12. Chevalley-Shephard-Todd theorem, part II

12.1. Degrees of a complex reflection group. The degrees d_i of the generators f_i of $\mathbb{C}[V]^G$ for a complex reflection group G are uniquely determined up to relabelings (even though f_i themselves are not). Indeed, recall that for a \mathbb{Z} -graded vector space M with finite dimensional homogeneous components its **Hilbert series** is

$$H(M,q) = \sum_{i \in \mathbb{Z}} \dim M[i]q^i$$

(also called Hilbert polynomial if dim $M < \infty$). Then the Hilbert series of $\mathbb{C}[V]^G$ is

$$H(\mathbb{C}[V]^G, q) = \frac{1}{\prod_{i=1}^r (1 - q^{d_i})},$$

which uniquely determines d_i . These numbers are usually arranged in non-decreasing order and are called the **degrees** of G. For instance, for Weyl groups of classical simple Lie algebras we saw in Examples 10.3,10.4 that in type A_{n-1} the degrees are 2, 3, ..., n, for B_n and C_n they are $2, 4, \dots, 2n$, and for D_n they are $2, 4, \dots, 2n - 2$ and n. In particular, in the last case, if n is even, the degree n occurs twice.

12.2. $\mathbb{C}[V]$ as a $\mathbb{C}[V]^G$ -module. Let R be a commutative ring. Let A be a commutative R-algebra with an R-linear action of a finite group G.

Proposition 12.1. (Hilbert-Noether theorem) (i) A is integral over A^G . In particular, if A finitely generated then it is module-finite over A^G .

(ii) If R is Noetherian and A is finitely generated then so is A^G .

Proof. (i) We will prove only the first statement, as the second one then follows immediately. For $a \in A$, consider the monic polynomial

$$P_a(x) := \prod_{g \in G} (x - ga).$$

It is easy to see that $P_a \in A^G[x]$ and $P_a(a) = 0$, which implies the statement.

(ii) This follows from (i) and the Artin-Tate lemma: If $B \subset A$ is an R-subalgebra of a finitely generated R-algebra A over a Noetherian ring R and A is module-finite over B then B is finitely generated.¹⁶ \Box

$$x_i = \sum_j b_{ij} y_j, \quad y_i y_j = \sum_k b_{ijk} y_k$$

¹⁶Recall the proof of the Artin-Tate lemma. Let $x_1, ..., x_m$ generate A as an *R*-algebra and let $y_1, ..., y_n$ generate *A* as a *B*-module. Then we can write

This shows for any finite $G \subset GL(V)$, the algebra $\mathbb{C}[V]$ is modulefinite over $\mathbb{C}[V]^G$. Note that in (ii) we again proved that $\mathbb{C}[V]^G$ is finitely generated.

Theorem 12.2. (Chevalley-Shephard-Todd theorem, part II) If G is a complex reflection group then for any irreducible representation ρ of G, the $\mathbb{C}[V]^G$ -module $\operatorname{Hom}_G(\rho, \mathbb{C}[V])$ is free of rank dim ρ . Thus the G-module $R_0 = \mathbb{C}[x_1, ..., x_n]/(f_1, ..., f_n)$ is the regular representation and $\prod_{i=1}^n d_i = |G|$. Moreover, the Hilbert polynomial $H(R_0, q) :=$ $\sum_{N\geq 0} \dim R_0[N]q^N$ is

$$H(R_0,q) = \prod_{i=1}^n [d_i]_q,$$

where $[d]_q := \frac{1-q^d}{1-q} = 1 + q + \dots + q^{d-1}$.

Thus we see that the Hilbert polynomial of $\operatorname{Hom}_G(\rho, R_0)$ is some polynomial $K_{\rho}(q)$ with nonnegative integer coefficients and $K_{\rho}(1) = \dim \rho$. It is called the **Kostka polynomial**. We have

$$\sum_{\rho} K_{\rho}(q) \dim \rho = H(R_0, q) = \prod_{i=1}^{n} [d_i]_q.$$

For example, for $G = S_3$ and V the reflection representation we have three irreducible representations: \mathbb{C}_+ (trivial), \mathbb{C}_- (sign) and V. We have $K_{\mathbb{C}_+}(q) = 1$ and

$$1 + 2K_V(q) + K_{\mathbb{C}_-}(q) = (1+q)(1+q^2) = 1 + 2q + 2q^2 + q^3.$$

It follows that

$$K_V(q) = q + q^2, \ K_{\mathbb{C}_-}(q) = q^3.$$

12.3. **Graded modules.** For the proof of Theorem 12.2 we need to recall some basics from commutative algebra, which we discuss in the next few subsections.

Let k be a field, S a \mathbb{Z}_+ -graded (not necessarily commutative) kalgebra with generators f_i of positive integer degrees deg $f_i = d_i$, M a \mathbb{Z}_+ -graded left S-module, and $M_0 := M/S_+M$, where $S_+ \subset S$ is the augmentation ideal.

with $b_{ij}, b_{ijk} \in B$. Then A is module-finite over the R-algebra $B_0 \subset B$ generated by b_{ij}, b_{ijk} (namely, it is generated as a module over B_0 by the y_i). Using that R and hence B_0 is Noetherian, we obtain that B is also module-finite over B_0 . Since B_0 is a finitely generated R-algebra, so is B.

Lemma 12.3. (i) Any homogeneous lift $\{v_i^*\}$ of a homogeneous basis $\{v_i\}$ of M_0 to M is a system of generators for M; in particular, if $\dim M_0 < \infty$ then M is finitely generated.

(ii) If in addition M is projective, then $\{v_i^*\}$ is actually a basis of M (in particular, M is free). Thus if dim $M_0[i] < \infty$ for all i then

$$H(M,q) = H(M_0,q)H(S,q).$$

In particular, if $S = k[f_1, ..., f_n]$ then

$$H(M,q) = \frac{H(M_0,q)}{\prod_{i=1}^{n} (1-q^{d_i})}$$

Proof. (i) We prove that any homogeneous element $u \in M$ is a linear combination of v_i^* with coefficients in S by induction in deg u (with obvious base). Namely, if u_0 is the image of u in M_0 then $u_0 = \sum_i c_i v_i$ for some $c_i \in k$ ($c_i = 0$ unless deg $v_i = \deg u$), and so

$$u - \sum_{i} c_i v_i^* = \sum_{j} f_j u_j,$$

with deg u_j = deg $u - d_j$. So by the induction assumption $u_j = \sum_i p_{ij} v_i^*$ for some homogeneous $p_{ij} \in S$ of degree deg $u - d_j - \deg v_i^*$, and we get

$$u = \sum_{i} p_i v_i^*,$$

where $p_i := c_i + \sum_j f_j p_{ij}$.¹⁷

(ii) Let M' be the free graded S-module with basis w_i of degrees deg $w_i = \deg v_i$, and $f: M' \to M$ be the surjection sending w_i to v_i^* . Since M is projective, the map

$$f \circ : \operatorname{Hom}(M, M') \to \operatorname{Hom}(M, M)$$

is surjective, so we can pick a homogeneous $g: M \to M'$ of degree 0 such that $f \circ g = \mathrm{id}_M$. Then $g \circ f: M' \to M'$ is a projection which identifies M' with $M \oplus \mathrm{Ker} f$ as a graded S-module. But the map $f_0: M'_0 \to M_0$ induced by f sends the basis w_i of M'_0 to the basis v_i of M_0 , so is an isomorphism. It follows that $(\mathrm{Ker} f)_0 = 0$, so $\mathrm{Ker} f = 0$ and f is an isomorphism, as claimed. \Box

12.4. Koszul complexes. Let R be a commutative ring and $f \in R$. Then we can define a 2-step Koszul complex $K_R(f) = [R \to R]$ with the differential given by multiplication by f (the two copies of R sit in degrees -1 and 0). We have $H^0(K_R(f)) = R/(f)$, and $K_R(f)$ is exact

¹⁷Note that for each i, one of these two summands is necessarily 0.

in degree -1 if and only if f is not a zero divisor in R. This allows us to define the Koszul complex of several elements of R:

$$K_R(f_1, \dots, f_m) = K_R(f_1) \otimes_R \dots \otimes_R K_R(f_m)$$

with $H^0(K_R(f_1, ..., f_m)) = R/(f_1, ..., f_m)$. Thus

$$K_R(f_1, ..., f_m) = K_R(f_1, ..., f_{m-1}) \otimes_R K_R(f_m).$$

For example, let $R := k[x_1, ..., x_n]$ for a field k. Then the complex $K_n := K_R(x_1, ..., x_n) = K_1^{\otimes n}$ is acyclic in negative degrees and has $H^0 = k$. Thus for any commutative k-algebra S, the complex $K_{R\otimes S}(x_1, ..., x_n) := K_R(x_1, ..., x_n) \otimes S$ is acyclic in negative degrees and has $H^0 = S$. By taking S = R and making a linear change of variable, this yields a free resolution of R as an R-bimodule called the **Koszul resolution**, which we'll denote it by K_n :

$$0 \to R \otimes \wedge^n k^n \otimes R \to \dots \to R \otimes \wedge^2 k^n \otimes R \to R \otimes k^n \otimes R \to R \otimes R \to R.$$

Now if M is any R-module then $K_n \otimes_R M$ is a free resolution of M of length n. Thus we obtain

Proposition 12.4. If i > n then for any $k[x_1, ..., x_n]$ -modules M, N, one has $\text{Ext}^i(M, N) = 0$.

12.5. **Syzygies.** Now assume that M is a finitely generated graded module over $R = k[x_1, ..., x_n]$. Then $M =: M_0$ is a quotient of $R \otimes V_0$, where V_0 is a finite dimensional graded vector space. By the Hilbert basis theorem, the kernel M_1 of the map $\phi_0 : R \otimes V_0 \to M$ is finitely generated, so is a quotient of $R \otimes V_1$ for some finite dimensional graded space V_1 , and the kernel M_2 of $\phi_1 : R \otimes V_1 \to M_1$ is finitely generated, and so on. The long exact sequences of Ext groups associated to the short exact sequences

$$0 \to M_{i+1} \to R \otimes V_i \to M_i \to 0$$

and Proposition 12.4 then imply by induction in j that $\operatorname{Ext}^{i}(M_{j}, N) = 0$ for any R-module N if i > n - j. In particular, the module M_{n} is projective, hence free by Lemma 12.3, i.e., we may take V_{n} such that $M_{n} = R \otimes V_{n}$. This gives a free resolution of M by finitely generated graded R-modules:

$$0 \to R \otimes V_n \to \dots \to R \otimes V_0 \to M.$$

Thus, taking graded Euler characteristic we obtain

Theorem 12.5. (Hilbert syzygies theorem) We have

$$H(M,q) = \frac{p(q)}{(1-q)^n},$$

where p is a polynomial with integer coefficients.

Proof. Indeed, p is just the alternating sum of the Hilbert polynomials of V_i . \square

12.6. The Hilbert-Samuel polynomial. Let R be a commutative Noetherian ring and $\mathfrak{m} \subset R$ a maximal ideal. Then $R/\mathfrak{m} = k$ is a field and $\mathfrak{m}^N/\mathfrak{m}^{N+1}$ is a finite dimensional k-vector space. Thus $\operatorname{gr}(R) := \bigoplus_{N>0} \mathfrak{m}^N/\mathfrak{m}^{N+1}$ (where $\mathfrak{m}^0 := R$) is a graded algebra generated in degree 1. So by the Theorem 12.5, the Hilbert series

$$H(\operatorname{Gr}(R),q) = \sum_{N \ge 0} \dim_k(\mathfrak{m}^N/\mathfrak{m}^{N+1})q^N$$

is a rational function of the form $\frac{p(q)}{(1-q)^m}$, where p is a polynomial and $m = \dim_k(\mathfrak{m}/\mathfrak{m}^2)$. Hence

$$P_{R,\mathfrak{m}}(N) := \sum_{j=0}^{N-1} \dim_k(\mathfrak{m}^j/\mathfrak{m}^{j+1}) = \operatorname{length}(R/\mathfrak{m}^N)$$

is a polynomial in N for large enough N called the **Hilbert-Samuel polynomial** of R at \mathfrak{m} . The degree of this polynomial equals the order of the pole of H(Gr(R), q) at q = 1. We call this degree the **dimension** of R at \mathfrak{m} , denoted dim_{\mathfrak{m}} R. For example, if $R = k[x_1, ..., x_n]$ and \mathfrak{m} is any maximal ideal then $P_{R,\mathfrak{m}}(N) = \binom{N+n-1}{n}$, so $\dim_{\mathfrak{m}} R = n$.

Lemma 12.6. Let $f \in \mathfrak{m}$. Then $\dim_{\mathfrak{m}}(R/f) \ge \dim_{\mathfrak{m}} R - 1$.

Proof. The ideal
$$(f)$$
 in R/\mathfrak{m}^N is the image of fR/\mathfrak{m}^{N-1} . So we have
 $P_{R/f,\mathfrak{m}}(N) = \operatorname{length}((R/\mathfrak{m}^N)/f) \geq \operatorname{length}(R/\mathfrak{m}^N) - \operatorname{length}(R/\mathfrak{m}^{N-1})$
 $= P_{R,\mathfrak{m}}(N) - P_{R,\mathfrak{m}}(N-1),$
which implies the statement.

which implies the statement.

Let k be an algebraically closed field and $\mathfrak{m}_p \subset k[x_1, ..., x_n]$ be the maximal ideal corresponding to $p \in k^n$.

Corollary 12.7. Let $f_1, ..., f_m \in k[x_1, ..., x_n]$ be homogeneous polynomials. Let Z be an irreducible component of the zero set $Z(f_1, ..., f_m) \subset$ k^n . Then $\dim_{\mathfrak{m}_0} k[Z] \ge n-m$.

Proof. Let $p \in Z$ be not contained in other components of $Z(f_1, ..., f_m)$. Applying Lemma 12.6 repeatedly, we get $\dim_{\mathfrak{m}_p} k[Z] \geq n-m$. But $\mathfrak{m}_0 = \operatorname{gr}(\mathfrak{m}_p)$, hence $\mathfrak{m}_0^N \subset \operatorname{gr}(\mathfrak{m}_p^N)$ and $k[Z]/\mathfrak{m}_p^N$ is a quotient of $k[Z]/\mathfrak{m}_0^N$. Thus $\dim_{\mathfrak{m}_0} k[Z] \ge \dim_{\mathfrak{m}_p} k[Z]^{18}$, so $\dim_{\mathfrak{m}_0} k[Z] \ge n-m$. \Box

¹⁸In fact these dimensions are equal (to dim Z), but we don't use it here.

12.7. **Regular sequences.** Let R be a commutative ring. A sequence $f_1, ..., f_n \in R$ is called a **regular sequence** if for each $j \in [1, n]$, f_j is not a zero divisor in $R/(f_1, ..., f_{j-1})$, and $R/(f_1, ..., f_n) \neq 0$.

Lemma 12.8. If $f_1, ..., f_n \in R$ is a regular sequence then the complex $K_R(f_1, ..., f_n)$ is exact in negative degrees.

Proof. The proof is by induction in n with obvious base. For the induction step, note that by the inductive assumption $K_R(f_1, ..., f_{n-1})$ is exact in negative degrees with $H^0 = R/(f_1, ..., f_{n-1})$, so the cohomology of $K_R(f_1, ..., f_n)$ coincides with the cohomology $K_{R/(f_1, ..., f_{n-1})}(f_n)$, which vanishes in negative degrees since f_n is not a zero divisor in $R/(f_1, ..., f_{n-1})$.

Now let k be an algebraically closed field.

Proposition 12.9. Suppose $f_1, ..., f_n \in R := k[x_1, ..., x_n]$ are homogeneous polynomials of positive degree such that the zero set $Z(f_1, ..., f_n)$ consists of the origin. Then $f_1, ..., f_n$ is a regular sequence.

Proof. We need to show that for each $m \leq n-1$, f_{m+1} is not a zero divisor in $R_m := k[x_1, ..., x_n]/(f_1, ..., f_m)$. Let $Z_m = Z(f_1, ..., f_m)$. It suffices to show that f_{m+1} does not vanish on any irreducible component of Z_m . Assume the contrary, i.e., that it vanishes on such a component Z_m^0 . By Corollary 12.7, we have $\dim_{\mathfrak{m}_0} k[Z_m^0] \geq n-m$. Since $f_{m+1} = 0$ on Z_m^0 , using Lemma 12.6 repeatedly, we get

$$\dim_{\mathfrak{m}_0} k[Z_m^0] / (f_{m+1}, ..., f_n) \ge 1,$$

which is a contradiction, as the zero set of $f_{m+1}, ..., f_n$ on Z_m^0 consists just of the origin, so this dimension must be zero.

Proposition 12.10. Suppose $f_1, ..., f_n \in R := k[x_1, ..., x_n]$ are homogeneous polynomials of degrees $d_1, ..., d_n > 0$ such that R is a finitely generated module over $S := k[f_1, ..., f_n]$. Then this module is free of rank $\prod_{i=1}^{n} d_i$. Moreover, the Hilbert polynomial of $R_0 := k[x_1, ..., x_n]/(f_1, ..., f_m)$ (or, equivalently, of a space of free homogeneous generators of this module) is

(10)
$$H(R_0, q) = \prod_{i=1}^{n} [d_i]_q$$

Proof. By Lemma 12.3, it suffices to show that R is a free S-module. By assumption R_0 is finite dimensional, i.e., the equations

$$f_1 = \dots = f_n = 0$$

have only the zero solution. By Proposition 12.9, this implies that $f_1, ..., f_n$ is a regular sequence, so by Lemma 12.8 the Koszul complex

 $K_R(f_1, ..., f_n)$ associated to this sequence is exact in negative degrees. Now, write S as $k[a_1, ..., a_n]$ with deg $a_j = 0$ and consider the complex $K_{R\otimes S}(f_1 - a_1, ..., f_n - a_n)$. This complex is filtered by degree with associated graded being

$$K_{R\otimes S}(f_1, ..., f_n) = K_R(f_1, ..., f_n) \otimes S.$$

Thus $K_{R\otimes S}(f_1 - a_1, ..., f_n - a_n)$ is also exact in nonzero degrees with

$$H^{0} = k[x_{1}, ..., x_{n}, a_{1}, ..., a_{n}]/(f_{1} - a_{1}, ..., f_{n} - a_{n}) = R$$

and the associated graded under the above filtration is $gr(R) = R_0 \otimes S$ as an S-module. This module is free over S, hence so is R.

Remark 12.11. Let $f_1, ..., f_r$ be a regular sequence of homogeneous polynomials in $k[x_1, ..., x_n]$ of positive degree and $Z_m \subset k^n$ be the zero set of $f_1, ..., f_m$. Then f_{m+1} is not a zero divisor in $k[x_1, ..., x_n]/(f_1, ..., f_m)$, hence does not vanish identically on any irreducible component of Z_m . So by induction in m we get that the dimension of every irreducible component of Z_m is $\leq n - m$. By Corollary 12.7, this implies that this dimension is precisely n - m; in particular, $r \leq n$, and every irreducible component of the affine scheme $\mathcal{Z} := \operatorname{Speck}[x_1, ..., x_n]/(f_1, ..., f_r)$ has dimension n - r. Such a scheme is called a **complete intersection**. In fact, it follows by induction in r that \mathcal{Z} is a complete intersection precisely when all its irreducible components have dimension $\leq n - r$ (in which case they have dimension exactly n - r). In particular, if r = n, this means that the only k-point of \mathcal{Z} is the origin, as indicated in Proposition 12.9. Thus the converse of this proposition also holds.

12.8. **Proof of the CST Theorem, Part II.** We are now ready to prove Theorem 12.2. It follows from Proposition 12.10, Lemma 12.1 and Theorem 10.6 that $\mathbb{C}[V]$ is a free $\mathbb{C}[V]^G$ -module. Since $\mathbb{C}[V] = \bigoplus_{\rho} \operatorname{Hom}_G(\rho, \mathbb{C}[V]) \otimes \rho$, it follows by Lemma 12.3(ii) that $\operatorname{Hom}_G(\rho, \mathbb{C}[V])$ is also a free $\mathbb{C}[V]^G$ -module (as it is graded and projective). Finally, the rank of this module equals

 $\dim_{\mathbb{C}(V)^G}(\mathbb{C}(V)^G \otimes_{\mathbb{C}[V]^G} \operatorname{Hom}_G(\rho, \mathbb{C}[V])) = \dim_{\mathbb{C}(V)^G} \operatorname{Hom}_G(\rho, \mathbb{C}(V)),$ which equals dim ρ by basic Galois theory ($\mathbb{C}(V)$ is a regular representation of G over $\mathbb{C}(V)^G$).

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.