12. Chevalley-Shephard-Todd theorem, part II

12.1. Degrees of a complex reflection group. The degrees d_{i} of the generators f_{i} of $\mathbb{C}[V]^{G}$ for a complex reflection group G are uniquely determined up to relabelings (even though f_{i} themselves are not). Indeed, recall that for a \mathbb{Z}-graded vector space M with finite dimensional homogeneous components its Hilbert series is

$$
H(M, q)=\sum_{i \in \mathbb{Z}} \operatorname{dim} M[i] q^{i}
$$

(also called Hilbert polynomial if $\operatorname{dim} M<\infty$). Then the Hilbert series of $\mathbb{C}[V]^{G}$ is

$$
H\left(\mathbb{C}[V]^{G}, q\right)=\frac{1}{\prod_{i=1}^{r}\left(1-q^{d_{i}}\right)},
$$

which uniquely determines d_{i}. These numbers are usually arranged in non-decreasing order and are called the degrees of G. For instance, for Weyl groups of classical simple Lie algebras we saw in Examples 10.3,10.4 that in type A_{n-1} the degrees are $2,3, \ldots, n$, for B_{n} and C_{n} they are $2,4, \ldots, 2 n$, and for D_{n} they are $2,4, \ldots, 2 n-2$ and n. In particular, in the last case, if n is even, the degree n occurs twice.
12.2. $\mathbb{C}[V]$ as a $\mathbb{C}[V]^{G}$-module. Let R be a commutative ring. Let A be a commutative R-algebra with an R-linear action of a finite group G.

Proposition 12.1. (Hilbert-Noether theorem) (i) A is integral over A^{G}. In particular, if A finitely generated then it is module-finite over A^{G}.
(ii) If R is Noetherian and A is finitely generated then so is A^{G}.

Proof. (i) We will prove only the first statement, as the second one then follows immediately. For $a \in A$, consider the monic polynomial

$$
P_{a}(x):=\prod_{g \in G}(x-g a) .
$$

It is easy to see that $P_{a} \in A^{G}[x]$ and $P_{a}(a)=0$, which implies the statement.
(ii) This follows from (i) and the Artin-Tate lemma: If $B \subset A$ is an R-subalgebra of a finitely generated R-algebra A over a Noetherian ring R and A is module-finite over B then B is finitely generated. ${ }^{16}$

[^0]This shows for any finite $G \subset G L(V)$, the algebra $\mathbb{C}[V]$ is modulefinite over $\mathbb{C}[V]^{G}$. Note that in (ii) we again proved that $\mathbb{C}[V]^{G}$ is finitely generated.

Theorem 12.2. (Chevalley-Shephard-Todd theorem, part II) If G is a complex reflection group then for any irreducible representation ρ of G, the $\mathbb{C}[V]^{G}$-module $\operatorname{Hom}_{G}(\rho, \mathbb{C}[V])$ is free of rank $\operatorname{dim} \rho$. Thus the G-module $R_{0}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{n}\right)$ is the regular representation and $\prod_{i=1}^{n} d_{i}=|G|$. Moreover, the Hilbert polynomial $H\left(R_{0}, q\right):=$ $\sum_{N \geq 0} \operatorname{dim} R_{0}[N] q^{N}$ is

$$
H\left(R_{0}, q\right)=\prod_{i=1}^{n}\left[d_{i}\right]_{q}
$$

where $[d]_{q}:=\frac{1-q^{d}}{1-q}=1+q+\ldots+q^{d-1}$.
Thus we see that the Hilbert polynomial of $\operatorname{Hom}_{G}\left(\rho, R_{0}\right)$ is some polynomial $K_{\rho}(q)$ with nonnegative integer coefficients and $K_{\rho}(1)=$ $\operatorname{dim} \rho$. It is called the Kostka polynomial. We have

$$
\sum_{\rho} K_{\rho}(q) \operatorname{dim} \rho=H\left(R_{0}, q\right)=\prod_{i=1}^{n}\left[d_{i}\right]_{q}
$$

For example, for $G=S_{3}$ and V the reflection representation we have three irreducible representations: \mathbb{C}_{+}(trivial), $\mathbb{C}_{-}(\operatorname{sign})$ and V. We have $K_{\mathbb{C}_{+}}(q)=1$ and

$$
1+2 K_{V}(q)+K_{\mathbb{C}_{-}}(q)=(1+q)\left(1+q^{2}\right)=1+2 q+2 q^{2}+q^{3}
$$

It follows that

$$
K_{V}(q)=q+q^{2}, K_{\mathbb{C}_{-}}(q)=q^{3} .
$$

12.3. Graded modules. For the proof of Theorem 12.2 we need to recall some basics from commutative algebra, which we discuss in the next few subsections.

Let k be a field, S a \mathbb{Z}_{+}-graded (not necessarily commutative) k algebra with generators f_{i} of positive integer degrees $\operatorname{deg} f_{i}=d_{i}, M$ a \mathbb{Z}_{+}-graded left S-module, and $M_{0}:=M / S_{+} M$, where $S_{+} \subset S$ is the augmentation ideal.
$\overline{\text { with } b_{i j}, b_{i j k}} \in B$. Then A is module-finite over the R-algebra $B_{0} \subset B$ generated by $b_{i j}, b_{i j k}$ (namely, it is generated as a module over B_{0} by the y_{i}). Using that R and hence B_{0} is Noetherian, we obtain that B is also module-finite over B_{0}. Since B_{0} is a finitely generated R-algebra, so is B.

Lemma 12.3. (i) Any homogeneous lift $\left\{v_{i}^{*}\right\}$ of a homogeneous basis $\left\{v_{i}\right\}$ of M_{0} to M is a system of generators for M; in particular, if $\operatorname{dim} M_{0}<\infty$ then M is finitely generated.
(ii) If in addition M is projective, then $\left\{v_{i}^{*}\right\}$ is actually a basis of M (in particular, M is free). Thus if $\operatorname{dim} M_{0}[i]<\infty$ for all i then

$$
H(M, q)=H\left(M_{0}, q\right) H(S, q)
$$

In particular, if $S=k\left[f_{1}, \ldots, f_{n}\right]$ then

$$
H(M, q)=\frac{H\left(M_{0}, q\right)}{\prod_{i=1}^{n}\left(1-q^{d_{i}}\right)} .
$$

Proof. (i) We prove that any homogeneous element $u \in M$ is a linear combination of v_{i}^{*} with coefficients in S by induction in $\operatorname{deg} u$ (with obvious base). Namely, if u_{0} is the image of u in M_{0} then $u_{0}=\sum_{i} c_{i} v_{i}$ for some $c_{i} \in k\left(c_{i}=0\right.$ unless $\left.\operatorname{deg} v_{i}=\operatorname{deg} u\right)$, and so

$$
u-\sum_{i} c_{i} v_{i}^{*}=\sum_{j} f_{j} u_{j}
$$

with $\operatorname{deg} u_{j}=\operatorname{deg} u-d_{j}$. So by the induction assumption $u_{j}=\sum_{i} p_{i j} v_{i}^{*}$ for some homogeneous $p_{i j} \in S$ of degree $\operatorname{deg} u-d_{j}-\operatorname{deg} v_{i}^{*}$, and we get

$$
u=\sum_{i} p_{i} v_{i}^{*}
$$

where $p_{i}:=c_{i}+\sum_{j} f_{j} p_{i j} .{ }^{17}$
(ii) Let M^{\prime} be the free graded S-module with basis w_{i} of degrees $\operatorname{deg} w_{i}=\operatorname{deg} v_{i}$, and $f: M^{\prime} \rightarrow M$ be the surjection sending w_{i} to v_{i}^{*}. Since M is projective, the map

$$
f \circ: \operatorname{Hom}\left(M, M^{\prime}\right) \rightarrow \operatorname{Hom}(M, M)
$$

is surjective, so we can pick a homogeneous $g: M \rightarrow M^{\prime}$ of degree 0 such that $f \circ g=\operatorname{id}_{M}$. Then $g \circ f: M^{\prime} \rightarrow M^{\prime}$ is a projection which identifies M^{\prime} with $M \oplus \operatorname{Ker} f$ as a graded S-module. But the map $f_{0}: M_{0}^{\prime} \rightarrow M_{0}$ induced by f sends the basis w_{i} of M_{0}^{\prime} to the basis v_{i} of M_{0}, so is an isomorphism. It follows that $(\operatorname{Ker} f)_{0}=0$, so $\operatorname{Ker} f=0$ and f is an isomorphism, as claimed.
12.4. Koszul complexes. Let R be a commutative ring and $f \in R$. Then we can define a 2-step Koszul complex $K_{R}(f)=[R \rightarrow R]$ with the differential given by multiplication by f (the two copies of R sit in degrees -1 and 0$)$. We have $H^{0}\left(K_{R}(f)\right)=R /(f)$, and $K_{R}(f)$ is exact

[^1]in degree -1 if and only if f is not a zero divisor in R. This allows us to define the Koszul complex of several elements of R :
$$
K_{R}\left(f_{1}, \ldots, f_{m}\right)=K_{R}\left(f_{1}\right) \otimes_{R} \ldots \otimes_{R} K_{R}\left(f_{m}\right)
$$
with $H^{0}\left(K_{R}\left(f_{1}, \ldots, f_{m}\right)\right)=R /\left(f_{1}, \ldots, f_{m}\right)$. Thus
$$
K_{R}\left(f_{1}, \ldots, f_{m}\right)=K_{R}\left(f_{1}, \ldots, f_{m-1}\right) \otimes_{R} K_{R}\left(f_{m}\right)
$$

For example, let $R:=k\left[x_{1}, \ldots, x_{n}\right]$ for a field k. Then the complex $K_{n}:=K_{R}\left(x_{1}, \ldots, x_{n}\right)=K_{1}^{\otimes n}$ is acyclic in negative degrees and has $H^{0}=k$. Thus for any commutative k-algebra S, the complex $K_{R \otimes S}\left(x_{1}, \ldots, x_{n}\right):=K_{R}\left(x_{1}, \ldots, x_{n}\right) \otimes S$ is acyclic in negative degrees and has $H^{0}=S$. By taking $S=R$ and making a linear change of variable, this yields a free resolution of R as an R-bimodule called the Koszul resolution, which we'll denote it by K_{n} :
$0 \rightarrow R \otimes \wedge^{n} k^{n} \otimes R \rightarrow \ldots \rightarrow R \otimes \wedge^{2} k^{n} \otimes R \rightarrow R \otimes k^{n} \otimes R \rightarrow R \otimes R \rightarrow R$.
Now if M is any R-module then $K_{n} \otimes_{R} M$ is a free resolution of M of length n. Thus we obtain

Proposition 12.4. If $i>n$ then for any $k\left[x_{1}, \ldots, x_{n}\right]$-modules M, N, one has $\operatorname{Ext}^{i}(M, N)=0$.
12.5. Syzygies. Now assume that M is a finitely generated graded module over $R=k\left[x_{1}, \ldots, x_{n}\right]$. Then $M=: M_{0}$ is a quotient of $R \otimes V_{0}$, where V_{0} is a finite dimensional graded vector space. By the Hilbert basis theorem, the kernel M_{1} of the map $\phi_{0}: R \otimes V_{0} \rightarrow M$ is finitely generated, so is a quotient of $R \otimes V_{1}$ for some finite dimensional graded space V_{1}, and the kernel M_{2} of $\phi_{1}: R \otimes V_{1} \rightarrow M_{1}$ is finitely generated, and so on. The long exact sequences of Ext groups associated to the short exact sequences

$$
0 \rightarrow M_{j+1} \rightarrow R \otimes V_{j} \rightarrow M_{j} \rightarrow 0
$$

and Proposition 12.4 then imply by induction in j that $\operatorname{Ext}^{i}\left(M_{j}, N\right)=0$ for any R-module N if $i>n-j$. In particular, the module M_{n} is projective, hence free by Lemma 12.3, i.e., we may take V_{n} such that $M_{n}=R \otimes V_{n}$. This gives a free resolution of M by finitely generated graded R-modules:

$$
0 \rightarrow R \otimes V_{n} \rightarrow \ldots \rightarrow R \otimes V_{0} \rightarrow M
$$

Thus, taking graded Euler characteristic we obtain
Theorem 12.5. (Hilbert syzygies theorem) We have

$$
H(M, q)=\frac{p(q)}{(1-q)^{n}}
$$

where p is a polynomial with integer coefficients.
Proof. Indeed, p is just the alternating sum of the Hilbert polynomials of V_{j}.
12.6. The Hilbert-Samuel polynomial. Let R be a commutative Noetherian ring and $\mathfrak{m} \subset R$ a maximal ideal. Then $R / \mathfrak{m}=k$ is a field and $\mathfrak{m}^{N} / \mathfrak{m}^{N+1}$ is a finite dimensional k-vector space. Thus $\operatorname{gr}(R):=\oplus_{N \geq 0} \mathfrak{m}^{N} / \mathfrak{m}^{N+1}\left(\right.$ where $\left.\mathfrak{m}^{0}:=R\right)$ is a graded algebra generated in degree 1. So by the Theorem 12.5, the Hilbert series

$$
H(\operatorname{Gr}(R), q)=\sum_{N \geq 0} \operatorname{dim}_{k}\left(\mathfrak{m}^{N} / \mathfrak{m}^{N+1}\right) q^{N}
$$

is a rational function of the form $\frac{p(q)}{(1-q)^{m}}$, where p is a polynomial and $m=\operatorname{dim}_{k}\left(\mathfrak{m} / \mathfrak{m}^{2}\right)$. Hence

$$
P_{R, \mathfrak{m}}(N):=\sum_{j=0}^{N-1} \operatorname{dim}_{k}\left(\mathfrak{m}^{j} / \mathfrak{m}^{j+1}\right)=\operatorname{length}\left(R / \mathfrak{m}^{N}\right)
$$

is a polynomial in N for large enough N called the Hilbert-Samuel polynomial of R at \mathfrak{m}. The degree of this polynomial equals the order of the pole of $H(\operatorname{Gr}(R), q)$ at $q=1$. We call this degree the dimension of R at \mathfrak{m}, denoted $\operatorname{dim}_{\mathfrak{m}} R$. For example, if $R=k\left[x_{1}, \ldots, x_{n}\right]$ and \mathfrak{m} is any maximal ideal then $P_{R, \mathfrak{m}}(N)=\binom{N+n-1}{n}$, so $\operatorname{dim}_{\mathfrak{m}} R=n$.
Lemma 12.6. Let $f \in \mathfrak{m}$. Then $\operatorname{dim}_{\mathfrak{m}}(R / f) \geq \operatorname{dim}_{\mathfrak{m}} R-1$.
Proof. The ideal (f) in R / \mathfrak{m}^{N} is the image of $f R / \mathfrak{m}^{N-1}$. So we have

$$
\begin{aligned}
& P_{R / f, \mathfrak{m}}(N)=\operatorname{length}\left(\left(R / \mathfrak{m}^{N}\right) / f\right) \geq \operatorname{length}\left(R / \mathfrak{m}^{N}\right)-\operatorname{length}\left(R / \mathfrak{m}^{N-1}\right) \\
&=P_{R, \mathfrak{m}}(N)-P_{R, \mathfrak{m}}(N-1),
\end{aligned}
$$

which implies the statement.
Let k be an algebraically closed field and $\mathfrak{m}_{p} \subset k\left[x_{1}, \ldots, x_{n}\right]$ be the maximal ideal corresponding to $p \in k^{n}$.

Corollary 12.7. Let $f_{1}, \ldots, f_{m} \in k\left[x_{1}, \ldots, x_{n}\right]$ be homogeneous polynomials. Let Z be an irreducible component of the zero set $Z\left(f_{1}, \ldots, f_{m}\right) \subset$ k^{n}. Then $\operatorname{dim}_{\mathfrak{m}_{0}} k[Z] \geq n-m$.

Proof. Let $p \in Z$ be not contained in other components of $Z\left(f_{1}, \ldots, f_{m}\right)$. Applying Lemma 12.6 repeatedly, we get $\operatorname{dim}_{\mathfrak{m}_{p}} k[Z] \geq n-m$. But $\mathfrak{m}_{0}=\operatorname{gr}\left(\mathfrak{m}_{p}\right)$, hence $\mathfrak{m}_{0}^{N} \subset \operatorname{gr}\left(\mathfrak{m}_{p}^{N}\right)$ and $k[Z] / \mathfrak{m}_{p}^{N}$ is a quotient of $k[Z] / \mathfrak{m}_{0}^{N}$. Thus $\operatorname{dim}_{\mathfrak{m}_{0}} k[Z] \geq \operatorname{dim}_{\mathfrak{m}_{p}} k[Z]^{18}$, so $\operatorname{dim}_{\mathfrak{m}_{0}} k[Z] \geq n-m$.

[^2]12.7. Regular sequences. Let R be a commutative ring. A sequence $f_{1}, \ldots, f_{n} \in R$ is called a regular sequence if for each $j \in[1, n], f_{j}$ is not a zero divisor in $R /\left(f_{1}, \ldots, f_{j-1}\right)$, and $R /\left(f_{1}, \ldots, f_{n}\right) \neq 0$.
Lemma 12.8. If $f_{1}, \ldots, f_{n} \in R$ is a regular sequence then the complex $K_{R}\left(f_{1}, \ldots, f_{n}\right)$ is exact in negative degrees.
Proof. The proof is by induction in n with obvious base. For the induction step, note that by the inductive assumption $K_{R}\left(f_{1}, \ldots, f_{n-1}\right)$ is exact in negative degrees with $H^{0}=R /\left(f_{1}, \ldots, f_{n-1}\right)$, so the cohomology of $K_{R}\left(f_{1}, \ldots, f_{n}\right)$ coincides with the cohomology $K_{R /\left(f_{1}, \ldots, f_{n-1}\right)}\left(f_{n}\right)$, which vanishes in negative degrees since f_{n} is not a zero divisor in $R /\left(f_{1}, \ldots, f_{n-1}\right)$.

Now let k be an algebraically closed field.
Proposition 12.9. Suppose $f_{1}, \ldots, f_{n} \in R:=k\left[x_{1}, \ldots, x_{n}\right]$ are homogeneous polynomials of positive degree such that the zero set $Z\left(f_{1}, \ldots, f_{n}\right)$ consists of the origin. Then f_{1}, \ldots, f_{n} is a regular sequence.
Proof. We need to show that for each $m \leq n-1, f_{m+1}$ is not a zero divisor in $R_{m}:=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$. Let $Z_{m}=Z\left(f_{1}, \ldots, f_{m}\right)$. It suffices to show that f_{m+1} does not vanish on any irreducible component of Z_{m}. Assume the contrary, i.e., that it vanishes on such a component Z_{m}^{0}. By Corollary 12.7 , we have $\operatorname{dim}_{\mathfrak{m}_{0}} k\left[Z_{m}^{0}\right] \geq n-m$. Since $f_{m+1}=0$ on Z_{m}^{0}, using Lemma 12.6 repeatedly, we get

$$
\operatorname{dim}_{\mathfrak{m}_{0}} k\left[Z_{m}^{0}\right] /\left(f_{m+1}, \ldots, f_{n}\right) \geq 1
$$

which is a contradiction, as the zero set of f_{m+1}, \ldots, f_{n} on Z_{m}^{0} consists just of the origin, so this dimension must be zero.
Proposition 12.10. Suppose $f_{1}, . ., f_{n} \in R:=k\left[x_{1}, \ldots, x_{n}\right]$ are homogeneous polynomials of degrees $d_{1}, \ldots, d_{n}>0$ such that R is a finitely generated module over $S:=k\left[f_{1}, \ldots, f_{n}\right]$. Then this module is free of rank $\prod_{i=1}^{n} d_{i}$. Moreover, the Hilbert polynomial of $R_{0}:=k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$ (or, equivalently, of a space of free homogeneous generators of this module) is

$$
\begin{equation*}
H\left(R_{0}, q\right)=\prod_{i=1}^{n}\left[d_{i}\right]_{q} \tag{10}
\end{equation*}
$$

Proof. By Lemma 12.3, it suffices to show that R is a free S-module. By assumption R_{0} is finite dimensional, i.e., the equations

$$
f_{1}=\ldots=f_{n}=0
$$

have only the zero solution. By Proposition 12.9, this implies that f_{1}, \ldots, f_{n} is a regular sequence, so by Lemma 12.8 the Koszul complex
$K_{R}\left(f_{1}, \ldots, f_{n}\right)$ associated to this sequence is exact in negative degrees. Now, write S as $k\left[a_{1}, \ldots, a_{n}\right]$ with $\operatorname{deg} a_{j}=0$ and consider the complex $K_{R \otimes S}\left(f_{1}-a_{1}, \ldots, f_{n}-a_{n}\right)$. This complex is filtered by degree with associated graded being

$$
K_{R \otimes S}\left(f_{1}, \ldots, f_{n}\right)=K_{R}\left(f_{1}, \ldots, f_{n}\right) \otimes S
$$

Thus $K_{R \otimes S}\left(f_{1}-a_{1}, \ldots, f_{n}-a_{n}\right)$ is also exact in nonzero degrees with

$$
H^{0}=k\left[x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{n}\right] /\left(f_{1}-a_{1}, \ldots, f_{n}-a_{n}\right)=R .
$$

and the associated graded under the above filtration is $\operatorname{gr}(R)=R_{0} \otimes S$ as an S-module. This module is free over S, hence so is R.

Remark 12.11. Let f_{1}, \ldots, f_{r} be a regular sequence of homogeneous polynomials in $k\left[x_{1}, \ldots, x_{n}\right]$ of positive degree and $Z_{m} \subset k^{n}$ be the zero set of f_{1}, \ldots, f_{m}. Then f_{m+1} is not a zero divisor in $k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{m}\right)$, hence does not vanish identically on any irreducible component of Z_{m}. So by induction in m we get that the dimension of every irreducible component of Z_{m} is $\leq n-m$. By Corollary 12.7, this implies that this dimension is precisely $n-m$; in particular, $r \leq n$, and every irreducible component of the affine scheme $\mathcal{Z}:=\operatorname{Speck}\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{r}\right)$ has dimension $n-r$. Such a scheme is called a complete intersection. In fact, it follows by induction in r that \mathcal{Z} is a complete intersection precisely when all its irreducible components have dimension $\leq n-r$ (in which case they have dimension exactly $n-r$). In particular, if $r=n$, this means that the only k-point of \mathcal{Z} is the origin, as indicated in Proposition 12.9. Thus the converse of this proposition also holds.
12.8. Proof of the CST Theorem, Part II. We are now ready to prove Theorem 12.2. It follows from Proposition 12.10, Lemma 12.1 and Theorem 10.6 that $\mathbb{C}[V]$ is a free $\mathbb{C}[V]^{G}$-module. Since $\mathbb{C}[V]=$ $\oplus_{\rho} \operatorname{Hom}_{G}(\rho, \mathbb{C}[V]) \otimes \rho$, it follows by Lemma 12.3(ii) that $\operatorname{Hom}_{G}(\rho, \mathbb{C}[V])$ is also a free $\mathbb{C}[V]^{G}$-module (as it is graded and projective). Finally, the rank of this module equals

$$
\operatorname{dim}_{\mathbb{C}(V)^{G}}\left(\mathbb{C}(V)^{G} \otimes_{\mathbb{C}[V]^{G}} \operatorname{Hom}_{G}(\rho, \mathbb{C}[V])\right)=\operatorname{dim}_{\mathbb{C}(V)^{G}} \operatorname{Hom}_{G}(\rho, \mathbb{C}(V)),
$$

which equals $\operatorname{dim} \rho$ by basic Galois theory $(\mathbb{C}(V)$ is a regular representation of G over $\left.\mathbb{C}(V)^{G}\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{16}$ Recall the proof of the Artin-Tate lemma. Let x_{1}, \ldots, x_{m} generate A as an R-algebra and let y_{1}, \ldots, y_{n} generate A as a B-module. Then we can write

 $$
 x_{i}=\sum_{j} b_{i j} y_{j}, \quad y_{i} y_{j}=\sum_{k} b_{i j k} y_{k}
 $$

[^1]: ${ }^{17}$ Note that for each i, one of these two summands is necessarily 0 .

[^2]: ${ }^{18}$ In fact these dimensions are equal (to $\operatorname{dim} Z$), but we don't use it here.

