16. Category \mathcal{O} of \mathfrak{g} -modules - II

16.1. Dominant weights. Let us say that a weight $\lambda \in \mathfrak{h}^*$ is dominant for the partial order \leq (respectively, \preceq) if it is maximal with respect to this order in its equivalence class (or, equivalently, in its *W*-orbit).

Corollary 16.1. The following conditions on a weight $\lambda \in \mathfrak{h}^*$ are equivalent:

- (i) λ is dominant for \leq ;
- (ii) λ is dominant for \leq ;
- (iii) For every root $\alpha \in R_+$, $(\lambda, \alpha^{\vee}) \notin \mathbb{Z}_{<0}$.
- (iv) For every $w \in W_{\lambda+Q}$, $w\lambda \preceq \lambda$.
- (v) For every $w \in W_{\lambda+Q}$, $w\lambda \leq \lambda$.

Proof. It is clear that (iv) implies (v) implies (i) implies (ii). It is also easy to see that (ii) implies (iii), since if $(\lambda, \alpha^{\vee}) \in \mathbb{Z}_{<0}$ then $s_{\alpha}\lambda \sim \lambda$ and $s_{\alpha}\lambda > \lambda$ so λ is not maximal under \preceq in its equivalence class. It remains to show that (iii) implies (iv). By Proposition 15.12, $W_{\lambda+Q}$ is the Weyl group of some root system $R' \subset R$, and the equivalence class S of λ is simply the orbit $W_{\lambda+Q}\lambda$. By our assumption, for $\alpha \in R'_+$ we have $(\lambda, \alpha^{\vee}) \in \mathbb{Z} \setminus \mathbb{Z}_{<0} = \mathbb{Z}_{\geq 0}$. Thus, $\lambda = \lambda' + \nu$ where λ' is a dominant integral weight for R' (meaning that $(\lambda, \alpha^{\vee}) \in \mathbb{Z}_{\geq 0}$ for $\alpha \in R'_+$) and $(\nu, \alpha^{\vee}) = 0$ for all $\alpha \in R'_+$. Now for any $w \in W_{\lambda+Q}$, fix a reduced decomposition $w = s_{i_m} \dots s_{i_1}$, where $s_i = s_{\beta_i}$ and β_i are the simple roots of R'. Let $\lambda_k := s_{i_k} \dots s_{i_1}\lambda$, so $\lambda_0 = \lambda$ and $\lambda_m = w\lambda$. Setting $\lambda'_k := s_{i_k} \dots s_{i_1}\lambda' = \lambda_k - \nu$, we then have

$$\lambda_{k-1} - \lambda_k = \lambda'_{k-1} - \lambda'_k = (\lambda'_{k-1}, \beta^{\vee}_{i_k})\beta_{i_k} = (\lambda', s_{i_1} \dots s_{i_{k-1}}\beta^{\vee}_{i_k})\beta_{i_k}.$$

The coroot $s_{i_1}...s_{i_{k-1}}\beta_{i_k}^{\vee}$ is positive, so we get that $\lambda_k \preceq \lambda_{k-1}$, which yields (iv).

Corollary 16.1 shows that every equivalence class of weights contains a unique maximal element with respect to each of the orders \leq and \leq , namely the unique dominant weight in this class. The same is true for minimal elements by changing signs.

16.2. **Projective objects.** Let C be an abelian category over a field k. Recall that C is said to be **Noetherian** if any ascending chain of subobjects of any object $X \in C$ stabilizes. This holds, for instance, when objects of C have finite length.

Recall also that an object $P \in \mathcal{C}$ is **projective** if the functor $\operatorname{Hom}(P, -)$ is (right) exact, and that \mathcal{C} is said to have **enough projectives** if every object $L \in \mathcal{C}$ is a quotient of a projective object P. Note that if

objects of C have finite length then it is sufficient for this to hold for every simple L, then the property can be proved for all L by induction in length. Indeed, suppose we have a short exact sequence

$$0 \to L_1 \to L \to L_2 \to 0$$

with $L_1, L_2 \neq 0$ and projectives P_1, P_2 with epimorphisms $p_j : P_j \twoheadrightarrow L_j$. Then the map p_2 lifts to $\tilde{p}_2 : P_2 \to L$, which yields an epimorphism $p_1 + \tilde{p}_2 : P_1 \oplus P_2 \twoheadrightarrow L$.

Suppose that Hom spaces in C are finite dimensional. Then by the **Krull-Schmidt theorem**, every object of C has a unique representation as a finite direct sum of indecomposable ones (up to isomorphism and permutation of summands).

Proposition 16.2. Let C be a Noetherian abelian category with enough projectives and finite dimensional Hom spaces over an algebraically closed field k. Then

(i) Let I be the set labeling the isomorphism classes of indecomposable projectives P_i of C. Then the isomorphism classes of simple objects L_i of C are labeled by the same set I, and dim Hom $(P_i, L_j) = \delta_{ij}$, $i, j \in I$.

(ii) For $M \in \mathcal{C}$ of finite length, the multiplicities $[M : L_i]$ equal dim Hom (P_i, M) .

Proof. Let $P \in \mathcal{C}$ be an indecomposable projective. Then $\operatorname{End}(P)$ has no idempotents other than 0, 1, so $\operatorname{End}(P) = k \oplus N$ where N is the nilradical, i.e., it is a local algebra.

Suppose $Q \subset P$ is a maximal proper subobject (it exists by Zorn's lemma since C is Noetherian). Let $Q' \subset P$ be a subobject not contained in Q. Then Q + Q' = P. So we have an epimorphism $Q \oplus Q' \to P$, which, by the projectivity of P, gives a surjection

$$\operatorname{Hom}(P,Q) \oplus \operatorname{Hom}(P,Q') \to \operatorname{End}(P).$$

So we have $1_P = a + a'$, where $a, a' : P \to P$ factor through Q, Q'. Thus a is not an isomorphism (since Q is proper). As End(P) is local, it follows that a' is an isomorphism, so Q' = P.

It follows that P has a unique maximal proper subobject J(P), and $L_P := P/J(P)$ is simple. Moreover, if L := P/Q is simple then Q = J(P), so $L = L_P$. So if I' labels the isomorphism classes of simples in \mathcal{C} , then we get a map $\ell : I \to I'$ such that $\ell(P) = L_P$, and we have dim Hom $(P_i, L_{i'}) = \delta_{\ell(i),i'}$. Moreover, ℓ is surjective since every simple L is a quotient of some projective P which may be chosen indecomposable (if $P \to L$ and $P = \bigoplus_{i=1}^{N} P_i$ where P_i are indecomposable then there exists i such that the map $P_i \to L$ is nonzero, hence an epimorphism as L is simple).

It remains to show that ℓ is injective, i.e., if $L_m \cong L_n$ then $P_m \cong P_n$. To this end, note that the epimorphisms $a_0: P_m \twoheadrightarrow L_n, b_0: P_n \twoheadrightarrow L_m$ lift to morphisms $a: P_m \to P_n, b: P_n \to P_m$, such that $ab \in$ $\operatorname{End}(P_n)$ and $ba \in \operatorname{End}(P_m)$ are not nilpotent (as they define isomorphisms on the corresponding simple quotients). Since the algebras $\operatorname{End}(P_n), \operatorname{End}(P_m)$ are loc al, it follows that ab and ba are isomorphisms, as claimed.

This proves (i). Part (ii) now follows from the exactness of the functor $\text{Hom}(P_i, ?)$.

The object P_i is called the **projective cover** of L_i , and L_i is called the **head** of P_i ; by Proposition 16.2, it is the unique simple quotient of P_i .

Remark 16.3. In general, objects of a category satisfying the assumptions of Proposition 16.2 need not have finite length. An example when they can have infinite length is the category of finitely generated \mathbb{Z} -graded $\mathbb{C}[x]$ -modules, where deg(x) = 1. The simple objects in this category are 1-dimensional modules L_n , $n \in \mathbb{Z}$, which sit in degree n (with x acting by zero). The projective cover of L_n is $P_n = \mathbb{C}[x]_n$, the free rank 1 module sitting in degrees $n, n+1, \ldots$, which has infinite length.

16.3. Projective objects in \mathcal{O} .

Proposition 16.4. If λ is dominant then $M_{\lambda-\rho}$ is a projective object in \mathcal{O} .²⁰

Proof. Our job is to show that the functor $\operatorname{Hom}(M_{\lambda-\rho}, \bullet)$ is exact on \mathcal{O} . It suffices to show this on $\mathcal{O}_{\chi_{\lambda}}(S)$, where S is the equivalence class of λ . To this end, note that all weights of any $X \in \mathcal{O}_{\chi_{\lambda}}(S)$ are not $> \lambda - \rho$. Thus every $v \in X[\lambda - \rho]$ is singular, so there is a unique homomorphism $M_{\lambda-\rho} \to X$ sending $v_{\lambda-\rho}$ to v. It follows that that $\operatorname{Hom}(M_{\lambda-\rho}, X) \cong X[\lambda - \rho]$, which implies the statement. \Box

Now let V be a finite dimensional \mathfrak{g} -module. Then we have an exact functor $V \otimes : \mathcal{O} \to \mathcal{O}$.

Corollary 16.5. (i) If $P \in \mathcal{O}$ is projective then so is $V \otimes P$.

(ii) If $\lambda \in \mathfrak{h}^*$ is dominant then the object $V \otimes M_{\lambda-\rho} \in \mathcal{O}$ is projective.

Proof. (i) For $X \in \mathcal{O}$

$$\operatorname{Hom}_{\mathfrak{q}}(V \otimes P, X) = \operatorname{Hom}_{\mathfrak{q}}(P, V^* \otimes X),$$

²⁰Note that this does not mean that M_{λ} is a projective $U(\mathfrak{g})$ -module; in fact, it is not.

which is exact since P is projective.

(ii) follows from (i) and Proposition 16.4.

Corollary 16.6. (i) For every $\mu \in \mathfrak{h}^*$, there exists dominant $\lambda \in \mathfrak{h}^*$ and a finite dimensional \mathfrak{g} -module V such that $\operatorname{Hom}(V \otimes M_{\lambda-\rho}, L_{\mu}) \neq 0$. Thus \mathcal{O} has enough projectives.

(ii) Every projective object P of \mathcal{O} is a free $U(\mathfrak{n}_{-})$ -module.

Proof. (i) We have

 $\operatorname{Hom}(V \otimes M_{\lambda-\rho}, L_{\mu}) = \operatorname{Hom}_{\mathfrak{g}}(M_{\lambda-\rho}, V^* \otimes L_{\mu}).$

Now take $V = V^* = L_{N\rho}$ for large N and $\lambda = \mu + (N+1)\rho$. It is clear that λ is dominant, and $\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda-\rho}, V^* \otimes L_{\mu}) = \mathbb{C}$, as claimed.

(ii) This follows by Lemma 12.3 since every indecomposable projective object $P \in \mathcal{O}$ is an \mathfrak{h}^* -graded direct summand in $V \otimes M_{\lambda-\rho}$, which is a free graded $U(\mathfrak{n}_-)$ -module.

It follows that every simple object L_{λ} of \mathcal{O} has a projective cover P_{λ} , with dim Hom $(P_{\lambda}, L_{\mu}) = \delta_{\lambda\mu}$.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.