15. Category O of g-modules - 1
15.1. Category O. Let g be a semisimple complex Lie algebra.

Definition 15.1. The category O = O, is the full subcategory of g-
mod, which consists of finitely generated g-modules M with weight
decomposition and P(M) C U™, (N — Q4+ ), where Ar, ..., A\, € b*.

It is clear that O is closed under taking subquotients and direct
sums, so it is an abelian category (recall that a submodule of a finitely
generated g-module is finitely generated since U(g) is Noetherian).

Also it is easy to see that any nonzero object M € O has a singular
vector (namely, take any nonzero vector of a maximal weight in P(M)).
Thus the simple objects (=modules) of O are Ly, A € h*.

Example 15.2. All highest weight g-modules, in particular a Verma
module M, and its simple quotient Ly belong to O. Another example
is M _», the restricted dual to the lowest weight Verma module M_,,
introduced in Exercise 8.13(ii). This module is called the contragre-
dient Verma module and denoted M)’

Lemma 15.3. If M € O then the weight subspaces of M are finite
dimensional.

Proof. Let vy, .., v, be generators of M which are eigenvectors of b (they
exist since M is finitely generated and has weight decomposition). Let
E=" UMbdn )y =" Us)v. Then E is finite dimensional
by the condition on the weights of M. On the other hand, the natural
map U(n_) ® E — M is surjective. The lemma follows, as weight
subspaces of U(n_) ® E are finite dimensional. O

Let R be the ring of series F' := Zueh* cue”, where ¢, € Z and the
set P(F') of u with ¢, # 0 is contained in a finite union of sets of the
form A — Q,, A € h*. If M is an h-semisimple g-module with finite
dimensional weight spaces and weights in a finite union of sets A — Q)
then we can define the character of M,

ch(M) = dim M[Ne € R.
Aeh*

For example,

6)‘

[aer, (1 =€)
We have ch(M ® N) = ch(M)ch(N) and

ch(M) = ch(L) + ch(N)
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Ch(M/\) =



when 0 - L — M — N — 0 is a short exact sequence. Lemma 15.3
implies that we can define such characters ch(M) for M € O.

Corollary 15.4. The action of Z(g) on every M € O factors through
a finite dimensional quotient.

Proof. Since Z(g) is finitely generated, it suffices to show that every
z € Z(g) satisfies a polynomial equation F'(z) =0 in M. Let uq, ..., ug
be weights such that M is generated by E := M[u] & ... & M|ux]. By
Lemma 15.3, this space is finite dimensional, and it is preserved by z.
Let F' be the minimal polynomial of z on E. Then F(z) = 0 on E,
hence on the whole M (as z is central and E generates M). O

Exercise 15.5. Show that the action of Z(g) on any Harish-Chandra
(g, K)-module factors through a finite-dimensional quotient. (Mimic
the proof of Corollary 15.4).

Exercise 15.6. (i) Show that for any p € b*, Exty, (M, M,,) = 0.
(ii) Show that Ext'(M,, M,) (Ext in the category of all g-modules)

1S nonzero.

Corollary 15.7. (i) Any M € O has a canonical decomposition
M = ®yepywM(x),

where M(x) is the generalized eigenspace of Z(g) in M with eigenvalue
X, and this direct sum s finite. In other words,

O = ®yep/w Oy

where Oy, is the subcategory of O of modules where every z € Z(g) acts
with generalized eigenvalue x(z).

(it) Each M € O, has a finite filtration with successive quotients
having infinitesimal character x.

Proof. (i) Let R := Z(g)/Ann(M) be the quotient of Z(g) by its an-
nihilator in M. This algebra is finite dimensional, so has the form
R = [IZ, Ri, where R; are local with units e;, corresponding to
the generalized eigenvalues xi,...,xm € b*/W of Z(g) on M. So
M =@, M(x;), where M (y;) := e;M.

(ii) If M € O, then the algebra R is local. Let m be its unique
maximal ideal. Then the required finite filtration on M is

M > mM D> m?M...
O

Thus the simple objects of O, are L,_,, where x = x,, i.e., u € x.
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We can partition the W-orbit y into equivalence classes according to
the relation p ~ v if p — v € Q. It is clear that this partition defines
a decomposition O, = ®50,(S5), where S runs over the equivalence
classes in x under the relation ~. Namely, O,(S5) is the subcategory
of modules with all weights in  — p + @, where € S.

Example 15.8. Suppose that A € h* is such that wA — A ¢ @ for any
1 # w € W. In this case the equivalence relation on WA is trivial,
so for any p € WA the category O,, (1) has a unique simple object
M,,—,. It thus follows from Exercise 15.6 for any 1 € WA, the category
Oy, (1) is equivalent to the category of finite dimensional vector spaces
(as M,_, has no nontrivial self-extensions), and the category O,, is
semisimple with |I¥/| simple objects.

Lemma 15.9. Every object of O has finite length.

Proof. By Corollary 15.7 we may assume that M has infinitesimal char-
acter x,. We may also assume that P(M) C u+ @ for some p € h*.
Recall that the quadratic Casimir C' of g acts on M in the same way as
in M,_,, i.e., by the scalar \* — p. Suppose that v is a singular vector
in a nonzero subquotient M’ of M of some weight v € p + @ (it must
exist since weights of M’ belong to a finite union of A; — Q). Then
Cv = (v? — p?)v, so we must have

72 — )\2'
Since the inner product on ) is positive definite, this equation has a
finite set .S of solutions v € u + Q.
For a semisimple h-module Y set Y[S] := @,c5Y[7]. It follows that

M'[S] # 0. Also by Lemma 15.3 we have dim M[S] < oco. Thus
length(M) < dim M'[S] < dim M[S] is finite, as claimed. O

15.2. Partial orders of h*. Introduce a partial order on h*: we say
that p < Nif A—p e @y and p < Xif p < X but u # A\. We write
A>pif p < Xand A > pif p > A

If p = suA for some € Ry and pp < A (ie., (A, a") € Z>, and
p=A—(Aa")a), then we write u <, A\. We write u < \ if there exist
sequences o', ....a™ € Ry and p = pg, fi1, ..., b = A such that for all
By o1 <gi i, and write g < X if g < X but p # A (i.e., m # 0). We
write A = pif p < Aand A > pif p < A

Remark 15.10. It is easy to see that if © < X\ then u < X\ and

1 € WA, but the converse is false, in general. For example, consider

the root system of type As, and let us realize h* as C*/ Caiagonal- Let

pw = (0,3,1,2), A = (1,2,3,0). Then g € WA and p < A, since

A—pu=(1,-1,2,-2) = oy + 2a3. However, p £ \. Indeed, otherwise
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there would exist & € R, such that p < s,A < A, and it is easy to
check that there is no such a.

15.3. Verma’s theorem.

Theorem 15.11. (D. N. Verma) Let A\, € b* and p < X\. Then
dimHom(M,,_,, Mx_,) = 1 and M,_, can be uniquely realized as a
submodule of Mx_,. In particular, L,_, occurs in the composition se-
ries of My_,,.

Proof. By Exercise 8.14, dim Hom(M,,_,, M,_,) < 1 and any nonzero
homomorphism M, _, — M,_, is injective, so it suffices to show that
dim Hom(M,,_,, Mx_,) > 1. By definition of the partial order =, it
suffices to do so when pu <, A for some o € R, i.e., when p = s\ =
A —na where n := (\,a") € Z,. For generic A with (A\,a") =n € Z,
this follows from the Shapovalov determinant formula (Exercise 8.15),
and the general case follows by taking the limit. U

We will see below that the converse to Verma’s theorem also holds:
if L,,_, occurs in the composition series of M,_, then pr < A. This was
proved by J. Bernstein, I. Gelfand and S. Gelfand, see Theorem 20.13
below.

15.4. The stabilizer in W of a point in h*/Q. Let = € h*/Q) and
W, C W be the stabilizer of z.

Proposition 15.12. W, is generated by the reflections s, € W,.
Moreover, the roots o such that s, € W, form a root system R, C R,
and W, is the Weyl group of R,. The corresponding dual root system
RY is a root subsystem of RY, i.e., R = spany(R)) N R".

Proof. Let T := h*/Q. The ring C[T /W] := C[T|" is freely generated
by the orbit sums m; = > fewwy e?, where w) are the fundamental
coweights. Hence T'/W is smooth (in fact, an affine space). It follows
by the Chevalley-Shephard-Todd theorem that for each x € T the
stabilizer W, is generated by a subset of reflections of W. Moreover,
if 54,58 € W, then s,555, = 5,,(3) € Wy, which implies that the set
R, of a such that s, € W, is a root system in R, and W, is its Weyl
group. Moreover, picking a preimage x of z in h*, we see that a € R,
if and only if (a¥,z) € Z. Thus R is a root subsystem of R". O

Remark 15.13. 1. Note that unlike the case x € h*, for = € h*/Q the
group W, is not necessarily a parabolic subgroup of W, i.e., it is not
necessarily conjugate to a subgroup generated by simple reflections. In

fact, the Dynkin diagram of R, or RY may not be a subdiagram of
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the Dynkin diagram of W. Such subgroups are called quasiparabolic
subgroups.

For example, if R is of type By with simple roots a3 = (1,0) and
ay = (—1,1) then for z = (3,0), R, is the root system of type A; x A,
consisting of +a; and £(a; + ay). The same example shows that R,
is not necessarily a root subsystem of R, as ag + (a1 + a2) ¢ R,.

2. If GV is the simply connected complex semisimple Lie group
corresponding to RY then T is the maximal torus of GV, and it is
easy to see that R is the root system of the centralizer 3, of z in
g¥ := Lie(GY).
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