
15. Category O of g-modules - I

15.1. Category O. Let g be a semisimple complex Lie algebra.

Definition 15.1. The category O = Og is the full subcategory of g-
mod, which consists of finitely generated g-modules M with weight
decomposition and P (M) ⊂ ∪mi=1(λi −Q+), where λ1, ..., λm ∈ h∗.

It is clear that O is closed under taking subquotients and direct
sums, so it is an abelian category (recall that a submodule of a finitely
generated g-module is finitely generated since U(g) is Noetherian).

Also it is easy to see that any nonzero object M ∈ O has a singular
vector (namely, take any nonzero vector of a maximal weight in P (M)).
Thus the simple objects (=modules) of O are Lλ, λ ∈ h∗.

Example 15.2. All highest weight g-modules, in particular a Verma
module Mλ and its simple quotient Lλ belong to O. Another example
is M

∗
−λ, the restricted dual to the lowest weight Verma module M−λ,

introduced in Exercise 8.13(ii). This module is called the contragre-
dient Verma module and denoted M∨

λ .

Lemma 15.3. If M ∈ O then the weight subspaces of M are finite
dimensional.

Proof. Let v1, .., vm be generators ofM which are eigenvectors of h (they
exist since M is finitely generated and has weight decomposition). Let
E :=

∑m
i=1 U(h⊕ n+)vi =

∑m
i=1 U(n+)vi. Then E is finite dimensional

by the condition on the weights of M . On the other hand, the natural
map U(n−) ⊗ E → M is surjective. The lemma follows, as weight
subspaces of U(n−)⊗ E are finite dimensional. �

Let R be the ring of series F :=
∑

µ∈h∗ cµe
µ, where cµ ∈ Z and the

set P (F ) of µ with cµ 6= 0 is contained in a finite union of sets of the
form λ − Q+, λ ∈ h∗. If M is an h-semisimple g-module with finite
dimensional weight spaces and weights in a finite union of sets λ−Q+

then we can define the character of M ,

ch(M) =
∑
λ∈h∗

dimM [λ]eλ ∈ R.

For example,

ch(Mλ) =
eλ∏

α∈R+
(1− e−α)

.

We have ch(M ⊗N) = ch(M)ch(N) and

ch(M) = ch(L) + ch(N)
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when 0 → L → M → N → 0 is a short exact sequence. Lemma 15.3
implies that we can define such characters ch(M) for M ∈ O.

Corollary 15.4. The action of Z(g) on every M ∈ O factors through
a finite dimensional quotient.

Proof. Since Z(g) is finitely generated, it suffices to show that every
z ∈ Z(g) satisfies a polynomial equation F (z) = 0 in M . Let µ1, ..., µk
be weights such that M is generated by E := M [µ1]⊕ ...⊕M [µk]. By
Lemma 15.3, this space is finite dimensional, and it is preserved by z.
Let F be the minimal polynomial of z on E. Then F (z) = 0 on E,
hence on the whole M (as z is central and E generates M). �

Exercise 15.5. Show that the action of Z(g) on any Harish-Chandra
(g, K)-module factors through a finite-dimensional quotient. (Mimic
the proof of Corollary 15.4).

Exercise 15.6. (i) Show that for any µ ∈ h∗, Ext1
O(Mµ,Mµ) = 0.

(ii) Show that Ext1(Mµ,Mµ) (Ext in the category of all g-modules)
is nonzero.

Corollary 15.7. (i) Any M ∈ O has a canonical decomposition

M = ⊕χ∈h∗/WM(χ),

where M(χ) is the generalized eigenspace of Z(g) in M with eigenvalue
χ, and this direct sum is finite. In other words,

O = ⊕χ∈h∗/WOχ,

where Oχ is the subcategory of O of modules where every z ∈ Z(g) acts
with generalized eigenvalue χ(z).

(ii) Each M ∈ Oχ has a finite filtration with successive quotients
having infinitesimal character χ.

Proof. (i) Let R := Z(g)/Ann(M) be the quotient of Z(g) by its an-
nihilator in M . This algebra is finite dimensional, so has the form
R =

∏m
i=1 Ri, where Ri are local with units ei, corresponding to

the generalized eigenvalues χ1, ..., χm ∈ h∗/W of Z(g) on M . So
M = ⊕mi=1M(χi), where M(χi) := eiM .

(ii) If M ∈ Oχ then the algebra R is local. Let m be its unique
maximal ideal. Then the required finite filtration on M is

M ⊃ mM ⊃ m2M...

�

Thus the simple objects of Oχ are Lµ−ρ, where χ = χµ, i.e., µ ∈ χ.
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We can partition the W -orbit χ into equivalence classes according to
the relation µ ∼ ν if µ − ν ∈ Q. It is clear that this partition defines
a decomposition Oχ = ⊕SOχ(S), where S runs over the equivalence
classes in χ under the relation ∼. Namely, Oχ(S) is the subcategory
of modules with all weights in µ− ρ+Q, where µ ∈ S.

Example 15.8. Suppose that λ ∈ h∗ is such that wλ− λ /∈ Q for any
1 6= w ∈ W . In this case the equivalence relation on Wλ is trivial,
so for any µ ∈ Wλ the category Oχλ(µ) has a unique simple object
Mµ−ρ. It thus follows from Exercise 15.6 for any µ ∈ Wλ, the category
Oχλ(µ) is equivalent to the category of finite dimensional vector spaces
(as Mµ−ρ has no nontrivial self-extensions), and the category Oχλ is
semisimple with |W | simple objects.

Lemma 15.9. Every object of O has finite length.

Proof. By Corollary 15.7 we may assume that M has infinitesimal char-
acter χλ. We may also assume that P (M) ⊂ µ + Q for some µ ∈ h∗.
Recall that the quadratic Casimir C of g acts on M in the same way as
in Mλ−ρ, i.e., by the scalar λ2− ρ2. Suppose that v is a singular vector
in a nonzero subquotient M ′ of M of some weight γ ∈ µ+Q (it must
exist since weights of M ′ belong to a finite union of λi − Q+). Then
Cv = (γ2 − ρ2)v, so we must have

γ2 = λ2.

Since the inner product on Q is positive definite, this equation has a
finite set S of solutions γ ∈ µ+Q.

For a semisimple h-module Y set Y [S] := ⊕γ∈SY [γ]. It follows that
M ′[S] 6= 0. Also by Lemma 15.3 we have dimM [S] < ∞. Thus
length(M) ≤ dimM ′[S] ≤ dimM [S] is finite, as claimed. �

15.2. Partial orders of h∗. Introduce a partial order on h∗: we say
that µ ≤ λ if λ − µ ∈ Q+ and µ < λ if µ ≤ λ but µ 6= λ. We write
λ ≥ µ if µ ≤ λ and λ > µ if µ > λ.

If µ = sαλ for some α ∈ R+ and µ < λ (i.e., (λ, α∨) ∈ Z≥1 and
µ = λ− (λ, α∨)α), then we write µ <α λ. We write µ � λ if there exist
sequences α1, ..., αm ∈ R+ and µ = µ0, µ1, ..., µm = λ such that for all
i, µi−1 <αi µi, and write µ ≺ λ if µ � λ but µ 6= λ (i.e., m 6= 0). We
write λ � µ if µ � λ and λ � µ if µ ≺ λ.

Remark 15.10. It is easy to see that if µ ≺ λ then µ < λ and
µ ∈ Wλ, but the converse is false, in general. For example, consider
the root system of type A3, and let us realize h∗ as C4/Cdiagonal. Let
µ = (0, 3, 1, 2), λ = (1, 2, 3, 0). Then µ ∈ Wλ and µ < λ, since
λ− µ = (1,−1, 2,−2) = α1 + 2α3. However, µ ⊀ λ. Indeed, otherwise

80



there would exist α ∈ R+ such that µ ≤ sαλ < λ, and it is easy to
check that there is no such α.

15.3. Verma’s theorem.

Theorem 15.11. (D. N. Verma) Let λ, µ ∈ h∗ and µ � λ. Then
dim Hom(Mµ−ρ,Mλ−ρ) = 1 and Mµ−ρ can be uniquely realized as a
submodule of Mλ−ρ. In particular, Lµ−ρ occurs in the composition se-
ries of Mλ−ρ.

Proof. By Exercise 8.14, dim Hom(Mµ−ρ,Mλ−ρ) ≤ 1 and any nonzero
homomorphism Mµ−ρ → Mλ−ρ is injective, so it suffices to show that
dim Hom(Mµ−ρ,Mλ−ρ) ≥ 1. By definition of the partial order �, it
suffices to do so when µ <α λ for some α ∈ R+, i.e., when µ = sαλ =
λ− nα where n := (λ, α∨) ∈ Z+. For generic λ with (λ, α∨) = n ∈ Z+,
this follows from the Shapovalov determinant formula (Exercise 8.15),
and the general case follows by taking the limit. �

We will see below that the converse to Verma’s theorem also holds:
if Lµ−ρ occurs in the composition series of Mλ−ρ then µ � λ. This was
proved by J. Bernstein, I. Gelfand and S. Gelfand, see Theorem 20.13
below.

15.4. The stabilizer in W of a point in h∗/Q. Let x ∈ h∗/Q and
Wx ⊂ W be the stabilizer of x.

Proposition 15.12. Wx is generated by the reflections sα ∈ Wx.
Moreover, the roots α such that sα ∈ Wx form a root system Rx ⊂ R,
and Wx is the Weyl group of Rx. The corresponding dual root system
R∨x is a root subsystem of R∨, i.e., R∨x = spanZ(R∨x ) ∩R∨.

Proof. Let T := h∗/Q. The ring C[T/W ] := C[T ]W is freely generated
by the orbit sums mi =

∑
β∈Wω∨i

eβ, where ω∨i are the fundamental

coweights. Hence T/W is smooth (in fact, an affine space). It follows
by the Chevalley-Shephard-Todd theorem that for each x ∈ T the
stabilizer Wx is generated by a subset of reflections of W . Moreover,
if sα, sβ ∈ Wx then sαsβsα = ssα(β) ∈ Wx, which implies that the set
Rx of α such that sα ∈ Wx is a root system in R, and Wx is its Weyl
group. Moreover, picking a preimage x̃ of x in h∗, we see that α ∈ Rx

if and only if (α∨, x̃) ∈ Z. Thus R∨x is a root subsystem of R∨. �

Remark 15.13. 1. Note that unlike the case x ∈ h∗, for x ∈ h∗/Q the
group Wx is not necessarily a parabolic subgroup of W , i.e., it is not
necessarily conjugate to a subgroup generated by simple reflections. In
fact, the Dynkin diagram of Rx or R∨x may not be a subdiagram of
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the Dynkin diagram of W . Such subgroups are called quasiparabolic
subgroups.

For example, if R is of type B2 with simple roots α1 = (1, 0) and
α2 = (−1, 1) then for x = (1

2
, 0), Rx is the root system of type A1×A1

consisting of ±α1 and ±(α1 + α2). The same example shows that Rx

is not necessarily a root subsystem of R, as α1 + (α1 + α2) /∈ Rx.
2. If G∨ is the simply connected complex semisimple Lie group

corresponding to R∨ then T is the maximal torus of G∨, and it is
easy to see that R∨x is the root system of the centralizer zx of x in
g∨ := Lie(G∨).

82



MIT OpenCourseWare
https://ocw.mit.edu 

18.757 Representations of Lie Groups 
Fall 2023  

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	18.757cover.pdf
	cover.pdf
	Blank Page





