
17. The nilpotent cone of g

17.1. The nilpotent cone. Let (Sg)0 be the quotient of Sg by the
ideal generated by the positive degree part of (Sg)g, i.e. by the free
homogeneous generators p1, ..., pr of (Sg)g (which exist by Kostant’s
theorem). The scheme

N := Spec(Sg)0 ⊂ g∗ ∼= g

is called the nilpotent cone of g. It follows from the Kostant theo-
rem that p1, ..., pr is a regular sequence, i.e., this scheme is a complete
intersection of codimension r in g (see Remark 12.11), i.e., of dimension

dimN = dim g− r = |R| = 2|R±| = 2 dim n±,

the number of roots of g.
Let x ∈ g be a nilpotent element. Recall that then x is conjugate

to an element y ∈ n+ and Ad(t2ρ
∨
)y → 0 as t → 0, where ρ∨ is the

half-sum of positive coroots of g. Thus pi(x) = pi(y) = 0 and hence
x ∈ N (C). On the other hand, if x is not nilpotent then ad(x) is not a
nilpotent operator, so Tr(ad(x)N) 6= 0 for some N , hence x /∈ N (C). It
follows that N (C) is exactly the set of nilpotent elements of g, hence
the term “nilpotent cone”.

For example, for g = sl2 we have r = 1 and

p1(A) = − detA = x2 + yz

for A :=

(
x y
z −x

)
∈ g, so N is the usual quadratic cone in C3 defined

by the equation x2 + yz = 0.

17.2. The principal sl2 subalgebra. The principal sl2 subalgebra
of g is the subalgebra spanned by e :=

∑r
i=1 ei, f :=

∑
i cifi and

h := [e, f ] =
∑

i cihi = 2ρ∨. Thus ci are found from the equations∑
i ciaij = 2 for all j, where A = (aij) is the Cartan matrix of g.

Lemma 17.1. The restriction of the adjoint representation of g to its
principal sl2-subalgebra is isomorphic to L2m1⊕...⊕L2mr for appropriate
mi ∈ Z>0.

Proof. Consider the corresponding action of the group SL2(C). The
element −1 ∈ SL2(C) acts on g by exp(2πiρ∨) = 1 since ρ∨ is an in-
tegral coweight. Thus only even highest weight sl2-modules may occur
in the decomposition of g. Since ρ∨ is regular, the 0-weight space of
this module (the centralizer Zg(ρ

∨)) is h, i.e., has dimension r. Thus
g has r indecomposable direct summands over the principal sl2, as
claimed. �

88



The numbers mi (arranged in non-decreasing order) are called the
exponents of g. We will soon see that mi = di − 1, where di are the
degrees of g.

17.3. Regular elements. Recall that x ∈ g is regular if the dimen-
sion of its centralizer is r = rankg (the smallest it can be). Thus regular
elements form an open set greg ⊂ g.

Lemma 17.2. The element e =
∑r

i=1 ei is regular.

Proof. By Lemma 17.1, the centralizer Zg(e) is spanned by the highest
vectors of the representations L2m1 , ..., L2mr , hence has dimension r.

�

Corollary 17.3. Let B+ be the Borel subgroup of G with Lie algebra
b+ := h ⊕ n+. Then Ad(B+)e is the set of elements

∑
α∈R+

cαeα with
cα ∈ C and cαi 6= 0 for all i.

Proof. Since by Lemma 17.2 dimZg(e) = r, we have

dim[e, n+] ≥ |R+| − r = dim[n+, n+].

Since [e, n+] ⊂ [n+, n+], we get that [e, n+] = [n+, n+]. It follows that
if N+ = exp(n+) then Ad(N+)e = e+ [n+, n+] is the set of expressions∑

α∈R+
cαeα with cαi = 1 for all i. The statement follows by adding

the action of the maximal torus H = exp(h), which allows to set cαi to
arbitrary nonzero values. �

17.4. Properties of the nilpotent cone.

Proposition 17.4. The nilpotent cone is reduced.

Proposition 17.4 is proved in the following exercise.

Exercise 17.5. Let g be a finite-dimensional simple Lie algebra.
(i) Let R0 be the graded algebra in Theorem 12.2. Show that the top

degree of this algebra is D :=
∑r

i=1(di − 1) and R0[D] = C∆, where
∆ :=

∏
α∈R+

α. Deduce that
∑r

i=1(di − 1) = |R+|, , the number of
positive roots.

(ii) Let g = ⊕ri=1L2mi be the decomposition of g as a module over
the principal sl2-subalgebra (e, f, h) given by Lemma 17.1, i.e., mi are
the exponents of g. Show that m1 = 1 and

∑r
i=1 mi = |R+|. Moreover,

show that if µg is the partition (mr, ...,m1) then the conjugate partition
µ†g is (n1, ..., nh−1), where ni is the number of positive roots α of height
i (i.e., (ρ∨, α) = i) and h := mr + 1. Conclude that h = (ρ∨, θ) + 1
where θ is the maximal root, i.e., the Coxeter number of g.
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(iii)(a) Let bi be the lowest weight vectors of L2mi , and

zf := ⊕ri=1Cbi ⊂ g

be the centralizer of f . Show that g = zf ⊕ TeOe, where Oe = Ad(G)e
is the orbit of e. Thus the affine space e+ zf is transversal to Oe at e.
This affine space is called the Kostant slice.

(iii)(b) Consider the C×-action on g given by

t ◦ x = t
1
2

ad(h)−1x.

Show that this action preserves the decomposition of (ii), and the linear
coordinates b∗i on zf have homogeneity degrees mi+1 under this action.

(iv) Let (Sg∗)g = C[p1, ..., pr], deg pi = di, and let p̃i(y) := pi(e+ y),
y ∈ zf . Show that p̃i are polynomials of b∗j homogeneous under the
C×-action of (iii) of degrees di. Deduce from this and the identity∑

i(di − 1) =
∑

imi proved in (i),(ii) that

di − 1 = mi

and thus p̃i = b∗i (under appropriate choice of basis). Conclude that
the differentials dpi are linearly independent at e ∈ g.

(v) Work out (i)-(iv) explicitly for g = sln.
(vi) Prove Proposition 17.4. Hint: View O(N ) as an algebra over
R := Sn+⊗Sn−. Use the arguments of Subsection 13.1 to show that it
is a free R-module of rank |W |. Show that the specialization of O(N )
at a generic point z ∈ n∗+ × n∗− is a semisimple algebra of dimension
|W | (use (iv)). Now take f ∈ O(N ) such that fk = 0 for some k, and
deduce that the specialization of f at z is zero. Conclude that f = 0.

Proposition 17.6. (i) The orbit Oe := Ad(G)e is open and dense in
N .

(ii) All regular nilpotent elements in g are conjugate to e.
(iii) N is an irreducible affine variety. Thus (Sg)0 is an integral

domain.

Proof. (i) This follows from Corollary 17.3 and the fact that every
nilpotent element in g can be conjugated into n+.

(ii) The orbit Ox of every regular nilpotent element x has the same
dimension as Oe, so the statement follows from (i). Indeed, since Oe

is open and dense, N \Oe has smaller dimension than N , hence can’t
contain Ox.

(iii) follows from (i) and Proposition 17.4, since Oe is smooth and
connected (being an orbit of a connected group), hence irreducible. �

Corollary 17.7. Uχ is an integral domain for all χ.

Proof. This follows from Proposition 17.6(iii) since gr(Uχ) = (Sg)0. �
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Exercise 17.8. Let e be a nilpotent element in a semisimple complex
Lie algebra g, and ge be the centralizer of e. Let (, ) be the Killing form
of g.

(i) Show that (e, ge) = 0 (prove that for any x ∈ ge, the operator
adeadx is nilpotent).

(ii) Show that there exists h ∈ g such that [h, e] = 2e (use that
Im(ade) = ge⊥ to deduce that e ∈ Im(ade)).

(iii) Show that in (ii), h can be chosen semisimple (consider the
Jordan decomposition h = s+ n). From now on we choose h in such a
way.

(iv) Show that Ch⊕ ge is a Lie subalgebra of g.
(v) Assume that ge is nilpotent. Show that there is a basis of g in

which the operator adx is upper triangular for all x ∈ Ch ⊕ ge (use
Lie’s theorem). Deduce that (h, x) = 0 for all x ∈ ge.

(vi) Show that if ge is nilpotent then there are h, f ∈ g such that
[h, e] = 2e, [e, f ] = h and [h, f ] = −2f . In other words, there is
a homomorphism of Lie algebras φ : sl2 → g such that φ(E) = e,
φ(H) = h, φ(F ) = f . Show that h is semisimple and f is nilpotent.

(vii) (Jacobson-Morozov theorem, part I) Show that the conclusion of
(vi) holds for any e (without assuming that ge is nilpotent). (Hint: use
induction in dim g. If ge is not nilpotent, use Jordan decomposition to
find a nonzero semisimple element x ∈ ge and consider the Lie algebra
gx. Show that g′ := [gx, gx] is semisimple and e ∈ g′).

(viii) Show that for given e, h, the homomorphism φ in (vi,vii) is
unique (i.e., f is uniquely determined by e, h).

(ix) (Jacobson-Morozov theorem, part II) Show that for a fixed e,
exp(ge) (the Lie subgroup corresponding to ge) is a closed Lie subgroup
of the adjoint group Gad corresponding to g, and the element h (hence
also f) can be chosen uniquely up to conjugation by exp(ge). (Hint:
Let h′ be another choice of h, and consider the element h′ − h ∈ ge.)

(x) Explain why the Jacobson-Morozov theorem extends to reduc-
tive Lie algebras (where by a nilpotent element we mean one that is
nilpotent in any finite-dimensional representation). Give an elementary
proof of this theorem for g = gln using only linear algebra.

(xi) Show that there are finitely many conjugacy classes of nilpotent
elements in g, i.e., the nilpotent cone N has finitely many Gad-orbits.
(Hint: Consider the variety X of homomorphisms φ : sl2 → g and
show that it is a disjoint union of finitely many closed Gad-orbits. To
this end, show that the tangent space to X at each x ∈ X coincides
with the tangent space of the orbit Gx at the same point, using that
Ext1

sl2
(C, g) = 0).
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