13. Kostant's theorem

13.1. Kostant's theorem for $S\mathfrak{g}$. Let \mathfrak{g} be a semisimple complex Lie algebra.

Theorem 13.1. (Kostant) $S\mathfrak{g}$ is a free $(S\mathfrak{g})^{\mathfrak{g}}$ -module. Moreover, for every finite dimensional irreducible representation V of \mathfrak{g} , the space $\operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g})$ is a free $(S\mathfrak{g})^{\mathfrak{g}}$ module of rank dim V[0], the dimension of the zero weight space of V.

The rest of the subsection is dedicated to the proof of this theorem. Introduce a filtration on $S\mathfrak{g}$ by setting $\deg(\mathfrak{g}_{\alpha}) = 1$ for all roots α and $\deg \mathfrak{h} = 2$. Then $\operatorname{gr}(S\mathfrak{g}) = S\mathfrak{n}_{-} \otimes S\mathfrak{h} \otimes S\mathfrak{n}_{+}$ and by the Chevalley restriction theorem, $\operatorname{gr}(S\mathfrak{g})^{\mathfrak{g}}$ is identified with the subalgebra $(S\mathfrak{h})^W$ of the middle factor. Thus by the Chevalley-Shephard-Todd theorem, $\operatorname{gr}(S\mathfrak{g})$ is a free $\operatorname{gr}(S\mathfrak{g})^{\mathfrak{g}}$ -module. It follows that $S\mathfrak{g}$ is a free $(S\mathfrak{g})^{\mathfrak{g}}$ module (namely, any lift of a homogeneous basis of the graded module is a basis of the filtered module).

Now recall that

(11)
$$S\mathfrak{g} = \bigoplus_{V \in \operatorname{Irr}(\mathfrak{g})} V \otimes \operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g}).$$

Thus $\operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g})$ is a graded direct summand in $S\mathfrak{g}$. It follows that $\operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g})$ is a projective, hence free $(S\mathfrak{g})^{\mathfrak{g}}$ -module (using Lemma 12.3(ii)).

It remains to prove the formula for the rank of $\operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g})$. To this end, consider the *Q*-graded Hilbert series of $S\mathfrak{g}$, i.e., the generating function of the characters of symmetric powers of \mathfrak{g} :

$$H_Q(S\mathfrak{g},q) := \sum_{m \ge 0} (\sum_{\mu \in Q} \dim S^m \mathfrak{g}[\mu] e^{\mu}) q^m \in \mathbb{C}[Q][[q]].$$

Since $S\mathfrak{g} = S\mathfrak{h} \otimes \bigotimes_{\alpha \in R} S\mathfrak{g}_{\alpha}$, we have

$$H_Q(S\mathfrak{g},q) = \frac{1}{(1-q)^r} \prod_{\alpha \in R} \frac{1}{1-qe^{\alpha}},$$

where $r = \operatorname{rank}(\mathfrak{g})$. On the other hand, by (11),

$$H_Q(S\mathfrak{g},q) = \sum_{V \in \operatorname{Irr}(\mathfrak{g})} H(\operatorname{Hom}_{\mathfrak{g}}(V,S\mathfrak{g}),q)\chi_V,$$

where χ_V is the character of V.

Now, by the Chevalley restriction theorem $(S\mathfrak{g})^{\mathfrak{g}} \cong (S\mathfrak{h})^W$, so

$$H(\operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g}), q) = H(\operatorname{Hom}_{\mathfrak{g}}(V, (S\mathfrak{g})_0), q)H((S\mathfrak{h})^W, q).$$
⁷⁰

Thus by the Chevalley-Shephard-Todd theorem,

$$H(\operatorname{Hom}_{\mathfrak{g}}(V, S\mathfrak{g}), q) = H(\operatorname{Hom}_{\mathfrak{g}}(V, (S\mathfrak{g})_0), q) \prod_{i=1}^r \frac{1}{1 - q^{d_i}}.$$

So we get

$$\sum_{V \in \operatorname{Irr}(\mathfrak{g})} H(\operatorname{Hom}_{\mathfrak{g}}(V, (S\mathfrak{g})_0), q)\chi_V = \frac{\prod_{i=1}^r [d_i]_q}{\prod_{\alpha \in R} (1 - qe^{\alpha})}$$

By character orthogonality, $H(\operatorname{Hom}_{\mathfrak{g}}(V, (S\mathfrak{g})_0), q)$ is the inner product of the right hand side of this equality with χ_V :

$$H(\operatorname{Hom}_{\mathfrak{g}}(V,(S\mathfrak{g})_{0}),q) = \left(\frac{\prod_{i=1}^{r} [d_{i}]_{q}}{\prod_{\alpha \in R} (1-qe^{\alpha})}, \chi_{V}\right).$$

Recall that the inner product on $\mathbb{C}[P]$ making the characters orthonormal is given by the formula

$$(\phi, \psi) = \frac{1}{|W|} \operatorname{CT}(\phi \psi^* \prod_{\alpha \in R} (1 - e^{\alpha})),$$

where where CT denotes the constant term and * is the automorphism of $\mathbb{C}[P]$ given by $(e^{\mu})^* = e^{-\mu}$. Thus, using that $\chi_V^* = \chi_{V^*}$, we get

(12)
$$H(\operatorname{Hom}_{\mathfrak{g}}(V,(S\mathfrak{g})_{0}),q) = \frac{\prod_{i=1}^{r} [d_{i}]_{q}}{|W|} \operatorname{CT}\left(\chi_{V^{*}} \prod_{\alpha \in R} \frac{1-e^{\alpha}}{1-qe^{\alpha}} \cdot\right).$$

In this formula q is a formal parameter, but the right hand side converges to an analytic function in the disk |q| < 1, since it can be written as an integral:

$$H(\operatorname{Hom}_{\mathfrak{g}}(V,(S\mathfrak{g})_{0}),q) = \frac{\prod_{i=1}^{r} [d_{i}]_{q}}{|W|} \int_{\mathfrak{h}_{\mathbb{R}}/Q^{\vee}} \chi_{V^{*}}(e^{ix}) \prod_{\alpha \in R} \frac{1 - e^{i\alpha(x)}}{1 - qe^{i\alpha(x)}} dx,$$

where Q^{\vee} is the coroot lattice. If $0 \le q < 1$, this can also be written as
(13)

$$H(\operatorname{Hom}_{\mathfrak{g}}(V,(S\mathfrak{g})_{0}),q) = \frac{\prod_{i=1}^{r} [d_{i}]_{q}}{|W|} \int_{\mathfrak{h}_{\mathbb{R}}/Q^{\vee}} \chi_{V^{*}}(e^{ix}) \left| \prod_{\alpha \in R_{+}} \frac{1 - e^{i\alpha(x)}}{1 - qe^{i\alpha(x)}} \right|^{2} dx.$$

Lemma 13.2. As $q \to 1$ in (0, 1), the function $F_q(x) := \prod_{\alpha \in R_+} \frac{1 - e^{i\alpha(x)}}{1 - qe^{i\alpha(x)}}$ goes to 1 in $L^2(\mathfrak{h}/Q^{\vee})$.¹⁹

¹⁹Note however that $F_q(x)$ does not go to 1 pointwise (hence not in $C(\mathfrak{h}/Q^{\vee})$) since $F_q(0) = 0$.

Proof. If $x \in \mathbb{R}$, $|x| \leq 1$ then $\min_{q \in [0,1]} (1 - 2qx + q^2)$ is 1 if $x \leq 0$ and $1 - x^2$ if x > 0. So if z = x + iy is on the unit circle and $0 \leq q < 1$ then

$$\left|\frac{1-z}{1-qz}\right|^2 = \frac{2(1-x)}{1-2qx+q^2} \le \begin{cases} 2(1-x), \ x \le 0\\ \frac{2}{1+x}, \ x > 0 \end{cases} \le 4.$$

Note also that by the residue formula

$$\int_0^1 \frac{dt}{|1 - qe^{2\pi it}|^2} = \frac{1}{2\pi i} \int_{|z|=1} \frac{z^{-1}dz}{(1 - qz)(1 - qz^{-1})} = \frac{1}{1 - q^2}.$$

Thus

$$\int_0^1 \left| \frac{1 - e^{2\pi i t}}{1 - q e^{2\pi i t}} - 1 \right|^2 dt = \int_0^1 \left| \frac{(q - 1)e^{2\pi i t}}{1 - q e^{2\pi i t}} \right|^2 dt = \frac{1 - q}{1 + q}$$

So $\frac{1-z}{1-qz} \to 1$ as $q \to 1$ in $L^2(S^1)$. But if X is a finite measure space and for j = 1, ..., N, $f_n^{(j)} \to f^{(j)}$ in $L^2(X)$ as $n \to \infty$ and $|f_n^{(j)}(z)| \leq C$ for all $n, j, z \in X$ then $\prod_j f_n^{(j)} \to \prod_j f_j$ in $L^2(X)$. This implies the statement.

By Lemma 13.2 we may take the limit $q \to 1$ under the integral in (13). Then, using that $\prod_{i=1}^{r} d_i = |W|$, we get

$$\dim \operatorname{Hom}_{\mathfrak{g}}(V, (S\mathfrak{g})_{0}) = \int_{\mathfrak{h}/Q^{\vee}} \chi_{V^{*}}(e^{ix}) dx =$$
$$\operatorname{CT}(\chi_{V^{*}}) = \dim V^{*}[0] = \dim V[0],$$

which concludes the proof of Kostant's theorem.

13.2. The structure of $S\mathfrak{g}$ as a $(S\mathfrak{g})^{\mathfrak{g}}$ -module. As a by-product, we obtain

Theorem 13.3. (Kostant) For $\lambda \in P_+$ we have

$$H(\operatorname{Hom}_{\mathfrak{g}}(L_{\lambda}^{*}, (S\mathfrak{g})_{0}), q) = \frac{\prod_{i=1}^{r} [d_{i}]_{q}}{|W|} \operatorname{CT}\left(\prod_{\alpha \in R} \frac{1 - e^{\alpha}}{1 - q e^{\alpha}} \chi_{L_{\lambda}}\right) = \prod_{i=1}^{r} [d_{i}]_{q} \cdot \operatorname{CT}\left(\frac{e^{\lambda} \prod_{\alpha \in R_{+}} (1 - e^{\alpha})}{\prod_{\alpha \in R} (1 - q e^{\alpha})}\right).$$

Indeed, the first expression is (12) and second expression is obtained from (12) using the Weyl character formula for $\chi_{L_{\lambda}}$ and observing that all terms in the resulting sum over W are the same.

Substituting $\lambda = 0$, we get

Corollary 13.4.

$$\frac{1}{|W|} \operatorname{CT}\left(\prod_{\alpha \in R} \frac{1 - e^{\alpha}}{1 - qe^{\alpha}}\right) = \operatorname{CT}\left(\frac{\prod_{\alpha \in R_{+}} (1 - e^{\alpha})}{\prod_{\alpha \in R} (1 - qe^{\alpha})}\right) = \frac{1}{\prod_{i=1}^{r} [d_i]_q}.$$

For example, if $\mathfrak{g} = \mathfrak{sl}_2$, this formula looks like (14)

$$\frac{1}{2} \operatorname{CT}\left(\frac{(1-z)(1-z^{-1})}{(1-qz)(1-qz^{-1})}\right) = \operatorname{CT}\left(\frac{1-z}{(1-qz)(1-qz^{-1})}\right) = \frac{1}{1+q},$$

which is easy to check using the residue formula.

For $\mathfrak{g} = \mathfrak{sl}_n$ we obtain the identity

$$\frac{1}{n!} \operatorname{CT} \left(\prod_{1 \le i < j \le n} \frac{(1 - \frac{X_i}{X_j})(1 - \frac{X_j}{X_i})}{(1 - q\frac{X_i}{X_j})(1 - q\frac{X_j}{X_i})} \right) = \operatorname{CT} \left(\prod_{1 \le i < j \le n} \frac{1 - \frac{X_i}{X_j}}{(1 - q\frac{X_i}{X_j})(1 - q\frac{X_j}{X_i})} \right)$$
$$= \frac{1}{(1 + q)...(1 + q + ... + q^{n-1})}.$$

13.3. The structure of $U(\mathfrak{g})$ as a $Z(\mathfrak{g})$ -module. Recall that the universal enveloping algebra $U(\mathfrak{g})$ of any Lie algebra \mathfrak{g} has the standard filtration defined on generators by $\deg(\mathfrak{g}) = 1$, which is called the **Poincaré-Birkhoff-Witt filtration**.

Let \mathfrak{g} be a semisimple complex Lie algebra of rank r, and W be the Weyl group of \mathfrak{g} with degrees $d_i, i = 1, ..., r$.

Theorem 13.5. (Kostant) (i) The center $Z(\mathfrak{g}) = U(\mathfrak{g})^{\mathfrak{g}}$ of $U(\mathfrak{g})$ is a polynomial algebra in r generators C_i of Poincaré-Birkhoff-Witt filtration degrees d_i .

(ii) $U(\mathfrak{g})$ is a free module over $Z(\mathfrak{g})$, and for every irreducible finite dimensional representation V of \mathfrak{g} , the space $\operatorname{Hom}_{\mathfrak{g}}(V, U(\mathfrak{g}))$ is a free $Z(\mathfrak{g})$ -module of rank dim V[0].

Proof. By the Poincaré-Birkhoff-Witt theorem, for any Lie algebra \mathfrak{g} we have $\operatorname{gr}(U(\mathfrak{g})) = S\mathfrak{g}$. Moreover, we have the symmetrization map $S\mathfrak{g} \to U(\mathfrak{g})$ given by

$$a_1 \otimes \ldots \otimes a_n \mapsto \frac{1}{n!} \sum_{s \in S_n} a_{s(1)} \ldots a_{s(n)},$$

 $a_i \in \mathfrak{g}$, which is an isomorphism of \mathfrak{g} -modules. Using this map, any homogeneous element of $(S\mathfrak{g})^{\mathfrak{g}}$ can be lifted into $U(\mathfrak{g})^{\mathfrak{g}}$. It follows that $\operatorname{gr}(U(\mathfrak{g})^{\mathfrak{g}}) = (S\mathfrak{g})^{\mathfrak{g}}$. Thus Theorem 13.1 implies all the statements of the theorem.

Example 13.6. Suppose \mathfrak{g} is simple. Then $d_1 = 2$ and C_1 is the quadratic Casimir of \mathfrak{g} .

Exercise 13.7. Consider the Lie algebra $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$ spanned by elementary matrices E_{ij} with $\sum_{i=1}^{n} E_{ii} = 0$. (i) Show that the center $Z(\mathfrak{g})$ is freely generated by the elements

$$C_{k-1} := \sum_{i_1,\dots,i_k=1}^n \prod_{j=1}^k E_{i_j,i_{j+1}}, \ k = 2,\dots,n.$$

where j is viewed as an element of \mathbb{Z}/k .

Hint: It is slightly more convenient (and equivalent) to consider $\mathfrak{g} = \mathfrak{gl}_n(\mathbb{C})$, in which case one also has the generator C_0 . Identify \mathfrak{g} with \mathfrak{g}^* using the trace pairing on \mathfrak{g} . Let $T_k : \mathfrak{g}^{\otimes k} \to \mathbb{C}$ be the \mathfrak{g} -module map defined by $T_k(a_1 \otimes \ldots \otimes a_k) := \operatorname{Tr}(a_k \ldots a_1)$. Let $T_k^* : \mathbb{C} \to \mathfrak{g}^{\otimes k}$ be the dual map. Show that

$$T_k^*(1) = \sum_{i_1, \dots, i_k=1}^n E_{i_1 i_2} \otimes E_{i_2 i_3} \otimes \dots \otimes E_{i_k i_1}.$$

Use that this element is g-invariant to show that the element C_{k-1} is central.

(ii) Generalize these statements to $\mathfrak{so}_{2n+1}(\mathbb{C})$ and $\mathfrak{sp}_{2n}(\mathbb{C})$. What happens for \mathfrak{so}_{2n} ?

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.