18. Maps of finite type, Duflo-Joseph theorem

18.1. Maps of finite type. Let M, N be g-modules. Let Homg, (M, N)
be the space of linear maps from M to N which generate a finite dimen-
sional g-module under the adjoint action a o T := [a,T]. The elements
of Homg, (M, N) are called linear maps of finite type. For exam-
ple, a module homomorphism is a map of finite type, as it generates a
trivial 1-dimensional g-module.

Exercise 18.1. Show that any map of finite type has the form
(f ®1) o ®, where f € V* for some finite dimensional g-module V'
and ¢ : M — V ® N is a module homomorphism.

Note that Homg, (M, N) is a g-bimodule with bimodule structure
given by
(a,b) o T := aT + Tb,

a,b € g. Moreover, it is clear that if M has central character x and N
has central character 6 then Homg, (M, N) has central character (6, x).

Proposition 18.2. If M, N € O then Homg,(M, N) is an admissible
g-bimodule.

Proof. We must show that fo every simple finite dimensional g-module
V', the space

Homg(V, Homg, (M, N)) = Hom,(V, Home (M, N))

is finite dimensional. Let p(M, N, V') be its dimension (a nonnegative
integer of infinity). Since the functor (M, N) — Homc (M, N) is exact
in both arguments, for any short exact sequence

0> M — My — M;—0
we have
(M2, N, V) = p(My, N, V) + pu(Ms, N, V),
p(N, My, V') = pu(N, My, V') + (N, M3, V).

Thus, since M, N have finite length, it suffices to establish the result
for M, N simple. Then M is a quotient of M, and N a submodule of
M)/ for some A, i, so Home (M, N) C Home(My, M)/). But by Exercise
8.13, for any finite dimensional g-module V',

Homy(V, HomC(M,\,MMV)) = Homy(V ® M,\,M/\Z) &
Homg (M, V* @ M,}) = VX — p].

This implies the statement. O
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Proposition 18.3. For M, N € O and a finite dimensional g-module
V' we have

Homg, (M, V ® N) =V ® Homg, (M, N).
Exercise 18.4. Prove Proposition 18.3.

Proposition 18.5. Let V' be a finite dimensional g-module. Then for
any A € b*, we have

dim Homy(My, V' ® M,) = dim V[0].
Thus the multiplicity of V' in Homg,(My, M) equals dim V[0].

Proof. By Exercise 8.14, the statement holds if M, is irreducible, i.e.,
generically. Thus dim Homy(M), V®M,) > dim V[0], and it remains to
prove the opposite inequality. Let M, be the simple Verma submodule
of M. Given ® : M, — V ® M,, we claim that the restriction of
® to M, must land in V ® M,. Indeed, otherwise we will have a
nonzero (hence injective) homomorphism M, — V ® (M,/M,,), which
is impossible by growth considerations.

But by Exercise 8.14, the statement holds if A is replaced by p. So
if it does not hold for A then there is a nonzero ® which kills M,.
Thus ® defines a nonzero homomorphism M, /M, — M, ® V, which
is impossible since M) ® V' is a free, hence torsion free U(n_)-module,
while every homogeneous vector in M, /M, is torsion (as this module
does not contain free U(n_)-submodules by growth considerations).
This establishes the proposition. O]

Remark 18.6. Note that Proposition 18.5 does not extend to maps
My., — V ® M, where v € P is nonzero. Namely, if M), is irre-
ducible then we have dim Homg (M), V ® M,) = dim V[v], so in gen-
eral dim Homg(M)4,,V ® M,) > dim V[v], and the inequality can, in
fact, be strict. The simplest exampleis g =sl,, V =C, A =0, v = =2,
in which case the left hand side is 1 and the right hand side is 0.

Also the expectation value map

(,) : Homy(M,, V @ My) — V0]

need not be an isomorphism, even though its source and target have
the same dimension. The simplest example is g = sl;, A =0, and V is
the adjoint representation. We have

dim Homg(My, V ® My) = dim Homg(Mo, V @ M_5) = 1,

so the only (up to scaling) nonzero homomorphism ® : My — V ® M,

in fact lands in V. ® M_y C V ® My. Thus (@) = 0.
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18.2. The Duflo-Joseph theorem.
Proposition 18.7. The action homomorphism
gb . UX>\+p — Homﬁn(M,\, M/\)
18 injective.
Proof. Let M,, C M) be a simple Verma submodule with highest weight
vector v. Let By, 5 : U(ny)[f] ® Un_)[—pB] — C be the pairing defined
by the equality
abv = B, 3(a, b)v.
As M, is simple, this pairing is nondegenerate.
Consider the multiplication map

UM )@Umy) = U

XA+p*

We claim that the map ¢ o £ is injective, hence so are & and ¢|mme.
Indeed, let x € U(n_) ® U(ny) be a nonzero element. We can uniquely
write = 3 o Ta, Where 7, € U(n_) ® U(ny)[a]. Let 3 € Q4 be a
minimal element such that xg = ). b; ® a; # 0, where {a;} is a basis
of U(ny)[f]. Let {a;} be the dual basis of U(n_)[—/] with respect to
B, 3. Then
(po&)(z)ajv = bjuv.
Since b; are not all zero, there exists j such that bju # 0. It follows
that (¢ o &)(x) # 0, as claimed.
Thus, denoting the PBW filtration by F},, we have

dim F,(Uy,,,/Kerg) > dim F,(U(n_) ® U(ny)) > Cn™m e

for some C' > 0. On the other hand, assume that Ker¢ # 0 and
consider the nonzero ideal

gr(Kerg) C (Sg)o = O(N).
This ideal contains a principal ideal O(N)f, where f € O(N) is a

nonzero homogeneous element. Since O(N) is a domain (Proposition

17.6(iii)), this ideal is a free O(N)-module generated by f.
dim F,(Uy,,,/Ker¢) = dimgr_,, (O(N) /gr(Ker¢)) =

<dimgr,(O(N)/OWN)f) < C'ntmert,

for some C’ > 0. So we get that Cndme—" < C/pdime—=1 This is a
contradiction, so Ker¢ = 0 and thus ¢ is injective. U

Corollary 18.8. (The Duflo-Joseph theorem) ¢ is an isomorphism.
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Proof. Consider the restriction ¢y of ¢ to the V*-isotypic component.
Thus
oy : Homg(V*, (Uy,,, )ad) — Homg(My, V @ My).

By Kostant’s theorem, the source of this map has dimension dim V'[0],
while by Proposition 18.5, so does the target. Since by Proposition 18.7
¢y is injective, it follows that ¢y is an isomorphism for all V', hence so
is ¢. 0

Corollary 18.9. IfV is a finite dimensional g-module then the natural
map V @ Uy, , — Homg, (M, V ® My) is an isomorphism.

Proof. This follows from Proposition 18.3 and Corollary 18.8. U
18.3. Central characters of Harish-Chandra bimodules.

Corollary 18.10. Let V' be a finite dimensional g-module and X € b*.

(1) The left central characters occurring in V & U,, are X, where
v runs over weights of V.

(i1) If M is a g-module with central character x, then the central
characters occurring in V@ M are among Xx., where v runs over
weights of V.

(iii) If M is a nonzero Harish-Chandra g-bimodule with central char-
acter (xx, xu) then there is w € W such that wA — p € P.

Proof. (i) This follows from Corollary 18.9.
(ii) follows from (i) and the isomorphism
VeoM= (V@UX/\) ®U><>\ M.

(iii) This follows from (i) since by Corollary 14.5 any irreducible
Harish-Chandra bimodule is a quotient of V' ® U, , for some p, V. O

Let HCy,(g) be the category of Harish-Chandra g-bimodules with
generalized central character (0, x).

Corollary 18.11. The category of Harish-Chandra g-bimodules HC(g)
has a decomposition according to generalized central characters:

HO(Q) = @’Y,)\HCXA-Q—'WX/\ (g)a

where v € Py and X\ € h*/Stab(y) (here Stab(v) is the stabilizer of ~
in W). In particular, if (8, x) cannot be written as (Xa+~, X1), A € b,
v € Py, then HCy,(g) = 0.

Proof. This follows from Exercise 15.5 and Corollary 18.10. O
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