15. Category \mathcal{O} of \mathfrak{g} -modules - I

15.1. Category \mathcal{O} . Let \mathfrak{g} be a semisimple complex Lie algebra.

Definition 15.1. The category $\mathcal{O} = \mathcal{O}_{\mathfrak{g}}$ is the full subcategory of \mathfrak{g} -mod, which consists of finitely generated \mathfrak{g} -modules M with weight decomposition and $P(M) \subset \bigcup_{i=1}^{m} (\lambda_i - Q_+)$, where $\lambda_1, ..., \lambda_m \in \mathfrak{h}^*$.

It is clear that \mathcal{O} is closed under taking subquotients and direct sums, so it is an abelian category (recall that a submodule of a finitely generated \mathfrak{g} -module is finitely generated since $U(\mathfrak{g})$ is Noetherian).

Also it is easy to see that any nonzero object $M \in \mathcal{O}$ has a singular vector (namely, take any nonzero vector of a maximal weight in P(M)). Thus the simple objects (=modules) of \mathcal{O} are L_{λ} , $\lambda \in \mathfrak{h}^*$.

Example 15.2. All highest weight \mathfrak{g} -modules, in particular a Verma module M_{λ} and its simple quotient L_{λ} belong to \mathcal{O} . Another example is $\overline{M}_{-\lambda}^*$, the restricted dual to the lowest weight Verma module $\overline{M}_{-\lambda}$, introduced in Exercise 8.13(ii). This module is called the **contragre-dient Verma module** and denoted M_{λ}^{\vee} .

Lemma 15.3. If $M \in \mathcal{O}$ then the weight subspaces of M are finite dimensional.

Proof. Let $v_1, ..., v_m$ be generators of M which are eigenvectors of \mathfrak{h} (they exist since M is finitely generated and has weight decomposition). Let $E := \sum_{i=1}^{m} U(\mathfrak{h} \oplus \mathfrak{n}_+)v_i = \sum_{i=1}^{m} U(\mathfrak{n}_+)v_i$. Then E is finite dimensional by the condition on the weights of M. On the other hand, the natural map $U(\mathfrak{n}_-) \otimes E \to M$ is surjective. The lemma follows, as weight subspaces of $U(\mathfrak{n}_-) \otimes E$ are finite dimensional. \Box

Let \mathcal{R} be the ring of series $F := \sum_{\mu \in \mathfrak{h}^*} c_{\mu} e^{\mu}$, where $c_{\mu} \in \mathbb{Z}$ and the set P(F) of μ with $c_{\mu} \neq 0$ is contained in a finite union of sets of the form $\lambda - Q_+$, $\lambda \in \mathfrak{h}^*$. If M is an \mathfrak{h} -semisimple \mathfrak{g} -module with finite dimensional weight spaces and weights in a finite union of sets $\lambda - Q_+$ then we can define the **character** of M,

$$\operatorname{ch}(M) = \sum_{\lambda \in \mathfrak{h}^*} \dim M[\lambda] e^{\lambda} \in \mathcal{R}.$$

For example,

$$\operatorname{ch}(M_{\lambda}) = \frac{e^{\lambda}}{\prod_{\alpha \in R_{+}} (1 - e^{-\alpha})}.$$

We have $ch(M \otimes N) = ch(M)ch(N)$ and

$$\operatorname{ch}(M) = \operatorname{ch}(L) + \operatorname{ch}(N)$$
₇₈

when $0 \to L \to M \to N \to 0$ is a short exact sequence. Lemma 15.3 implies that we can define such characters ch(M) for $M \in \mathcal{O}$.

Corollary 15.4. The action of $Z(\mathfrak{g})$ on every $M \in \mathcal{O}$ factors through a finite dimensional quotient.

Proof. Since $Z(\mathfrak{g})$ is finitely generated, it suffices to show that every $z \in Z(\mathfrak{g})$ satisfies a polynomial equation F(z) = 0 in M. Let $\mu_1, ..., \mu_k$ be weights such that M is generated by $E := M[\mu_1] \oplus ... \oplus M[\mu_k]$. By Lemma 15.3, this space is finite dimensional, and it is preserved by z. Let F be the minimal polynomial of z on E. Then F(z) = 0 on E, hence on the whole M (as z is central and E generates M).

Exercise 15.5. Show that the action of $Z(\mathfrak{g})$ on any Harish-Chandra (\mathfrak{g}, K) -module factors through a finite-dimensional quotient. (Mimic the proof of Corollary 15.4).

Exercise 15.6. (i) Show that for any $\mu \in \mathfrak{h}^*$, $\operatorname{Ext}^1_{\mathcal{O}}(M_\mu, M_\mu) = 0$.

(ii) Show that $\operatorname{Ext}^1(M_{\mu}, M_{\mu})$ (Ext in the category of all \mathfrak{g} -modules) is nonzero.

Corollary 15.7. (i) Any $M \in \mathcal{O}$ has a canonical decomposition

$$M = \bigoplus_{\chi \in \mathfrak{h}^*/W} M(\chi),$$

where $M(\chi)$ is the generalized eigenspace of $Z(\mathfrak{g})$ in M with eigenvalue χ , and this direct sum is finite. In other words,

$$\mathcal{O} = \oplus_{\chi \in \mathfrak{h}^*/W} \mathcal{O}_{\chi},$$

where \mathcal{O}_{χ} is the subcategory of \mathcal{O} of modules where every $z \in Z(\mathfrak{g})$ acts with generalized eigenvalue $\chi(z)$.

(ii) Each $M \in \mathcal{O}_{\chi}$ has a finite filtration with successive quotients having infinitesimal character χ .

Proof. (i) Let $R := Z(\mathfrak{g}) / \operatorname{Ann}(M)$ be the quotient of $Z(\mathfrak{g})$ by its annihilator in M. This algebra is finite dimensional, so has the form $R = \prod_{i=1}^{m} R_i$, where R_i are local with units \mathbf{e}_i , corresponding to the generalized eigenvalues $\chi_1, ..., \chi_m \in \mathfrak{h}^*/W$ of $Z(\mathfrak{g})$ on M. So $M = \bigoplus_{i=1}^{m} M(\chi_i)$, where $M(\chi_i) := \mathbf{e}_i M$.

(ii) If $M \in \mathcal{O}_{\chi}$ then the algebra R is local. Let \mathfrak{m} be its unique maximal ideal. Then the required finite filtration on M is

$$M \supset \mathfrak{m}M \supset \mathfrak{m}^2 M..$$

Thus the simple objects of \mathcal{O}_{χ} are $L_{\mu-\rho}$, where $\chi = \chi_{\mu}$, i.e., $\mu \in \chi$.

We can partition the *W*-orbit χ into equivalence classes according to the relation $\mu \sim \nu$ if $\mu - \nu \in Q$. It is clear that this partition defines a decomposition $\mathcal{O}_{\chi} = \bigoplus_{S} \mathcal{O}_{\chi}(S)$, where *S* runs over the equivalence classes in χ under the relation \sim . Namely, $\mathcal{O}_{\chi}(S)$ is the subcategory of modules with all weights in $\mu - \rho + Q$, where $\mu \in S$.

Example 15.8. Suppose that $\lambda \in \mathfrak{h}^*$ is such that $w\lambda - \lambda \notin Q$ for any $1 \neq w \in W$. In this case the equivalence relation on $W\lambda$ is trivial, so for any $\mu \in W\lambda$ the category $\mathcal{O}_{\chi_{\lambda}}(\mu)$ has a unique simple object $M_{\mu-\rho}$. It thus follows from Exercise 15.6 for any $\mu \in W\lambda$, the category $\mathcal{O}_{\chi_{\lambda}}(\mu)$ is equivalent to the category of finite dimensional vector spaces (as $M_{\mu-\rho}$ has no nontrivial self-extensions), and the category $\mathcal{O}_{\chi_{\lambda}}$ is semisimple with |W| simple objects.

Lemma 15.9. Every object of \mathcal{O} has finite length.

Proof. By Corollary 15.7 we may assume that M has infinitesimal character χ_{λ} . We may also assume that $P(M) \subset \mu + Q$ for some $\mu \in \mathfrak{h}^*$. Recall that the quadratic Casimir C of \mathfrak{g} acts on M in the same way as in $M_{\lambda-\rho}$, i.e., by the scalar $\lambda^2 - \rho^2$. Suppose that v is a singular vector in a nonzero subquotient M' of M of some weight $\gamma \in \mu + Q$ (it must exist since weights of M' belong to a finite union of $\lambda_i - Q_+$). Then $Cv = (\gamma^2 - \rho^2)v$, so we must have

$$\gamma^2 = \lambda^2.$$

Since the inner product on Q is positive definite, this equation has a finite set S of solutions $\gamma \in \mu + Q$.

For a semisimple \mathfrak{h} -module Y set $Y[S] := \bigoplus_{\gamma \in S} Y[\gamma]$. It follows that $M'[S] \neq 0$. Also by Lemma 15.3 we have dim $M[S] < \infty$. Thus length $(M) \leq \dim M'[S] \leq \dim M[S]$ is finite, as claimed. \Box

15.2. **Partial orders of** \mathfrak{h}^* . Introduce a partial order on \mathfrak{h}^* : we say that $\mu \leq \lambda$ if $\lambda - \mu \in Q_+$ and $\mu < \lambda$ if $\mu \leq \lambda$ but $\mu \neq \lambda$. We write $\lambda \geq \mu$ if $\mu \leq \lambda$ and $\lambda > \mu$ if $\mu > \lambda$.

If $\mu = s_{\alpha}\lambda$ for some $\alpha \in R_+$ and $\mu < \lambda$ (i.e., $(\lambda, \alpha^{\vee}) \in \mathbb{Z}_{\geq 1}$ and $\mu = \lambda - (\lambda, \alpha^{\vee})\alpha$), then we write $\mu <_{\alpha} \lambda$. We write $\mu \preceq \lambda$ if there exist sequences $\alpha^1, ..., \alpha^m \in R_+$ and $\mu = \mu_0, \mu_1, ..., \mu_m = \lambda$ such that for all $i, \mu_{i-1} <_{\alpha^i} \mu_i$, and write $\mu \prec \lambda$ if $\mu \preceq \lambda$ but $\mu \neq \lambda$ (i.e., $m \neq 0$). We write $\lambda \succeq \mu$ if $\mu \preceq \lambda$ and $\lambda \succ \mu$ if $\mu \prec \lambda$.

Remark 15.10. It is easy to see that if $\mu \prec \lambda$ then $\mu < \lambda$ and $\mu \in W\lambda$, but the converse is false, in general. For example, consider the root system of type A_3 , and let us realize \mathfrak{h}^* as $\mathbb{C}^4/\mathbb{C}_{\text{diagonal}}$. Let $\mu = (0, 3, 1, 2), \lambda = (1, 2, 3, 0)$. Then $\mu \in W\lambda$ and $\mu < \lambda$, since $\lambda - \mu = (1, -1, 2, -2) = \alpha_1 + 2\alpha_3$. However, $\mu \not\prec \lambda$. Indeed, otherwise

there would exist $\alpha \in R_+$ such that $\mu \leq s_{\alpha}\lambda < \lambda$, and it is easy to check that there is no such α .

15.3. Verma's theorem.

Theorem 15.11. (D. N. Verma) Let $\lambda, \mu \in \mathfrak{h}^*$ and $\mu \leq \lambda$. Then dim Hom $(M_{\mu-\rho}, M_{\lambda-\rho}) = 1$ and $M_{\mu-\rho}$ can be uniquely realized as a submodule of $M_{\lambda-\rho}$. In particular, $L_{\mu-\rho}$ occurs in the composition series of $M_{\lambda-\rho}$.

Proof. By Exercise 8.14, dim Hom $(M_{\mu-\rho}, M_{\lambda-\rho}) \leq 1$ and any nonzero homomorphism $M_{\mu-\rho} \to M_{\lambda-\rho}$ is injective, so it suffices to show that dim Hom $(M_{\mu-\rho}, M_{\lambda-\rho}) \geq 1$. By definition of the partial order \leq , it suffices to do so when $\mu <_{\alpha} \lambda$ for some $\alpha \in R_+$, i.e., when $\mu = s_{\alpha}\lambda =$ $\lambda - n\alpha$ where $n := (\lambda, \alpha^{\vee}) \in \mathbb{Z}_+$. For generic λ with $(\lambda, \alpha^{\vee}) = n \in \mathbb{Z}_+$, this follows from the Shapovalov determinant formula (Exercise 8.15), and the general case follows by taking the limit. \Box

We will see below that the converse to Verma's theorem also holds: if $L_{\mu-\rho}$ occurs in the composition series of $M_{\lambda-\rho}$ then $\mu \leq \lambda$. This was proved by J. Bernstein, I. Gelfand and S. Gelfand, see Theorem 20.13 below.

15.4. The stabilizer in W of a point in \mathfrak{h}^*/Q . Let $x \in \mathfrak{h}^*/Q$ and $W_x \subset W$ be the stabilizer of x.

Proposition 15.12. W_x is generated by the reflections $s_\alpha \in W_x$. Moreover, the roots α such that $s_\alpha \in W_x$ form a root system $R_x \subset R$, and W_x is the Weyl group of R_x . The corresponding dual root system R_x^{\vee} is a root subsystem of R^{\vee} , i.e., $R_x^{\vee} = \operatorname{span}_{\mathbb{Z}}(R_x^{\vee}) \cap R^{\vee}$.

Proof. Let $T := \mathfrak{h}^*/Q$. The ring $\mathbb{C}[T/W] := \mathbb{C}[T]^W$ is freely generated by the orbit sums $m_i = \sum_{\beta \in W \omega_i^{\vee}} e^{\beta}$, where ω_i^{\vee} are the fundamental coweights. Hence T/W is smooth (in fact, an affine space). It follows by the Chevalley-Shephard-Todd theorem that for each $x \in T$ the stabilizer W_x is generated by a subset of reflections of W. Moreover, if $s_{\alpha}, s_{\beta} \in W_x$ then $s_{\alpha}s_{\beta}s_{\alpha} = s_{s_{\alpha}(\beta)} \in W_x$, which implies that the set R_x of α such that $s_{\alpha} \in W_x$ is a root system in R, and W_x is its Weyl group. Moreover, picking a preimage \widetilde{x} of x in \mathfrak{h}^* , we see that $\alpha \in R_x$ if and only if $(\alpha^{\vee}, \widetilde{x}) \in \mathbb{Z}$. Thus R_x^{\vee} is a root subsystem of R^{\vee} .

Remark 15.13. 1. Note that unlike the case $x \in \mathfrak{h}^*$, for $x \in \mathfrak{h}^*/Q$ the group W_x is not necessarily a **parabolic** subgroup of W, i.e., it is not necessarily conjugate to a subgroup generated by simple reflections. In fact, the Dynkin diagram of R_x or R_x^{\vee} may not be a subdiagram of

the Dynkin diagram of W. Such subgroups are called **quasiparabolic** subgroups.

For example, if R is of type B_2 with simple roots $\alpha_1 = (1,0)$ and $\alpha_2 = (-1,1)$ then for $x = (\frac{1}{2},0)$, R_x is the root system of type $A_1 \times A_1$ consisting of $\pm \alpha_1$ and $\pm (\alpha_1 + \alpha_2)$. The same example shows that R_x is not necessarily a root subsystem of R, as $\alpha_1 + (\alpha_1 + \alpha_2) \notin R_x$.

2. If G^{\vee} is the simply connected complex semisimple Lie group corresponding to R^{\vee} then T is the maximal torus of G^{\vee} , and it is easy to see that R_x^{\vee} is the root system of the centralizer \mathfrak{z}_x of x in $\mathfrak{g}^{\vee} := \operatorname{Lie}(G^{\vee})$.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.