
13. Kostant’s theorem

13.1. Kostant’s theorem for Sg. Let g be a semisimple complex Lie
algebra.

Theorem 13.1. (Kostant) Sg is a free (Sg)g-module. Moreover, for
every finite dimensional irreducible representation V of g, the space
Homg(V, Sg) is a free (Sg)g module of rank dimV [0], the dimension of
the zero weight space of V .

The rest of the subsection is dedicated to the proof of this theorem.
Introduce a filtration on Sg by setting deg(gα) = 1 for all roots α and
deg h = 2. Then gr(Sg) = Sn− ⊗ Sh ⊗ Sn+ and by the Chevalley
restriction theorem, gr(Sg)g is identified with the subalgebra (Sh)W

of the middle factor. Thus by the Chevalley-Shephard-Todd theorem,
gr(Sg) is a free gr(Sg)g-module. It follows that Sg is a free (Sg)g-
module (namely, any lift of a homogeneous basis of the graded module
is a basis of the filtered module).

Now recall that

(11) Sg = ⊕V ∈Irr(g)V ⊗ Homg(V, Sg).

Thus Homg(V, Sg) is a graded direct summand in Sg. It follows that
Homg(V, Sg) is a projective, hence free (Sg)g-module (using Lemma
12.3(ii)).

It remains to prove the formula for the rank of Homg(V, Sg). To this
end, consider the Q-graded Hilbert series of Sg, i.e., the generating
function of the characters of symmetric powers of g:

HQ(Sg, q) :=
∑
m≥0

(
∑
µ∈Q

dimSmg[µ]eµ)qm ∈ C[Q][[q]].

Since Sg = Sh⊗
⊗

α∈R Sgα, we have

HQ(Sg, q) =
1

(1− q)r
∏
α∈R

1

1− qeα
,

where r = rank(g). On the other hand, by (11),

HQ(Sg, q) =
∑

V ∈Irr(g)

H(Homg(V, Sg), q)χV ,

where χV is the character of V .
Now, by the Chevalley restriction theorem (Sg)g ∼= (Sh)W , so

H(Homg(V, Sg), q) = H(Homg(V, (Sg)0), q)H((Sh)W , q).
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Thus by the Chevalley-Shephard-Todd theorem,

H(Homg(V, Sg), q) = H(Homg(V, (Sg)0), q)
r∏
i=1

1

1− qdi
.

So we get ∑
V ∈Irr(g)

H(Homg(V, (Sg)0), q)χV =

∏r
i=1[di]q∏

α∈R(1− qeα)
.

By character orthogonality, H(Homg(V, (Sg)0), q) is the inner product
of the right hand side of this equality with χV :

H(Homg(V, (Sg)0), q) =

( ∏r
i=1[di]q∏

α∈R(1− qeα)
, χV

)
.

Recall that the inner product on C[P ] making the characters orthonor-
mal is given by the formula

(φ, ψ) =
1

|W |
CT(φψ∗

∏
α∈R

(1− eα)),

where where CT denotes the constant term and ∗ is the automorphism
of C[P ] given by (eµ)∗ = e−µ. Thus, using that χ∗V = χV ∗ , we get

(12) H(Homg(V, (Sg)0), q) =

∏r
i=1[di]q
|W |

CT

(
χV ∗

∏
α∈R

1− eα

1− qeα
·

)
.

In this formula q is a formal parameter, but the right hand side con-
verges to an analytic function in the disk |q| < 1, since it can be written
as an integral:

H(Homg(V, (Sg)0), q) =

∏r
i=1[di]q
|W |

∫
hR/Q∨

χV ∗(e
ix)
∏
α∈R

1− eiα(x)

1− qeiα(x)
dx,

where Q∨ is the coroot lattice. If 0 ≤ q < 1, this can also be written
as
(13)

H(Homg(V, (Sg)0), q) =

∏r
i=1[di]q
|W |

∫
hR/Q∨

χV ∗(e
ix)

∣∣∣∣∣∣
∏
α∈R+

1− eiα(x)

1− qeiα(x)

∣∣∣∣∣∣
2

dx.

Lemma 13.2. As q → 1 in (0, 1), the function Fq(x) :=
∏

α∈R+

1−eiα(x)
1−qeiα(x)

goes to 1 in L2(h/Q∨).19

19Note however that Fq(x) does not go to 1 pointwise (hence not in C(h/Q∨))
since Fq(0) = 0.
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Proof. If x ∈ R, |x| ≤ 1 then minq∈[0,1](1− 2qx + q2) is 1 if x ≤ 0 and
1 − x2 if x > 0. So if z = x + iy is on the unit circle and 0 ≤ q < 1
then ∣∣∣∣ 1− z

1− qz

∣∣∣∣2 =
2(1− x)

1− 2qx+ q2
≤

{
2(1− x), x ≤ 0

2
1+x

, x > 0
≤ 4.

Note also that by the residue formula∫ 1

0

dt

|1− qe2πit|2
=

1

2πi

∫
|z|=1

z−1dz

(1− qz)(1− qz−1)
=

1

1− q2
.

Thus ∫ 1

0

∣∣∣∣ 1− e2πit

1− qe2πit
− 1

∣∣∣∣2 dt =

∫ 1

0

∣∣∣∣(q − 1)e2πit

1− qe2πit

∣∣∣∣2 dt =
1− q
1 + q

.

So 1−z
1−qz → 1 as q → 1 in L2(S1). But if X is a finite measure space

and for j = 1, ..., N , f
(j)
n → f (j) in L2(X) as n→∞ and |f (j)

n (z)| ≤ C

for all n, j, z ∈ X then
∏

j f
(j)
n →

∏
j fj in L2(X). This implies the

statement. �

By Lemma 13.2 we may take the limit q → 1 under the integral in
(13). Then, using that

∏r
i=1 di = |W |, we get

dim Homg(V, (Sg)0) =

∫
h/Q∨

χV ∗(e
ix)dx =

CT(χV ∗) = dimV ∗[0] = dimV [0],

which concludes the proof of Kostant’s theorem.

13.2. The structure of Sg as a (Sg)g-module. As a by-product, we
obtain

Theorem 13.3. (Kostant) For λ ∈ P+ we have

H(Homg(L
∗
λ, (Sg)0), q) =

∏r
i=1[di]q
|W |

CT

(∏
α∈R

1− eα

1− qeα
χLλ

)
=

r∏
i=1

[di]q · CT

(
eλ
∏

α∈R+
(1− eα)∏

α∈R(1− qeα)

)
.

Indeed, the first expression is (12) and second expression is obtained
from (12) using the Weyl character formula for χLλ and observing that
all terms in the resulting sum over W are the same.

Substituting λ = 0, we get
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Corollary 13.4.

1

|W |
CT

(∏
α∈R

1− eα

1− qeα

)
= CT

(∏
α∈R+

(1− eα)∏
α∈R(1− qeα)

)
=

1∏r
i=1[di]q

.

For example, if g = sl2, this formula looks like
(14)

1

2
CT

(
(1− z)(1− z−1)

(1− qz)(1− qz−1)

)
= CT

(
1− z

(1− qz)(1− qz−1)

)
=

1

1 + q
,

which is easy to check using the residue formula.
For g = sln we obtain the identity

1

n!
CT

( ∏
1≤i<j≤n

(1− Xi
Xj

)(1− Xj
Xi

)

(1− qXi
Xj

)(1− qXj
Xi

)

)
= CT

( ∏
1≤i<j≤n

1− Xi
Xj

(1− qXi
Xj

)(1− qXj
Xi

)

)

=
1

(1 + q)...(1 + q + ...+ qn−1)
.

13.3. The structure of U(g) as a Z(g)-module. Recall that the
universal enveloping algebra U(g) of any Lie algebra g has the standard
filtration defined on generators by deg(g) = 1, which is called the
Poincaré-Birkhoff-Witt filtration.

Let g be a semisimple complex Lie algebra of rank r, and W be the
Weyl group of g with degrees di, i = 1, ..., r.

Theorem 13.5. (Kostant) (i) The center Z(g) = U(g)g of U(g) is a
polynomial algebra in r generators Ci of Poincaré-Birkhoff-Witt filtra-
tion degrees di.

(ii) U(g) is a free module over Z(g), and for every irreducible finite
dimensional representation V of g, the space Homg(V, U(g)) is a free
Z(g)-module of rank dimV [0].

Proof. By the Poincaré-Birkhoff-Witt theorem, for any Lie algebra g
we have gr(U(g)) = Sg. Moreover, we have the symmetrization map
Sg→ U(g) given by

a1 ⊗ ...⊗ an 7→
1

n!

∑
s∈Sn

as(1)...as(n),

ai ∈ g, which is an isomorphism of g-modules. Using this map, any
homogeneous element of (Sg)g can be lifted into U(g)g. It follows that
gr(U(g)g) = (Sg)g. Thus Theorem 13.1 implies all the statements of
the theorem. �

Example 13.6. Suppose g is simple. Then d1 = 2 and C1 is the
quadratic Casimir of g.
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Exercise 13.7. Consider the Lie algebra g = sln(C) spanned by ele-
mentary matrices Eij with

∑n
i=1Eii = 0.

(i) Show that the center Z(g) is freely generated by the elements

Ck−1 :=
n∑

i1,...,ik=1

k∏
j=1

Eij ,ij+1
, k = 2, ..., n.

where j is viewed as an element of Z/k.
Hint: It is slightly more convenient (and equivalent) to consider

g = gln(C), in which case one also has the generator C0. Identify g
with g∗ using the trace pairing on g. Let Tk : g⊗k → C be the g-module
map defined by Tk(a1 ⊗ ... ⊗ ak) := Tr(ak...a1). Let T ∗k : C → g⊗k be
the dual map. Show that

T ∗k (1) =
n∑

i1,...,ik=1

Ei1i2 ⊗ Ei2i3 ⊗ ...⊗ Eiki1 .

Use that this element is g-invariant to show that the element Ck−1 is
central.

(ii) Generalize these statements to so2n+1(C) and sp2n(C). What
happens for so2n?
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