19. Principal series representations
19.1. Residual finiteness of U(g).

Proposition 19.1. The homomorphism ¢ : U(g) — [[\cp, End(Ly)
15 injective.

Proof. Let x € Ker¢g, and G be the simply connected group with Lie
algebra g. Then by the Peter-Weyl theorem, = acts by zero on O(G) :=
®xrep, Ly ® L3 (where z acts only on the first component). This means

that the right-invariant differential operator on G defined by x is zero,
ie., z=0. U

Exercise 19.2. Give another proof of Proposition 19.1 which does not
use the Peter-Weyl theorem. Take x € Kerg.

(i) Show by interpolation that = acts by zero in every Verma module
M.

(ii) Show that if x € U(g) acts by zero in M) for all A then x = 0.

Note that Proposition 19.1 implies that any z € U(g) which acts by
a scalar in all Ly belongs to Z(g). Indeed, in this case for any x € U(g),
[z, z] acts by zero in Ly, hence [z, z] = 0.

19.2. Principal series. Let A\, € b*, A — € P. Define the princi-
pal series bimodule
M(A, i1) := Homgy, (M, M;\L/—p) < HCX;MX)\ (9)-
Then we have
(15) M()‘7 ,LL) = e9V6irr(g)‘/ X V* [/\ - :U’]

The bimodule M(A\, 1) represents a certain functor that has a nice
independent description.

Proposition 19.3. Let X € HC(g). Then
Homgfbimod(Xa M(Aa M)) = Hom(bf,bJr)_bimOd(X ® C)\*ﬂ? Cufp)-

where the (b_, by )-bimodule structure on C,_, is defined by the char-
acter (u — p,0) and on Cy_, by the character (0, — p).

Proof. We have
Homg—bimod(Xa M()‘7 :u)) = Homg—bimod (X X M)\—pa Mv )7

p—p
where the right copy of g acts trivially on M l_ , and the left copy of g
acts trivially on M,_,. Frobenius reciprocity then yields

Homg—bimod (X7 M()‘7 /J“)) = Hom(b+79)_bim0d<X ® (C)‘_p’ MA\L/*P)'
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Since X ® C,_, is diagonalizable under the adjoint action of b, on
the right hand side we may replace M, , with its completion J/\/[\/Y_ )
(the Cartesian product of all weight spaces). Then applying Frobenius
reciprocity again, we get the desired statement. U

Let us give an explicit realization of M(\, u). By (15), M(\, p) is
spanned by elements ®,,: My_, — M, v e V.l € V*[\— pu], where

p=p’
D, u = (v® 1, Pu),

and &y : My, = V*®@ M, is the homomorphism for which (®,) = ¢,
for finite-dimensional g-modules V. Moreover these elements easily
express in terms of such elements for simple V. Thus for any V and
y € V@ V*[0] we can define the linear map ®v(y) : My, — M/,
which depends linearly on y with ®y (v ® {) = @, ,, and every element
of M(A, ) is of this form.

Proposition 19.4. The right action of g on M(\, u) is given by the
formula

y(v@ L) b= Deev(b@ ] QA= p) DL+ D f1 full]).

acER

Proof. Consider the homomorphism

v, .= Zb:@cbészA—p_)g*(gV*@Mv

pi—p>

where {b;} is a basis of g and {b}} the dual basis of g*. We have
(W) =D b @ (®bi) € 9" OV,

where the expectation value map (,) is defined in Exercise 8.13. But

(Deh) = (A= p, W)L, (Deea) =0, (Defa) = fol
for a € R,. Thus we get
(W) =A=p) @+ D [0 ful,
a€Ry
hence
Ve = QOp)0t+ S acr, fa&al:
This implies the statement since
(Pv(v@0)-Du=(vR1,®bu) = (bR@ve 1 V), ue M_,.

O
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This leads to a geometric construction of the principal series. Namely,
let G be the simply connected group with Lie algebra g, B = B, be
the Borel subgroup of G whose Lie algebra is by and H = B/[B, B
the corresponding torus. Fix A\, pu € h* with A — pu € P. Define a
real-analytic character

Y H— C~
by
Uaul(@) = Ma)p(a™) ™,
where z* is the image of x under the compact antiholomorphic invo-

lution ¢ : H — H (i.e., such that H? = H,, the compact real form of

H). For example, for G = SLs, A\, u are complex numbers with A — p

an integer and z* = 77!, so

Yau(@) = 2T = 2 H |z
Define C5°,(G//B) to be the space of smooth functions on G satisfying

F(gb) = F(g)¥nu(b).
This is naturally an admissible representation of G: we have G/B =
G./H., so the multiplicity space of V' in C5%,(G/B) is V*[A—u]; namely,
O (G/B)™ = CY (Ge/H.)™, the space of G -finite functions on G,
(under left translations) such that
F(gx) = F(g)Mx)pu(z)~
for z € H,.

Proposition 19.5. We have an isomorphism
€M\ ) = G2, ,(G/B)™

as Harish-Chandra bimodules. Namely, (P, ) is the matriz coefficient
¢U,Z(g) = (vag€)7 g e Gc'

Exercise 19.6. Prove Proposition 19.5. Hint: Use Proposition 19.4
to show that ¢ is a well defined isomorphism of g,q-modules, and after
applying & the right action of g looks like

(- b)(g) = (A= p)(Ad(9)D)o(g) + D fa(Ad(g)b)(R(fa)¥)(9).

acER4

where R(f,) is the left-invariant vector field equal to f, at 1. Then
show that the right action of g on C5° (G/B) is given by the same

formula.
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19.3. The functor H),. Define the functor Hy : Oy — HCy,, given
by
H)\(X) = HOmﬁn<M)\,p,X).

Note that Hy(M)/_,)) = M(A, p).
Proposition 19.7. The functor Hy exact when X\ is dominant.

Proof. It V' is a finite-dimensional g-module then
Homgy(V, H\(X)) = Homy(V ® M,_,, X),

which is exact as V' ® M) _, is projective. U
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