19. Principal series representations

19.1. Residual finiteness of $U(\mathfrak{g})$.

Proposition 19.1. The homomorphism $\phi : U(\mathfrak{g}) \to \prod_{\lambda \in P_+} \operatorname{End}(L_{\lambda})$ is injective.

Proof. Let $x \in \text{Ker}\phi$, and G be the simply connected group with Lie algebra \mathfrak{g} . Then by the Peter-Weyl theorem, x acts by zero on $\mathcal{O}(G) := \bigoplus_{\lambda \in P_+} L_\lambda \otimes L_\lambda^*$ (where x acts only on the first component). This means that the right-invariant differential operator on G defined by x is zero, i.e., x = 0.

Exercise 19.2. Give another proof of Proposition 19.1 which does not use the Peter-Weyl theorem. Take $x \in \text{Ker}\phi$.

(i) Show by interpolation that x acts by zero in every Verma module M_{λ} .

(ii) Show that if $x \in U(\mathfrak{g})$ acts by zero in M_{λ} for all λ then x = 0.

Note that Proposition 19.1 implies that any $z \in U(\mathfrak{g})$ which acts by a scalar in all L_{λ} belongs to $Z(\mathfrak{g})$. Indeed, in this case for any $x \in U(\mathfrak{g})$, [x, z] acts by zero in L_{λ} , hence [x, z] = 0.

19.2. Principal series. Let $\lambda, \mu \in \mathfrak{h}^*, \lambda - \mu \in P$. Define the principal series bimodule

$$\mathbf{M}(\lambda,\mu) := \operatorname{Hom}_{\operatorname{fin}}(M_{\lambda-\rho}, M_{\mu-\rho}^{\vee}) \in HC_{\chi_{\mu},\chi_{\lambda}}(\mathfrak{g}).$$

Then we have

(15)
$$\mathbf{M}(\lambda,\mu) = \bigoplus_{V \in \operatorname{irr}(\mathfrak{g})} V \otimes V^*[\lambda-\mu]$$

The bimodule $\mathbf{M}(\lambda, \mu)$ represents a certain functor that has a nice independent description.

Proposition 19.3. Let $X \in HC(\mathfrak{g})$. Then

 $\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X,\mathbf{M}(\lambda,\mu))\cong\operatorname{Hom}_{(\mathfrak{b}_{-},\mathfrak{b}_{+})-\operatorname{bimod}}(X\otimes\mathbb{C}_{\lambda-\rho},\mathbb{C}_{\mu-\rho}).$

where the $(\mathfrak{b}_{-}, \mathfrak{b}_{+})$ -bimodule structure on $\mathbb{C}_{\mu-\rho}$ is defined by the character $(\mu - \rho, 0)$ and on $\mathbb{C}_{\lambda-\rho}$ by the character $(0, \lambda - \rho)$.

Proof. We have

$$\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X, \mathbf{M}(\lambda, \mu)) = \operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X \otimes M_{\lambda-\rho}, M_{\mu-\rho}^{\vee})$$

where the right copy of \mathfrak{g} acts trivially on $M_{\mu-\rho}^{\vee}$ and the left copy of \mathfrak{g} acts trivially on $M_{\lambda-\rho}$. Frobenius reciprocity then yields

$$\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X, \mathbf{M}(\lambda, \mu)) = \operatorname{Hom}_{(\mathfrak{b}_+, \mathfrak{g})-\operatorname{bimod}}(X \otimes \mathbb{C}_{\lambda-\rho}, M_{\mu-\rho}^{\vee}).$$

Since $X \otimes \mathbb{C}_{\lambda-\rho}$ is diagonalizable under the adjoint action of \mathfrak{h} , on the right hand side we may replace $M_{\mu-\rho}^{\vee}$ with its completion $\widehat{M}_{\mu-\rho}^{\vee}$ (the Cartesian product of all weight spaces). Then applying Frobenius reciprocity again, we get the desired statement. \Box

Let us give an explicit realization of $\mathbf{M}(\lambda, \mu)$. By (15), $\mathbf{M}(\lambda, \mu)$ is spanned by elements $\Phi_{v,\ell} : M_{\lambda-\rho} \to M^{\vee}_{\mu-\rho}, v \in V, \ell \in V^*[\lambda-\mu]$, where

$$\Phi_{v,\ell}u := (v \otimes 1, \Phi_\ell u),$$

and $\Phi_{\ell}: M_{\lambda-\rho} \to V^* \otimes M_{\mu-\rho}^{\vee}$ is the homomorphism for which $\langle \Phi_{\ell} \rangle = \ell$, for finite-dimensional \mathfrak{g} -modules V. Moreover these elements easily express in terms of such elements for simple V. Thus for any V and $y \in V \otimes V^*[0]$ we can define the linear map $\Phi_V(y) : M_{\lambda-\rho} \to M_{\mu-\rho}^{\vee}$ which depends linearly on y with $\Phi_V(v \otimes \ell) = \Phi_{v,\ell}$, and every element of $\mathbf{M}(\lambda,\mu)$ is of this form.

Proposition 19.4. The right action of \mathfrak{g} on $\mathbf{M}(\lambda, \mu)$ is given by the formula

$$\Phi_V(v \otimes \ell) \cdot b = \Phi_{\mathfrak{g} \otimes V}([b \otimes v] \bigotimes [(\lambda - \rho) \otimes \ell + \sum_{\alpha \in R_+} f_{\alpha}^* \otimes f_{\alpha} \ell]).$$

Proof. Consider the homomorphism

$$\Psi_{\ell} := \sum_{i} b_{i}^{*} \otimes \Phi_{\ell} b_{i} : M_{\lambda - \rho} \to \mathfrak{g}^{*} \otimes V^{*} \otimes M_{\mu - \rho}^{\vee},$$

where $\{b_i\}$ is a basis of \mathfrak{g} and $\{b_i^*\}$ the dual basis of \mathfrak{g}^* . We have

$$\langle \Psi_\ell \rangle = \sum b_i^* \otimes \langle \Phi_\ell b_i \rangle \in \mathfrak{g}^* \otimes V^*,$$

where the expectation value map \langle,\rangle is defined in Exercise 8.13. But

$$\langle \Phi_{\ell}h \rangle = (\lambda - \rho, h)\ell, \ \langle \Phi_{\ell}e_{\alpha} \rangle = 0, \ \langle \Phi_{\ell}f_{\alpha} \rangle = f_{\alpha}\ell$$

for $\alpha \in R_+$. Thus we get

$$\langle \Psi_{\ell} \rangle = (\lambda - \rho) \otimes \ell + \sum_{\alpha \in R_{+}} f_{\alpha}^{*} \otimes f_{\alpha} \ell,$$

hence

$$\Psi_{\ell} = \Phi_{(\lambda - \rho) \otimes \ell + \sum_{\alpha \in R_{+}} f_{\alpha}^{*} \otimes f_{\alpha} \ell}$$

This implies the statement since

$$(\Phi_V(v \otimes \ell) \cdot b)u = (v \otimes 1, \Phi_\ell bu) = (b \otimes v \otimes 1, \Psi_\ell u), \ u \in M_{\lambda - \rho}.$$

This leads to a geometric construction of the principal series. Namely, let G be the simply connected group with Lie algebra \mathfrak{g} , $B = B_+$ be the Borel subgroup of G whose Lie algebra is \mathfrak{b}_+ and H = B/[B, B]the corresponding torus. Fix $\lambda, \mu \in \mathfrak{h}^*$ with $\lambda - \mu \in P$. Define a real-analytic character

$$\psi_{\lambda,\mu}: H \to \mathbb{C}^{\times}$$

by

$$\psi_{\lambda,\mu}(x) := \lambda(x)\mu(x^*)^{-1},$$

where x^* is the image of x under the compact antiholomorphic involution $\sigma: H \to H$ (i.e., such that $H^{\sigma} = H_c$, the compact real form of H). For example, for $G = SL_2$, λ, μ are complex numbers with $\lambda - \mu$ an integer and $x^* = \overline{x}^{-1}$, so

$$\psi_{\lambda,\mu}(x) = x^{\lambda} \overline{x}^{\mu} = x^{\lambda-\mu} |x|^{2\mu}.$$

Define $C^{\infty}_{\lambda,\mu}(G/B)$ to be the space of smooth functions on G satisfying

$$F(gb) = F(g)\psi_{\lambda,\mu}(b).$$

This is naturally an admissible representation of G: we have $G/B = G_c/H_c$, so the multiplicity space of V in $C^{\infty}_{\lambda,\mu}(G/B)$ is $V^*[\lambda-\mu]$; namely, $C^{\infty}_{\lambda,\mu}(G/B)^{\text{fin}} = C^{\infty}_{\lambda-\mu}(G_c/H_c)^{\text{fin}}$, the space of G_c -finite functions on G_c (under left translations) such that

$$F(gx) = F(g)\lambda(x)\mu(x)^{-1}$$

for $x \in H_c$.

Proposition 19.5. We have an isomorphism

1

$$\xi: \mathbf{M}(\lambda,\mu) \to C^{\infty}_{\lambda-\rho,\mu-\rho}(G/B)^{\mathrm{fin}}$$

as Harish-Chandra bimodules. Namely, $\xi(\Phi_{v,\ell})$ is the matrix coefficient $\psi_{v,\ell}(g) := (v, g\ell), g \in G_c$.

Exercise 19.6. Prove Proposition 19.5. **Hint:** Use Proposition 19.4 to show that ξ is a well defined isomorphism of \mathfrak{g}_{ad} -modules, and after applying ξ the right action of \mathfrak{g} looks like

$$(\psi \cdot b)(g) = (\lambda - \rho)(\operatorname{Ad}(g)b)\psi(g) + \sum_{\alpha \in R_+} f_{\alpha}^*(\operatorname{Ad}(g)b)(R(f_{\alpha})\psi)(g),$$

where $R(f_{\alpha})$ is the left-invariant vector field equal to f_{α} at 1. Then show that the right action of \mathfrak{g} on $C^{\infty}_{\lambda-\rho,\mu-\rho}(G/B)$ is given by the same formula. 19.3. The functor H_{λ} . Define the functor $H_{\lambda} : \mathcal{O}_{\theta} \to HC_{\theta,\chi_{\lambda}}$ given by

$$H_{\lambda}(X) := \operatorname{Hom}_{\operatorname{fin}}(M_{\lambda-\rho}, X).$$

Note that $H_{\lambda}(M_{\mu-\rho}^{\vee}) = \mathbf{M}(\lambda,\mu).$

Proposition 19.7. The functor H_{λ} exact when λ is dominant.

Proof. If V is a finite-dimensional \mathfrak{g} -module then

 $\operatorname{Hom}_{\mathfrak{g}}(V, H_{\lambda}(X)) = \operatorname{Hom}_{\mathfrak{g}}(V \otimes M_{\lambda - \rho}, X),$

which is exact as $V \otimes M_{\lambda-\rho}$ is projective.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.