13. Kostant's theorem

13.1. Kostant's theorem for $S \mathfrak{g}$. Let \mathfrak{g} be a semisimple complex Lie algebra.

Theorem 13.1. (Kostant) $S \mathfrak{g}$ is a free $(S \mathfrak{g})^{\mathfrak{g}}$-module. Moreover, for every finite dimensional irreducible representation V of \mathfrak{g}, the space $\operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g})$ is a free $(S \mathfrak{g})^{\mathfrak{g}}$ module of rank $\operatorname{dim} V[0]$, the dimension of the zero weight space of V.

The rest of the subsection is dedicated to the proof of this theorem. Introduce a filtration on $S \mathfrak{g}$ by setting $\operatorname{deg}\left(\mathfrak{g}_{\alpha}\right)=1$ for all roots α and $\operatorname{deg} \mathfrak{h}=2$. Then $\operatorname{gr}(S \mathfrak{g})=S \mathfrak{n}_{-} \otimes S \mathfrak{h} \otimes S \mathfrak{n}_{+}$and by the Chevalley restriction theorem, $\operatorname{gr}(S \mathfrak{g})^{\mathfrak{g}}$ is identified with the subalgebra $(S \mathfrak{h})^{W}$ of the middle factor. Thus by the Chevalley-Shephard-Todd theorem, $\operatorname{gr}(S \mathfrak{g})$ is a free $\operatorname{gr}(S \mathfrak{g})^{\mathfrak{g}}$-module. It follows that $S \mathfrak{g}$ is a free $(S \mathfrak{g})^{\mathfrak{g}}$ module (namely, any lift of a homogeneous basis of the graded module is a basis of the filtered module).

Now recall that

$$
\begin{equation*}
S \mathfrak{g}=\oplus_{V \in \operatorname{Irr}(\mathfrak{g})} V \otimes \operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g}) \tag{11}
\end{equation*}
$$

Thus $\operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g})$ is a graded direct summand in $S \mathfrak{g}$. It follows that $\operatorname{Hom}_{\mathfrak{g}}\left(V, S \mathfrak{g}\right.$) is a projective, hence free $(S \mathfrak{g})^{\mathfrak{g}}$-module (using Lemma 12.3(ii)).

It remains to prove the formula for the rank of $\operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g})$. To this end, consider the Q-graded Hilbert series of $S \mathfrak{g}$, i.e., the generating function of the characters of symmetric powers of \mathfrak{g} :

$$
H_{Q}(S \mathfrak{g}, q):=\sum_{m \geq 0}\left(\sum_{\mu \in Q} \operatorname{dim} S^{m} \mathfrak{g}[\mu] e^{\mu}\right) q^{m} \in \mathbb{C}[Q][[q]] .
$$

Since $S \mathfrak{g}=S \mathfrak{h} \otimes \bigotimes_{\alpha \in R} S \mathfrak{g}_{\alpha}$, we have

$$
H_{Q}(S \mathfrak{g}, q)=\frac{1}{(1-q)^{r}} \prod_{\alpha \in R} \frac{1}{1-q e^{\alpha}}
$$

where $r=\operatorname{rank}(\mathfrak{g})$. On the other hand, by (11),

$$
H_{Q}(S \mathfrak{g}, q)=\sum_{V \in \operatorname{Irr}(\mathfrak{g})} H\left(\operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g}), q\right) \chi_{V}
$$

where χ_{V} is the character of V.
Now, by the Chevalley restriction theorem $(S \mathfrak{g})^{\mathfrak{g}} \cong(S \mathfrak{h})^{W}$, so

$$
H\left(\operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g}), q\right)=\underset{70}{H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right) H\left((S \mathfrak{h})^{W}, q\right) .}
$$

Thus by the Chevalley-Shephard-Todd theorem,

$$
H\left(\operatorname{Hom}_{\mathfrak{g}}(V, S \mathfrak{g}), q\right)=H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right) \prod_{i=1}^{r} \frac{1}{1-q^{d_{i}}}
$$

So we get

$$
\sum_{V \in \operatorname{Irr}(\mathfrak{g})} H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right) \chi_{V}=\frac{\prod_{i=1}^{r}\left[d_{i}\right]_{q}}{\prod_{\alpha \in R}\left(1-q e^{\alpha}\right)}
$$

By character orthogonality, $H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right)$ is the inner product of the right hand side of this equality with χ_{V} :

$$
H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right)=\left(\frac{\prod_{i=1}^{r}\left[d_{i}\right]_{q}}{\prod_{\alpha \in R}\left(1-q e^{\alpha}\right)}, \chi_{V}\right)
$$

Recall that the inner product on $\mathbb{C}[P]$ making the characters orthonormal is given by the formula

$$
(\phi, \psi)=\frac{1}{|W|} \mathrm{CT}\left(\phi \psi^{*} \prod_{\alpha \in R}\left(1-e^{\alpha}\right)\right)
$$

where where CT denotes the constant term and $*$ is the automorphism of $\mathbb{C}[P]$ given by $\left(e^{\mu}\right)^{*}=e^{-\mu}$. Thus, using that $\chi_{V}^{*}=\chi_{V^{*}}$, we get

$$
\begin{equation*}
H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right)=\frac{\prod_{i=1}^{r}\left[d_{i}\right]_{q}}{|W|} \mathrm{CT}\left(\chi_{V^{*}} \prod_{\alpha \in R} \frac{1-e^{\alpha}}{1-q e^{\alpha}} .\right) \tag{12}
\end{equation*}
$$

In this formula q is a formal parameter, but the right hand side converges to an analytic function in the disk $|q|<1$, since it can be written as an integral:

$$
H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right)=\frac{\prod_{i=1}^{r}\left[d_{i}\right]_{q}}{|W|} \int_{\mathfrak{\mathfrak { l }} / Q^{\vee}} \chi_{V^{*}}\left(e^{i x}\right) \prod_{\alpha \in R} \frac{1-e^{i \alpha(x)}}{1-q e^{i \alpha(x)}} d x
$$

where Q^{\vee} is the coroot lattice. If $0 \leq q<1$, this can also be written as
$H\left(\operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right), q\right)=\frac{\prod_{i=1}^{r}\left[d_{i}\right]_{q}}{|W|} \int_{\mathfrak{b}_{\mathbb{R}} / Q^{\vee}} \chi_{V^{*}}\left(e^{i x}\right)\left|\prod_{\alpha \in R_{+}} \frac{1-e^{i \alpha(x)}}{1-q e^{i \alpha(x)}}\right|^{2} d x$.
Lemma 13.2. As $q \rightarrow 1$ in $(0,1)$, the function $F_{q}(x):=\prod_{\alpha \in R_{+}} \frac{1-e^{i \alpha(x)}}{1-q e^{i(x)}}$ goes to 1 in $L^{2}\left(\mathfrak{h} / Q^{\vee}\right) .{ }^{19}$

[^0]Proof. If $x \in \mathbb{R},|x| \leq 1$ then $\min _{q \in[0,1]}\left(1-2 q x+q^{2}\right)$ is 1 if $x \leq 0$ and $1-x^{2}$ if $x>0$. So if $z=x+i y$ is on the unit circle and $0 \leq q<1$ then

$$
\left|\frac{1-z}{1-q z}\right|^{2}=\frac{2(1-x)}{1-2 q x+q^{2}} \leq\left\{\begin{array}{l}
2(1-x), x \leq 0 \\
\frac{2}{1+x}, x>0
\end{array} \leq 4\right.
$$

Note also that by the residue formula

$$
\int_{0}^{1} \frac{d t}{\left|1-q e^{2 \pi i t}\right|^{2}}=\frac{1}{2 \pi i} \int_{|z|=1} \frac{z^{-1} d z}{(1-q z)\left(1-q z^{-1}\right)}=\frac{1}{1-q^{2}}
$$

Thus

$$
\int_{0}^{1}\left|\frac{1-e^{2 \pi i t}}{1-q e^{2 \pi i t}}-1\right|^{2} d t=\int_{0}^{1}\left|\frac{(q-1) e^{2 \pi i t}}{1-q e^{2 \pi i t}}\right|^{2} d t=\frac{1-q}{1+q}
$$

So $\frac{1-z}{1-q z} \rightarrow 1$ as $q \rightarrow 1$ in $L^{2}\left(S^{1}\right)$. But if X is a finite measure space and for $j=1, \ldots, N, f_{n}^{(j)} \rightarrow f^{(j)}$ in $L^{2}(X)$ as $n \rightarrow \infty$ and $\left|f_{n}^{(j)}(z)\right| \leq C$ for all $n, j, z \in X$ then $\prod_{j} f_{n}^{(j)} \rightarrow \prod_{j} f_{j}$ in $L^{2}(X)$. This implies the statement.

By Lemma 13.2 we may take the limit $q \rightarrow 1$ under the integral in (13). Then, using that $\prod_{i=1}^{r} d_{i}=|W|$, we get

$$
\begin{gathered}
\operatorname{dim} \operatorname{Hom}_{\mathfrak{g}}\left(V,(S \mathfrak{g})_{0}\right)=\int_{\mathfrak{h} / Q^{\vee}} \chi_{V^{*}}\left(e^{i x}\right) d x= \\
\mathrm{CT}\left(\chi_{V^{*}}\right)=\operatorname{dim} V^{*}[0]=\operatorname{dim} V[0]
\end{gathered}
$$

which concludes the proof of Kostant's theorem.
13.2. The structure of $S \mathfrak{g}$ as a $(S \mathfrak{g})^{\mathfrak{g}}$-module. As a by-product, we obtain

Theorem 13.3. (Kostant) For $\lambda \in P_{+}$we have

$$
\begin{gathered}
H\left(\operatorname{Hom}_{\mathfrak{g}}\left(L_{\lambda}^{*},(S \mathfrak{g})_{0}\right), q\right)=\frac{\prod_{i=1}^{r}\left[d_{i}\right]_{q}}{|W|} \mathrm{CT}\left(\prod_{\alpha \in R} \frac{1-e^{\alpha}}{1-q e^{\alpha}} \chi_{L_{\lambda}}\right)= \\
\prod_{i=1}^{r}\left[d_{i}\right]_{q} \cdot \mathrm{CT}\left(\frac{e^{\lambda} \prod_{\alpha \in R_{+}}\left(1-e^{\alpha}\right)}{\prod_{\alpha \in R}\left(1-q e^{\alpha}\right)}\right)
\end{gathered}
$$

Indeed, the first expression is (12) and second expression is obtained from (12) using the Weyl character formula for $\chi_{L_{\lambda}}$ and observing that all terms in the resulting sum over W are the same.

Substituting $\lambda=0$, we get

Corollary 13.4.

$$
\frac{1}{|W|} \mathrm{CT}\left(\prod_{\alpha \in R} \frac{1-e^{\alpha}}{1-q e^{\alpha}}\right)=\mathrm{CT}\left(\frac{\prod_{\alpha \in R_{+}}\left(1-e^{\alpha}\right)}{\prod_{\alpha \in R}\left(1-q e^{\alpha}\right)}\right)=\frac{1}{\prod_{i=1}^{r}\left[d_{i}\right]_{q}} .
$$

For example, if $\mathfrak{g}=\mathfrak{s l}_{2}$, this formula looks like

$$
\begin{equation*}
\frac{1}{2} \mathrm{CT}\left(\frac{(1-z)\left(1-z^{-1}\right)}{(1-q z)\left(1-q z^{-1}\right)}\right)=\mathrm{CT}\left(\frac{1-z}{(1-q z)\left(1-q z^{-1}\right)}\right)=\frac{1}{1+q}, \tag{14}
\end{equation*}
$$

which is easy to check using the residue formula.
For $\mathfrak{g}=\mathfrak{s l}_{n}$ we obtain the identity

$$
\begin{gathered}
\frac{1}{n!} \mathrm{CT}\left(\prod_{1 \leq i<j \leq n} \frac{\left(1-\frac{X_{i}}{X_{j}}\right)\left(1-\frac{X_{j}}{X_{i}}\right)}{\left(1-q \frac{X_{i}}{X_{j}}\right)\left(1-q \frac{X_{j}}{X_{i}}\right)}\right)=\mathrm{CT}\left(\prod_{1 \leq i<j \leq n} \frac{1-\frac{X_{i}}{X_{j}}}{\left(1-q \frac{X_{i}}{X_{j}}\right)\left(1-q \frac{X_{j}}{X_{i}}\right)}\right) \\
=\frac{1}{(1+q) \ldots\left(1+q+\ldots+q^{n-1}\right)} .
\end{gathered}
$$

13.3. The structure of $U(\mathfrak{g})$ as a $Z(\mathfrak{g})$-module. Recall that the universal enveloping algebra $U(\mathfrak{g})$ of any Lie algebra \mathfrak{g} has the standard filtration defined on generators by $\operatorname{deg}(\mathfrak{g})=1$, which is called the Poincaré-Birkhoff-Witt filtration.

Let \mathfrak{g} be a semisimple complex Lie algebra of rank r, and W be the Weyl group of \mathfrak{g} with degrees $d_{i}, i=1, \ldots, r$.
Theorem 13.5. (Kostant) (i) The center $Z(\mathfrak{g})=U(\mathfrak{g})^{\mathfrak{g}}$ of $U(\mathfrak{g})$ is a polynomial algebra in r generators C_{i} of Poincaré-Birkhoff-Witt filtration degrees d_{i}.
(ii) $U(\mathfrak{g})$ is a free module over $Z(\mathfrak{g})$, and for every irreducible finite dimensional representation V of \mathfrak{g}, the space $\operatorname{Hom}_{\mathfrak{g}}(V, U(\mathfrak{g}))$ is a free $Z(\mathfrak{g})$-module of rank $\operatorname{dim} V[0]$.
Proof. By the Poincaré-Birkhoff-Witt theorem, for any Lie algebra \mathfrak{g} we have $\operatorname{gr}(U(\mathfrak{g}))=S \mathfrak{g}$. Moreover, we have the symmetrization map $S \mathfrak{g} \rightarrow U(\mathfrak{g})$ given by

$$
a_{1} \otimes \ldots \otimes a_{n} \mapsto \frac{1}{n!} \sum_{s \in S_{n}} a_{s(1)} \ldots a_{s(n)}
$$

$a_{i} \in \mathfrak{g}$, which is an isomorphism of \mathfrak{g}-modules. Using this map, any homogeneous element of $(S \mathfrak{g})^{\mathfrak{g}}$ can be lifted into $U(\mathfrak{g})^{\mathfrak{g}}$. It follows that $\operatorname{gr}\left(U(\mathfrak{g})^{\mathfrak{g}}\right)=(S \mathfrak{g})^{\mathfrak{g}}$. Thus Theorem 13.1 implies all the statements of the theorem.

Example 13.6. Suppose \mathfrak{g} is simple. Then $d_{1}=2$ and C_{1} is the quadratic Casimir of \mathfrak{g}.

Exercise 13.7. Consider the Lie algebra $\mathfrak{g}=\mathfrak{s l}_{n}(\mathbb{C})$ spanned by elementary matrices $E_{i j}$ with $\sum_{i=1}^{n} E_{i i}=0$.
(i) Show that the center $Z(\mathfrak{g})$ is freely generated by the elements

$$
C_{k-1}:=\sum_{i_{1}, \ldots, i_{k}=1}^{n} \prod_{j=1}^{k} E_{i_{j}, i_{j+1}}, k=2, \ldots, n .
$$

where j is viewed as an element of \mathbb{Z} / k.
Hint: It is slightly more convenient (and equivalent) to consider $\mathfrak{g}=\mathfrak{g l}_{n}(\mathbb{C})$, in which case one also has the generator C_{0}. Identify \mathfrak{g} with \mathfrak{g}^{*} using the trace pairing on \mathfrak{g}. Let $T_{k}: \mathfrak{g}^{\otimes k} \rightarrow \mathbb{C}$ be the \mathfrak{g}-module map defined by $T_{k}\left(a_{1} \otimes \ldots \otimes a_{k}\right):=\operatorname{Tr}\left(a_{k} \ldots a_{1}\right)$. Let $T_{k}^{*}: \mathbb{C} \rightarrow \mathfrak{g}^{\otimes k}$ be the dual map. Show that

$$
T_{k}^{*}(1)=\sum_{i_{1}, \ldots, i_{k}=1}^{n} E_{i_{1} i_{2}} \otimes E_{i_{2} i_{3}} \otimes \ldots \otimes E_{i_{k} i_{1}} .
$$

Use that this element is \mathfrak{g}-invariant to show that the element C_{k-1} is central.
(ii) Generalize these statements to $\mathfrak{s o}_{2 n+1}(\mathbb{C})$ and $\mathfrak{s p}_{2 n}(\mathbb{C})$. What happens for $\mathfrak{s o}_{2 n}$?

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{19}$ Note however that $F_{q}(x)$ does not go to 1 pointwise (hence not in $C\left(\mathfrak{h} / Q^{\vee}\right)$) since $F_{q}(0)=0$.

