18. Maps of finite type, Duflo-Joseph theorem

18.1. Maps of finite type. Let M, N be \mathfrak{g} -modules. Let $\operatorname{Hom}_{\operatorname{fin}}(M, N)$ be the space of linear maps from M to N which generate a finite dimensional \mathfrak{g} -module under the adjoint action $a \circ T := [a, T]$. The elements of $\operatorname{Hom}_{\operatorname{fin}}(M, N)$ are called **linear maps of finite type**. For example, a module homomorphism is a map of finite type, as it generates a trivial 1-dimensional \mathfrak{g} -module.

Exercise 18.1. Show that any map of finite type has the form $(f \otimes 1) \circ \Phi$, where $f \in V^*$ for some finite dimensional \mathfrak{g} -module V and $\Phi: M \to V \otimes N$ is a module homomorphism.

Note that $\operatorname{Hom}_{\operatorname{fin}}(M, N)$ is a \mathfrak{g} -bimodule with bimodule structure given by

$$(a,b) \circ T := aT + Tb,$$

 $a, b \in \mathfrak{g}$. Moreover, it is clear that if M has central character χ and N has central character θ then $\operatorname{Hom}_{\operatorname{fin}}(M, N)$ has central character (θ, χ) .

Proposition 18.2. If $M, N \in \mathcal{O}$ then $\operatorname{Hom}_{\operatorname{fin}}(M, N)$ is an admissible \mathfrak{g} -bimodule.

Proof. We must show that fo every simple finite dimensional \mathfrak{g} -module V, the space

$$\operatorname{Hom}_{\mathfrak{g}}(V, \operatorname{Hom}_{\operatorname{fin}}(M, N)) = \operatorname{Hom}_{\mathfrak{g}}(V, \operatorname{Hom}_{\mathbb{C}}(M, N))$$

is finite dimensional. Let $\mu(M, N, V)$ be its dimension (a nonnegative integer of infinity). Since the functor $(M, N) \mapsto \operatorname{Hom}_{\mathbb{C}}(M, N)$ is exact in both arguments, for any short exact sequence

$$0 \to M_1 \to M_2 \to M_3 \to 0$$

we have

$$\mu(M_2, N, V) = \mu(M_1, N, V) + \mu(M_3, N, V),$$

$$\mu(N, M_2, V) = \mu(N, M_1, V) + \mu(N, M_3, V).$$

Thus, since M, N have finite length, it suffices to establish the result for M, N simple. Then M is a quotient of M_{λ} and N a submodule of M_{μ}^{\vee} for some λ, μ , so $\operatorname{Hom}_{\mathbb{C}}(M, N) \subset \operatorname{Hom}_{\mathbb{C}}(M_{\lambda}, M_{\mu}^{\vee})$. But by Exercise 8.13, for any finite dimensional \mathfrak{g} -module V,

$$\operatorname{Hom}_{\mathfrak{g}}(V, \operatorname{Hom}_{\mathbb{C}}(M_{\lambda}, M_{\mu}^{\vee})) \cong \operatorname{Hom}_{\mathfrak{g}}(V \otimes M_{\lambda}, M_{\mu}^{\vee}) \cong$$

$$\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V^* \otimes M_{\mu}^{\vee}) \cong V^*[\lambda - \mu].$$

This implies the statement.

Proposition 18.3. For $M, N \in \mathcal{O}$ and a finite dimensional \mathfrak{g} -module V we have

$$\operatorname{Hom}_{\operatorname{fin}}(M, V \otimes N) = V \otimes \operatorname{Hom}_{\operatorname{fin}}(M, N).$$

Exercise 18.4. Prove Proposition 18.3.

Proposition 18.5. Let V be a finite dimensional \mathfrak{g} -module. Then for any $\lambda \in \mathfrak{h}^*$, we have

$$\dim \operatorname{Hom}_{\mathfrak{a}}(M_{\lambda}, V \otimes M_{\lambda}) = \dim V[0].$$

Thus the multiplicity of V in Hom_{fin} $(M_{\lambda}, M_{\lambda})$ equals dim V[0].

Proof. By Exercise 8.14, the statement holds if M_{λ} is irreducible, i.e., generically. Thus dim $\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes M_{\lambda}) \geq \dim V[0]$, and it remains to prove the opposite inequality. Let M_{μ} be the simple Verma submodule of M_{λ} . Given $\Phi : M_{\lambda} \to V \otimes M_{\lambda}$, we claim that the restriction of Φ to M_{μ} must land in $V \otimes M_{\mu}$. Indeed, otherwise we will have a nonzero (hence injective) homomorphism $M_{\mu} \to V \otimes (M_{\lambda}/M_{\mu})$, which is impossible by growth considerations.

But by Exercise 8.14, the statement holds if λ is replaced by μ . So if it does not hold for λ then there is a nonzero Φ which kills M_{μ} . Thus Φ defines a nonzero homomorphism $M_{\lambda}/M_{\mu} \to M_{\lambda} \otimes V$, which is impossible since $M_{\lambda} \otimes V$ is a free, hence torsion free $U(\mathfrak{n}_{-})$ -module, while every homogeneous vector in M_{λ}/M_{μ} is torsion (as this module does not contain free $U(\mathfrak{n}_{-})$ -submodules by growth considerations). This establishes the proposition.

Remark 18.6. Note that Proposition 18.5 does not extend to maps $M_{\lambda+\nu} \to V \otimes M_{\lambda}$ where $\nu \in P$ is nonzero. Namely, if M_{λ} is irreducible then we have dim $\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda+\nu}, V \otimes M_{\lambda}) = \dim V[\nu]$, so in general dim $\operatorname{Hom}_{\mathfrak{g}}(M_{\lambda+\nu}, V \otimes M_{\lambda}) \geq \dim V[\nu]$, and the inequality can, in fact, be strict. The simplest example is $\mathfrak{g} = \mathfrak{sl}_2$, $V = \mathbb{C}$, $\lambda = 0$, $\nu = -2$, in which case the left hand side is 1 and the right hand side is 0.

Also the expectation value map

$$\langle,\rangle: \operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes M_{\lambda}) \to V[0]$$

need not be an isomorphism, even though its source and target have the same dimension. The simplest example is $\mathfrak{g} = \mathfrak{sl}_2$, $\lambda = 0$, and V is the adjoint representation. We have

$$\dim \operatorname{Hom}_{\mathfrak{a}}(M_0, V \otimes M_0) = \dim \operatorname{Hom}_{\mathfrak{a}}(M_0, V \otimes M_{-2}) = 1$$

so the only (up to scaling) nonzero homomorphism $\Phi : M_0 \to V \otimes M_0$ in fact lands in $V \otimes M_{-2} \subset V \otimes M_0$. Thus $\langle \Phi \rangle = 0$.

18.2. The Duflo-Joseph theorem.

Proposition 18.7. The action homomorphism

$$\phi: U_{\chi_{\lambda+\rho}} \to \operatorname{Hom}_{\operatorname{fin}}(M_{\lambda}, M_{\lambda})$$

is injective.

Proof. Let $M_{\mu} \subset M_{\lambda}$ be a simple Verma submodule with highest weight vector v. Let $B_{\mu,\beta} : U(\mathfrak{n}_+)[\beta] \otimes U(\mathfrak{n}_-)[-\beta] \to \mathbb{C}$ be the pairing defined by the equality

$$abv = B_{\mu,\beta}(a,b)v.$$

As M_{μ} is simple, this pairing is nondegenerate.

Consider the multiplication map

$$\xi: U(\mathfrak{n}_{-}) \otimes U(\mathfrak{n}_{+}) \to U_{\chi_{\lambda+\rho}}.$$

We claim that the map $\phi \circ \xi$ is injective, hence so are ξ and $\phi|_{\mathrm{Im}\xi}$. Indeed, let $x \in U(\mathfrak{n}_{-}) \otimes U(\mathfrak{n}_{+})$ be a nonzero element. We can uniquely write $x = \sum_{\alpha \in Q_{+}} x_{\alpha}$, where $x_{\alpha} \in U(\mathfrak{n}_{-}) \otimes U(\mathfrak{n}_{+})[\alpha]$. Let $\beta \in Q_{+}$ be a minimal element such that $x_{\beta} = \sum_{i} b_{i} \otimes a_{i} \neq 0$, where $\{a_{i}\}$ is a basis of $U(\mathfrak{n}_{+})[\beta]$. Let $\{a_{i}^{*}\}$ be the dual basis of $U(\mathfrak{n}_{-})[-\beta]$ with respect to $B_{\mu,\beta}$. Then

$$(\phi \circ \xi)(x)a_i^*v = b_iv.$$

Since b_j are not all zero, there exists j such that $b_j v \neq 0$. It follows that $(\phi \circ \xi)(x) \neq 0$, as claimed.

Thus, denoting the PBW filtration by F_n , we have

$$\dim F_n(U_{\chi_{\lambda+\rho}}/\mathrm{Ker}\phi) \ge \dim F_n(U(\mathfrak{n}_-) \otimes U(\mathfrak{n}_+)) \ge Cn^{\dim \mathfrak{g}-r}$$

for some C > 0. On the other hand, assume that $\text{Ker}\phi \neq 0$ and consider the nonzero ideal

$$\operatorname{gr}(\operatorname{Ker}\phi) \subset (S\mathfrak{g})_0 = \mathcal{O}(\mathcal{N}).$$

This ideal contains a principal ideal $\mathcal{O}(\mathcal{N})f$, where $f \in \mathcal{O}(\mathcal{N})$ is a nonzero homogeneous element. Since $\mathcal{O}(\mathcal{N})$ is a domain (Proposition 17.6(iii)), this ideal is a free $\mathcal{O}(\mathcal{N})$ -module generated by f.

$$\dim F_n(U_{\chi_{\lambda+\rho}}/\mathrm{Ker}\phi) = \dim \mathrm{gr}_{\leq n}(\mathcal{O}(\mathcal{N})/\mathrm{gr}(\mathrm{Ker}\phi)) =$$
$$\leq \dim \mathrm{gr}_{\leq n}(\mathcal{O}(\mathcal{N})/\mathcal{O}(\mathcal{N})f) \leq C' n^{\dim \mathfrak{g}-r-1}.$$

for some C' > 0. So we get that $Cn^{\dim \mathfrak{g}-r} \leq C'n^{\dim \mathfrak{g}-r-1}$. This is a contradiction, so $\operatorname{Ker} \phi = 0$ and thus ϕ is injective.

Corollary 18.8. (The Duflo-Joseph theorem) ϕ is an isomorphism.

Proof. Consider the restriction ϕ_V of ϕ to the V^{*}-isotypic component. Thus

 $\phi_V : \operatorname{Hom}_{\mathfrak{g}}(V^*, (U_{\chi_{\lambda+\rho}})_{\mathrm{ad}}) \to \operatorname{Hom}_{\mathfrak{g}}(M_{\lambda}, V \otimes M_{\lambda}).$

By Kostant's theorem, the source of this map has dimension dim V[0], while by Proposition 18.5, so does the target. Since by Proposition 18.7 ϕ_V is injective, it follows that ϕ_V is an isomorphism for all V, hence so is ϕ .

Corollary 18.9. If V is a finite dimensional \mathfrak{g} -module then the natural map $V \otimes U_{\chi_{\lambda+\rho}} \to \operatorname{Hom}_{\operatorname{fin}}(M_{\lambda}, V \otimes M_{\lambda})$ is an isomorphism.

Proof. This follows from Proposition 18.3 and Corollary 18.8. \Box

18.3. Central characters of Harish-Chandra bimodules.

Corollary 18.10. Let V be a finite dimensional \mathfrak{g} -module and $\lambda \in \mathfrak{h}^*$.

(i) The left central characters occurring in $V \otimes U_{\chi_{\lambda}}$ are $\chi_{\lambda+\nu}$ where ν runs over weights of V.

(ii) If M is a \mathfrak{g} -module with central character χ_{λ} then the central characters occurring in $V \otimes M$ are among $\chi_{\lambda+\nu}$ where ν runs over weights of V.

(iii) If M is a nonzero Harish-Chandra \mathfrak{g} -bimodule with central character $(\chi_{\lambda}, \chi_{\mu})$ then there is $w \in W$ such that $w\lambda - \mu \in P$.

Proof. (i) This follows from Corollary 18.9.

(ii) follows from (i) and the isomorphism

$$V \otimes M \cong (V \otimes U_{\chi_{\lambda}}) \otimes_{U_{\chi_{\lambda}}} M.$$

(iii) This follows from (i) since by Corollary 14.5 any irreducible Harish-Chandra bimodule is a quotient of $V \otimes U_{\chi_{\mu}}$ for some μ, V . \Box

Let $HC_{\theta,\chi}(\mathfrak{g})$ be the category of Harish-Chandra \mathfrak{g} -bimodules with generalized central character (θ, χ) .

Corollary 18.11. The category of Harish-Chandra \mathfrak{g} -bimodules $HC(\mathfrak{g})$ has a decomposition according to generalized central characters:

$$HC(\mathfrak{g}) = \bigoplus_{\gamma,\lambda} HC_{\chi_{\lambda+\gamma},\chi_{\lambda}}(\mathfrak{g}),$$

where $\gamma \in P_+$ and $\lambda \in \mathfrak{h}^*/\mathrm{Stab}(\gamma)$ (here $\mathrm{Stab}(\gamma)$ is the stabilizer of γ in W). In particular, if (θ, χ) cannot be written as $(\chi_{\lambda+\gamma}, \chi_{\lambda}), \lambda \in \mathfrak{h}^*,$ $\gamma \in P_+$, then $HC_{\theta,\chi}(\mathfrak{g}) = 0$.

Proof. This follows from Exercise 15.5 and Corollary 18.10.

94

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.