17. The nilpotent cone of \mathfrak{g}

17.1. The nilpotent cone. Let $(S \mathfrak{g})_{0}$ be the quotient of $S \mathfrak{g}$ by the ideal generated by the positive degree part of $(S \mathfrak{g})^{\mathfrak{g}}$, i.e. by the free homogeneous generators p_{1}, \ldots, p_{r} of $(S \mathfrak{g})^{\mathfrak{g}}$ (which exist by Kostant's theorem). The scheme

$$
\mathcal{N}:=\operatorname{Spec}(S \mathfrak{g})_{0} \subset \mathfrak{g}^{*} \cong \mathfrak{g}
$$

is called the nilpotent cone of \mathfrak{g}. It follows from the Kostant theorem that p_{1}, \ldots, p_{r} is a regular sequence, i.e., this scheme is a complete intersection of codimension r in \mathfrak{g} (see Remark 12.11), i.e., of dimension

$$
\operatorname{dim} \mathcal{N}=\operatorname{dim} \mathfrak{g}-r=|R|=2\left|R_{ \pm}\right|=2 \operatorname{dim} \mathfrak{n}_{ \pm}
$$

the number of roots of \mathfrak{g}.
Let $x \in \mathfrak{g}$ be a nilpotent element. Recall that then x is conjugate to an element $y \in \mathfrak{n}_{+}$and $\operatorname{Ad}\left(t^{2 \rho^{\vee}}\right) y \rightarrow 0$ as $t \rightarrow 0$, where ρ^{\vee} is the half-sum of positive coroots of \mathfrak{g}. Thus $p_{i}(x)=p_{i}(y)=0$ and hence $x \in \mathcal{N}(\mathbb{C})$. On the other hand, if x is not nilpotent then $\operatorname{ad}(x)$ is not a nilpotent operator, so $\operatorname{Tr}\left(\operatorname{ad}(x)^{N}\right) \neq 0$ for some N, hence $x \notin \mathcal{N}(\mathbb{C})$. It follows that $\mathcal{N}(\mathbb{C})$ is exactly the set of nilpotent elements of \mathfrak{g}, hence the term "nilpotent cone".

For example, for $\mathfrak{g}=\mathfrak{s l}_{2}$ we have $r=1$ and

$$
p_{1}(A)=-\operatorname{det} A=x^{2}+y z
$$

for $A:=\left(\begin{array}{cc}x & y \\ z & -x\end{array}\right) \in \mathfrak{g}$, so \mathcal{N} is the usual quadratic cone in \mathbb{C}^{3} defined by the equation $x^{2}+y z=0$.
17.2. The principal $\mathfrak{s l}_{2}$ subalgebra. The principal $\mathfrak{s l}_{2}$ subalgebra of \mathfrak{g} is the subalgebra spanned by $e:=\sum_{i=1}^{r} e_{i}, f:=\sum_{i} c_{i} f_{i}$ and $h:=[e, f]=\sum_{i} c_{i} h_{i}=2 \rho^{\vee}$. Thus c_{i} are found from the equations $\sum_{i} c_{i} a_{i j}=2$ for all j, where $A=\left(a_{i j}\right)$ is the Cartan matrix of \mathfrak{g}.

Lemma 17.1. The restriction of the adjoint representation of \mathfrak{g} to its principal $\mathfrak{s l}_{2}$-subalgebra is isomorphic to $L_{2 m_{1}} \oplus \ldots \oplus L_{2 m_{r}}$ for appropriate $m_{i} \in \mathbb{Z}_{>0}$.
Proof. Consider the corresponding action of the group $S L_{2}(\mathbb{C})$. The element $-1 \in S L_{2}(\mathbb{C})$ acts on \mathfrak{g} by $\exp \left(2 \pi i \rho^{\vee}\right)=1$ since ρ^{\vee} is an integral coweight. Thus only even highest weight $\mathfrak{s l}_{2}$-modules may occur in the decomposition of \mathfrak{g}. Since ρ^{\vee} is regular, the 0 -weight space of this module (the centralizer $Z_{\mathfrak{g}}\left(\rho^{\vee}\right)$) is \mathfrak{h}, i.e., has dimension r. Thus \mathfrak{g} has r indecomposable direct summands over the principal $\mathfrak{s l}_{2}$, as claimed.

The numbers m_{i} (arranged in non-decreasing order) are called the exponents of \mathfrak{g}. We will soon see that $m_{i}=d_{i}-1$, where d_{i} are the degrees of \mathfrak{g}.
17.3. Regular elements. Recall that $x \in \mathfrak{g}$ is regular if the dimension of its centralizer is $r=$ rankg (the smallest it can be). Thus regular elements form an open set $\mathfrak{g}_{\text {reg }} \subset \mathfrak{g}$.

Lemma 17.2. The element $e=\sum_{i=1}^{r} e_{i}$ is regular.
Proof. By Lemma 17.1, the centralizer $Z_{\mathfrak{g}}(e)$ is spanned by the highest vectors of the representations $L_{2 m_{1}}, \ldots, L_{2 m_{r}}$, hence has dimension r.

Corollary 17.3. Let B_{+}be the Borel subgroup of G with Lie algebra $\mathfrak{b}_{+}:=\mathfrak{h} \oplus \mathfrak{n}_{+}$. Then $\operatorname{Ad}\left(B_{+}\right) e$ is the set of elements $\sum_{\alpha \in R_{+}} c_{\alpha} e_{\alpha}$ with $c_{\alpha} \in \mathbb{C}$ and $c_{\alpha_{i}} \neq 0$ for all i.

Proof. Since by Lemma $17.2 \operatorname{dim} Z_{\mathfrak{g}}(e)=r$, we have

$$
\operatorname{dim}\left[e, \mathfrak{n}_{+}\right] \geq\left|R_{+}\right|-r=\operatorname{dim}\left[\mathfrak{n}_{+}, \mathfrak{n}_{+}\right]
$$

Since $\left[e, \mathfrak{n}_{+}\right] \subset\left[\mathfrak{n}_{+}, \mathfrak{n}_{+}\right]$, we get that $\left[e, \mathfrak{n}_{+}\right]=\left[\mathfrak{n}_{+}, \mathfrak{n}_{+}\right]$. It follows that if $N_{+}=\exp \left(\mathfrak{n}_{+}\right)$then $\operatorname{Ad}\left(N_{+}\right) e=e+\left[\mathfrak{n}_{+}, \mathfrak{n}_{+}\right]$is the set of expressions $\sum_{\alpha \in R_{+}} c_{\alpha} e_{\alpha}$ with $c_{\alpha_{i}}=1$ for all i. The statement follows by adding the action of the maximal torus $H=\exp (\mathfrak{h})$, which allows to set $c_{\alpha_{i}}$ to arbitrary nonzero values.

17.4. Properties of the nilpotent cone.

Proposition 17.4. The nilpotent cone is reduced.
Proposition 17.4 is proved in the following exercise.
Exercise 17.5. Let \mathfrak{g} be a finite dimensional simple Lie algebra.
(i) Let R_{0} be the graded algebra in Theorem 12.2. Show that the top degree of this algebra is $D:=\sum_{i=1}^{r}\left(d_{i}-1\right)$ and $R_{0}[D]=\mathbb{C} \Delta$, where $\Delta:=\prod_{\alpha \in R_{+}} \alpha$. Deduce that $\sum_{i=1}^{r}\left(d_{i}-1\right)=\left|R_{+}\right|$, , the number of positive roots.
(ii) Let $\mathfrak{g}=\oplus_{i=1}^{r} L_{2 m_{i}}$ be the decomposition of \mathfrak{g} as a module over the principal $\mathfrak{s l}_{2}$-subalgebra (e, f, h) given by Lemma 17.1, i.e., m_{i} are the exponents of \mathfrak{g}. Show that $m_{1}=1$ and $\sum_{i=1}^{r} m_{i}=\left|R_{+}\right|$. Moreover, show that if $\mu_{\mathfrak{g}}$ is the partition $\left(m_{r}, \ldots, m_{1}\right)$ then the conjugate partition $\mu_{\mathfrak{g}}^{\dagger}$ is $\left(n_{1}, \ldots, n_{\mathrm{h}-1}\right)$, where n_{i} is the number of positive roots α of height i (i.e., $\left.\left(\rho^{\vee}, \alpha\right)=i\right)$ and $\mathrm{h}:=m_{r}+1$. Conclude that $\mathrm{h}=\left(\rho^{\vee}, \theta\right)+1$ where θ is the maximal root, i.e., the Coxeter number of \mathfrak{g}.
(iii)(a) Let b_{i} be the lowest weight vectors of $L_{2 m_{i}}$, and

$$
\mathfrak{z}_{f}:=\oplus_{i=1}^{r} \mathbb{C} b_{i} \subset \mathfrak{g}
$$

be the centralizer of f. Show that $\mathfrak{g}=\mathfrak{z}_{f} \oplus T_{e} O_{e}$, where $O_{e}=\operatorname{Ad}(G) e$ is the orbit of e. Thus the affine space $e+\mathfrak{z}_{f}$ is transversal to O_{e} at e. This affine space is called the Kostant slice.
(iii)(b) Consider the \mathbb{C}^{\times}-action on \mathfrak{g} given by

$$
t \circ x=t^{\frac{1}{2} \operatorname{ad}(h)-1} x .
$$

Show that this action preserves the decomposition of (ii), and the linear coordinates b_{i}^{*} on \mathfrak{z}_{f} have homogeneity degrees $m_{i}+1$ under this action.
(iv) Let $\left(S \mathfrak{g}^{*}\right)^{\mathfrak{g}}=\mathbb{C}\left[p_{1}, \ldots, p_{r}\right]$, $\operatorname{deg} p_{i}=d_{i}$, and let $\widetilde{p}_{i}(y):=p_{i}(e+y)$, $y \in \mathfrak{z}_{f}$. Show that \widetilde{p}_{i} are polynomials of b_{j}^{*} homogeneous under the \mathbb{C}^{\times}-action of (iii) of degrees d_{i}. Deduce from this and the identity $\sum_{i}\left(d_{i}-1\right)=\sum_{i} m_{i}$ proved in (i),(ii) that

$$
d_{i}-1=m_{i}
$$

and thus $\widetilde{p}_{i}=b_{i}^{*}$ (under appropriate choice of basis). Conclude that the differentials $d p_{i}$ are linearly independent at $e \in \mathfrak{g}$.
(v) Work out (i)-(iv) explicitly for $\mathfrak{g}=\mathfrak{s l}_{n}$.
(vi) Prove Proposition 17.4. Hint: View $\mathcal{O}(\mathcal{N})$ as an algebra over $\mathcal{R}:=S \mathfrak{n}_{+} \otimes S \mathfrak{n}_{-}$. Use the arguments of Subsection 13.1 to show that it is a free \mathcal{R}-module of rank $|W|$. Show that the specialization of $\mathcal{O}(\mathcal{N})$ at a generic point $z \in \mathfrak{n}_{+}^{*} \times \mathfrak{n}_{-}^{*}$ is a semisimple algebra of dimension $|W|$ (use (iv)). Now take $f \in \mathcal{O}(\mathcal{N})$ such that $f^{k}=0$ for some k, and deduce that the specialization of f at z is zero. Conclude that $f=0$.
Proposition 17.6. (i) The orbit $O_{e}:=\operatorname{Ad}(G) e$ is open and dense in \mathcal{N}.
(ii) All regular nilpotent elements in \mathfrak{g} are conjugate to e.
(iii) \mathcal{N} is an irreducible affine variety. Thus $(S \mathfrak{g})_{0}$ is an integral domain.

Proof. (i) This follows from Corollary 17.3 and the fact that every nilpotent element in \mathfrak{g} can be conjugated into \mathfrak{n}_{+}.
(ii) The orbit O_{x} of every regular nilpotent element x has the same dimension as O_{e}, so the statement follows from (i). Indeed, since O_{e} is open and dense, $\mathcal{N} \backslash O_{e}$ has smaller dimension than \mathcal{N}, hence can't contain O_{x}.
(iii) follows from (i) and Proposition 17.4, since O_{e} is smooth and connected (being an orbit of a connected group), hence irreducible.

Corollary 17.7. U_{χ} is an integral domain for all χ.
Proof. This follows from Proposition 17.6(iii) since $\operatorname{gr}\left(U_{\chi}\right)=(S \mathfrak{g})_{0}$.

Exercise 17.8. Let e be a nilpotent element in a semisimple complex Lie algebra \mathfrak{g}, and \mathfrak{g}^{e} be the centralizer of e. Let (,) be the Killing form of \mathfrak{g}.
(i) Show that $\left(e, \mathfrak{g}^{e}\right)=0$ (prove that for any $x \in \mathfrak{g}^{e}$, the operator $\operatorname{ad}_{e} \operatorname{ad}_{x}$ is nilpotent).
(ii) Show that there exists $h \in \mathfrak{g}$ such that $[h, e]=2 e$ (use that $\operatorname{Im}\left(\operatorname{ad}_{e}\right)=\mathfrak{g}^{\mathrm{e} \perp}$ to deduce that $\left.e \in \operatorname{Im}\left(\mathrm{ad}_{e}\right)\right)$.
(iii) Show that in (ii), h can be chosen semisimple (consider the Jordan decomposition $h=s+n$). From now on we choose h in such a way.
(iv) Show that $\mathbb{C} h \oplus \mathfrak{g}^{e}$ is a Lie subalgebra of \mathfrak{g}.
(v) Assume that \mathfrak{g}^{e} is nilpotent. Show that there is a basis of \mathfrak{g} in which the operator ad_{x} is upper triangular for all $x \in \mathbb{C} h \oplus \mathfrak{g}^{e}$ (use Lie's theorem). Deduce that $(h, x)=0$ for all $x \in \mathfrak{g}^{e}$.
(vi) Show that if \mathfrak{g}^{e} is nilpotent then there are $h, f \in \mathfrak{g}$ such that $[h, e]=2 e,[e, f]=h$ and $[h, f]=-2 f$. In other words, there is a homomorphism of Lie algebras $\phi: \mathfrak{s l}_{2} \rightarrow \mathfrak{g}$ such that $\phi(E)=e$, $\phi(H)=h, \phi(F)=f$. Show that h is semisimple and f is nilpotent.
(vii) (Jacobson-Morozov theorem, part I) Show that the conclusion of (vi) holds for any e (without assuming that \mathfrak{g}^{e} is nilpotent). (Hint: use induction in $\operatorname{dim} \mathfrak{g}$. If \mathfrak{g}^{e} is not nilpotent, use Jordan decomposition to find a nonzero semisimple element $x \in \mathfrak{g}^{e}$ and consider the Lie algebra \mathfrak{g}^{x}. Show that $\mathfrak{g}^{\prime}:=\left[\mathfrak{g}^{x}, \mathfrak{g}^{x}\right]$ is semisimple and $\left.e \in \mathfrak{g}^{\prime}\right)$.
(viii) Show that for given e, h, the homomorphism ϕ in (vi,vii) is unique (i.e., f is uniquely determined by e, h).
(ix) (Jacobson-Morozov theorem, part II) Show that for a fixed e, $\exp \left(\mathfrak{g}^{e}\right)$ (the Lie subgroup corresponding to \mathfrak{g}^{e}) is a closed Lie subgroup of the adjoint group $G_{\text {ad }}$ corresponding to \mathfrak{g}, and the element h (hence also f) can be chosen uniquely up to conjugation by $\exp \left(\mathfrak{g}_{e}\right)$. (Hint: Let h^{\prime} be another choice of h, and consider the element $h^{\prime}-h \in \mathfrak{g}^{e}$.)
(x) Explain why the Jacobson-Morozov theorem extends to reductive Lie algebras (where by a nilpotent element we mean one that is nilpotent in any finite dimensional representation). Give an elementary proof of this theorem for $\mathfrak{g}=\mathfrak{g l}_{n}$ using only linear algebra.
(xi) Show that there are finitely many conjugacy classes of nilpotent elements in \mathfrak{g}, i.e., the nilpotent cone \mathcal{N} has finitely many $G_{\text {ad }}$-orbits. (Hint: Consider the variety X of homomorphisms $\phi: \mathfrak{s l}_{2} \rightarrow \mathfrak{g}$ and show that it is a disjoint union of finitely many closed $G_{\text {ad }}$-orbits. To this end, show that the tangent space to X at each $x \in X$ coincides with the tangent space of the orbit $G x$ at the same point, using that $\left.\operatorname{Ext}_{\mathfrak{s l 2}}^{1}(\mathbb{C}, \mathfrak{g})=0\right)$.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

