complex reflection group then for any irreducible representation ρ
of G, the C[V ]G-module HomG(ρ,C[V ]) is free of rank dim ρ. Thus
the G-module R0 = C[x1, ..., xn]/(f1, ..., fn) is the regular representa-
tion and

∏n
i=1 di = |G|. Moreover, the Hilbert polynomial H(R0, q) :=∑

N≥0 dimR0[N ]qN is

H(R0, q) =
n∏
i=1

[di]q,

where [d]q := 1−qd
1−q = 1 + q + ...+ qd−1.

Thus we see that the Hilbert polynomial of HomG(ρ,R0) is some
polynomial Kρ(q) with nonnegative integer coefficients and Kρ(1) =
dim ρ. It is called the Kostka polynomial. We have∑

ρ

Kρ(q) dim ρ = H(R0, q) =
n∏
i=1

[di]q.

For example, for G = S3 and V the reflection representation we have
three irreducible representations: C+ (trivial), C− (sign) and V . We
have KC+(q) = 1 and

1 + 2KV (q) +KC−(q) = (1 + q)(1 + q2) = 1 + 2q + 2q2 + q3.

It follows that

KV (q) = q + q2, KC−(q) = q3.

12.3. Graded modules. For the proof of Theorem 12.2 we need to
recall some basics from commutative algebra, which we discuss in the
next few subsections.

Let k be a field, S a Z+-graded (not necessarily commutative) k-
algebra with generators fi of positive integer degrees deg fi = di, M a
Z+-graded left S-module, and M0 := M/S+M , where S+ ⊂ S is the
augmentation ideal.

with bij , bijk ∈ B. Then A is module-finite over the R-algebra B0 ⊂ B generated
by bij , bijk (namely, it is generated as a module over B0 by the yi). Using that R
and hence B0 is Noetherian, we obtain that B is also module-finite over B0. Since
B0 is a finitely generated R-algebra, so is B.
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Lemma 12.3. (i) Any homogeneous lift {v∗i } of a homogeneous basis
{vi} of M0 to M is a system of generators for M ; in particular, if
dimM0 <∞ then M is finitely generated.

(ii) If in addition M is projective, then {v∗i } is actually a basis of M
(in particular, M is free). Thus if dimM0[i] <∞ for all i then

H(M, q) = H(M0, q)H(S, q).

In particular, if S = k[f1, ..., fn] then

H(M, q) =
H(M0, q)∏n
i=1(1− qdi)

.

Proof. (i) We prove that any homogeneous element u ∈ M is a linear
combination of v∗i with coefficients in S by induction in deg u (with
obvious base). Namely, if u0 is the image of u in M0 then u0 =

∑
i civi

for some ci ∈ k (ci = 0 unless deg vi = deg u), and so

u−
∑
i

civ
∗
i =

∑
j

fjuj,

with deg uj = deg u−dj. So by the induction assumption uj =
∑

i pijv
∗
i

for some homogeneous pij ∈ S of degree deg u−dj−deg v∗i , and we get

u =
∑
i

piv
∗
i ,

where pi := ci +
∑

j fjpij.
17

(ii) Let M ′ be the free graded S-module with basis wi of degrees
degwi = deg vi, and f : M ′ → M be the surjection sending wi to v∗i .
Since M is projective, the map

f◦ : Hom(M,M ′)→ Hom(M,M)

is surjective, so we can pick a homogeneous g : M → M ′ of degree 0
such that f ◦ g = idM . Then g ◦ f : M ′ → M ′ is a projection which
identifies M ′ with M ⊕ Kerf as a graded S-module. But the map
f0 : M ′

0 → M0 induced by f sends the basis wi of M ′
0 to the basis vi

of M0, so is an isomorphism. It follows that (Kerf)0 = 0, so Kerf = 0
and f is an isomorphism, as claimed. �

12.4. Koszul complexes. Let R be a commutative ring and f ∈ R.
Then we can define a 2-step Koszul complex KR(f) = [R→ R] with
the differential given by multiplication by f (the two copies of R sit in
degrees −1 and 0). We have H0(KR(f)) = R/(f), and KR(f) is exact

17Note that for each i, one of these two summands is necessarily 0.
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in degree −1 if and only if f is not a zero divisor in R. This allows us
to define the Koszul complex of several elements of R:

KR(f1, ..., fm) = KR(f1)⊗R ...⊗R KR(fm)

with H0(KR(f1, ..., fm)) = R/(f1, ..., fm). Thus

KR(f1, ..., fm) = KR(f1, ..., fm−1)⊗R KR(fm).

For example, let R := k[x1, ..., xn] for a field k. Then the com-
plex Kn := KR(x1, ..., xn) = K⊗n1 is acyclic in negative degrees and
has H0 = k. Thus for any commutative k-algebra S, the complex
KR⊗S(x1, ..., xn) := KR(x1, ..., xn) ⊗ S is acyclic in negative degrees
and has H0 = S. By taking S = R and making a linear change of
variable, this yields a free resolution of R as an R-bimodule called the
Koszul resolution, which we’ll denote it by Kn:

0→ R⊗∧nkn⊗R→ ...→ R⊗∧2kn⊗R→ R⊗kn⊗R→ R⊗R→ R.

Now if M is any R-module then Kn ⊗RM is a free resolution of M of
length n. Thus we obtain

Proposition 12.4. If i > n then for any k[x1, ..., xn]-modules M,N ,
one has Exti(M,N) = 0.

12.5. Syzygies. Now assume that M is a finitely generated graded
module over R = k[x1, ..., xn]. Then M =: M0 is a quotient of R⊗ V0,
where V0 is a finite dimensional graded vector space. By the Hilbert
basis theorem, the kernel M1 of the map φ0 : R ⊗ V0 → M is finitely
generated, so is a quotient of R⊗V1 for some finite dimensional graded
space V1, and the kernel M2 of φ1 : R⊗ V1 →M1 is finitely generated,
and so on. The long exact sequences of Ext groups associated to the
short exact sequences

0→Mj+1 → R⊗ Vj →Mj → 0

and Proposition 12.4 then imply by induction in j that Exti(Mj, N) = 0
for any R-module N if i > n − j. In particular, the module Mn is
projective, hence free by Lemma 12.3, i.e., we may take Vn such that
Mn = R ⊗ Vn. This gives a free resolution of M by finitely generated
graded R-modules:

0→ R⊗ Vn → ...→ R⊗ V0 →M.

Thus, taking graded Euler characteristic we obtain

Theorem 12.5. (Hilbert syzygies theorem) We have

H(M, q) =
p(q)

(1− q)n
,
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where p is a polynomial with integer coefficients.

Proof. Indeed, p is just the alternating sum of the Hilbert polynomials
of Vj. �

12.6. The Hilbert-Samuel polynomial. Let R be a commutative
Noetherian ring and m ⊂ R a maximal ideal. Then R/m = k is
a field and mN/mN+1 is a finite dimensional k-vector space. Thus
gr(R) := ⊕N≥0m

N/mN+1 (where m0 := R) is a graded algebra gener-
ated in degree 1. So by the Theorem 12.5, the Hilbert series

H(Gr(R), q) =
∑
N≥0

dimk(m
N/mN+1)qN

is a rational function of the form p(q)
(1−q)m , where p is a polynomial and

m = dimk(m/m
2). Hence

PR,m(N) :=
N−1∑
j=0

dimk(m
j/mj+1) = length(R/mN)

is a polynomial in N for large enough N called the Hilbert-Samuel
polynomial of R at m. The degree of this polynomial equals the order
of the pole of H(Gr(R), q) at q = 1. We call this degree the dimension
of R at m, denoted dimmR. For example, if R = k[x1, ..., xn] and m is
any maximal ideal then PR,m(N) =

(
N+n−1

n

)
, so dimmR = n.

Lemma 12.6. Let f ∈ m. Then dimm(R/f) ≥ dimmR− 1.

Proof. The ideal (f) in R/mN is the image of fR/mN−1. So we have

PR/f,m(N) = length((R/mN)/f) ≥ length(R/mN)− length(R/mN−1)

= PR,m(N)− PR,m(N − 1),

which implies the statement. �

Let k be an algebraically closed field and mp ⊂ k[x1, ..., xn] be the
maximal ideal corresponding to p ∈ kn.

Corollary 12.7. Let f1, ..., fm ∈ k[x1, ..., xn] be homogeneous polyno-
mials. Let Z be an irreducible component of the zero set Z(f1, ..., fm) ⊂
kn. Then dimm0 k[Z] ≥ n−m.

Proof. Let p ∈ Z be not contained in other components of Z(f1, ..., fm).
Applying Lemma 12.6 repeatedly, we get dimmp k[Z] ≥ n − m. But
m0 = gr(mp), hence mN

0 ⊂ gr(mN
p ) and k[Z]/mN

p is a quotient of

k[Z]/mN
0 . Thus dimm0 k[Z] ≥ dimmp k[Z]18, so dimm0 k[Z] ≥ n−m. �

18In fact these dimensions are equal (to dimZ), but we don’t use it here.
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12.7. Regular sequences. Let R be a commutative ring. A sequence
f1, ..., fn ∈ R is called a regular sequence if for each j ∈ [1, n], fj is
not a zero divisor in R/(f1, ..., fj−1), and R/(f1, ..., fn) 6= 0.

Lemma 12.8. If f1, ..., fn ∈ R is a regular sequence then the complex
KR(f1, ..., fn) is exact in negative degrees.

Proof. The proof is by induction in n with obvious base. For the in-
duction step, note that by the inductive assumption KR(f1, ..., fn−1) is
exact in negative degrees with H0 = R/(f1, ..., fn−1), so the cohomol-
ogy of KR(f1, ..., fn) coincides with the cohomology KR/(f1,...,fn−1)(fn),
which vanishes in negative degrees since fn is not a zero divisor in
R/(f1, ..., fn−1). �

Now let k be an algebraically closed field.

Proposition 12.9. Suppose f1, ..., fn ∈ R := k[x1, ..., xn] are homoge-
neous polynomials of positive degree such that the zero set Z(f1, ..., fn)
consists of the origin. Then f1, ..., fn is a regular sequence.

Proof. We need to show that for each m ≤ n − 1, fm+1 is not a zero
divisor in Rm := k[x1, ..., xn]/(f1, ..., fm). Let Zm = Z(f1, ..., fm). It
suffices to show that fm+1 does not vanish on any irreducible component
of Zm. Assume the contrary, i.e., that it vanishes on such a component
Z0
m. By Corollary 12.7, we have dimm0 k[Z0

m] ≥ n−m. Since fm+1 = 0
on Z0

m, using Lemma 12.6 repeatedly, we get

dimm0 k[Z0
m]/(fm+1, ..., fn) ≥ 1,

which is a contradiction, as the zero set of fm+1, ..., fn on Z0
m consists

just of the origin, so this dimension must be zero. �

Proposition 12.10. Suppose f1, .., fn ∈ R := k[x1, ..., xn] are homoge-
neous polynomials of degrees d1, ..., dn > 0 such that R is a finitely gen-
erated module over S := k[f1, ..., fn]. Then this module is free of rank∏n

i=1 di. Moreover, the Hilbert polynomial of R0 := k[x1, ..., xn]/(f1, ..., fm)
(or, equivalently, of a space of free homogeneous generators of this mod-
ule) is

(10) H(R0, q) =
n∏
i=1

[di]q.

Proof. By Lemma 12.3, it suffices to show that R is a free S-module.
By assumption R0 is finite dimensional, i.e., the equations

f1 = ... = fn = 0

have only the zero solution. By Proposition 12.9, this implies that
f1, ..., fn is a regular sequence, so by Lemma 12.8 the Koszul complex
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KR(f1, ..., fn) associated to this sequence is exact in negative degrees.
Now, write S as k[a1, ..., an] with deg aj = 0 and consider the complex
KR⊗S(f1 − a1, ..., fn − an). This complex is filtered by degree with
associated graded being

KR⊗S(f1, ..., fn) = KR(f1, ..., fn)⊗ S.
Thus KR⊗S(f1 − a1, ..., fn − an) is also exact in nonzero degrees with

H0 = k[x1, ..., xn, a1, ..., an]/(f1 − a1, ..., fn − an) = R.

and the associated graded under the above filtration is gr(R) = R0⊗S
as an S-module. This module is free over S, hence so is R. �

Remark 12.11. Let f1, ..., fr be a regular sequence of homogeneous
polynomials in k[x1, ..., xn] of positive degree and Zm ⊂ kn be the zero
set of f1, ..., fm. Then fm+1 is not a zero divisor in k[x1, ..., xn]/(f1, ..., fm),
hence does not vanish identically on any irreducible component of Zm.
So by induction in m we get that the dimension of every irreducible
component of Zm is ≤ n−m. By Corollary 12.7, this implies that this
dimension is precisely n−m; in particular, r ≤ n, and every irreducible
component of the affine scheme Z := Speck[x1, ..., xn]/(f1, ..., fr) has
dimension n − r. Such a scheme is called a complete intersection.
In fact, it follows by induction in r that Z is a complete intersection
precisely when all its irreducible components have dimension ≤ n − r
(in which case they have dimension exactly n − r). In particular, if
r = n, this means that the only k-point of Z is the origin, as indicated
in Proposition 12.9. Thus the converse of this proposition also holds.

12.8. Proof of the CST Theorem, Part II. We are now ready to
prove Theorem 12.2. It follows from Proposition 12.10, Lemma 12.1
and Theorem 10.6 that C[V ] is a free C[V ]G-module. Since C[V ] =
⊕ρHomG(ρ,C[V ])⊗ρ, it follows by Lemma 12.3(ii) that HomG(ρ,C[V ])
is also a free C[V ]G-module (as it is graded and projective). Finally,
the rank of this module equals

dimC(V )G(C(V )G ⊗C[V ]G HomG(ρ,C[V ])) = dimC(V )G HomG(ρ,C(V )),

which equals dim ρ by basic Galois theory (C(V ) is a regular represen-
tation of G over C(V )G).

69



MIT OpenCourseWare
https://ocw.mit.edu 

18.757 Representations of Lie Groups 
Fall 2023  

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	18.757cover.pdf
	cover.pdf
	Blank Page





