19. Principal series representations

19.1. Residual finiteness of $U(\mathfrak{g})$.

Proposition 19.1. The homomorphism $\phi: U(\mathfrak{g}) \rightarrow \prod_{\lambda \in P_{+}} \operatorname{End}\left(L_{\lambda}\right)$ is injective.

Proof. Let $x \in \operatorname{Ker} \phi$, and G be the simply connected group with Lie algebra \mathfrak{g}. Then by the Peter-Weyl theorem, x acts by zero on $\mathcal{O}(G):=$ $\oplus_{\lambda \in P_{+}} L_{\lambda} \otimes L_{\lambda}^{*}$ (where x acts only on the first component). This means that the right-invariant differential operator on G defined by x is zero, i.e., $x=0$.

Exercise 19.2. Give another proof of Proposition 19.1 which does not use the Peter-Weyl theorem. Take $x \in \operatorname{Ker} \phi$.
(i) Show by interpolation that x acts by zero in every Verma module M_{λ}.
(ii) Show that if $x \in U(\mathfrak{g})$ acts by zero in M_{λ} for all λ then $x=0$.

Note that Proposition 19.1 implies that any $z \in U(\mathfrak{g})$ which acts by a scalar in all L_{λ} belongs to $Z(\mathfrak{g})$. Indeed, in this case for any $x \in U(\mathfrak{g})$, $[x, z]$ acts by zero in L_{λ}, hence $[x, z]=0$.
19.2. Principal series. Let $\lambda, \mu \in \mathfrak{h}^{*}, \lambda-\mu \in P$. Define the principal series bimodule

$$
\mathbf{M}(\lambda, \mu):=\operatorname{Hom}_{\mathrm{fin}}\left(M_{\lambda-\rho}, M_{\mu-\rho}^{\vee}\right) \in H C_{\chi_{\mu}, \chi_{\lambda}}(\mathfrak{g}) .
$$

Then we have

$$
\begin{equation*}
\mathbf{M}(\lambda, \mu)=\oplus_{V \in \operatorname{irr}(\mathfrak{g})} V \otimes V^{*}[\lambda-\mu] . \tag{15}
\end{equation*}
$$

The bimodule $\mathbf{M}(\lambda, \mu)$ represents a certain functor that has a nice independent description.

Proposition 19.3. Let $X \in H C(\mathfrak{g})$. Then

$$
\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X, \mathbf{M}(\lambda, \mu)) \cong \operatorname{Hom}_{\left(\mathfrak{b}_{-}, \mathfrak{b}_{+}\right)-\operatorname{bimod}}\left(X \otimes \mathbb{C}_{\lambda-\rho}, \mathbb{C}_{\mu-\rho}\right)
$$

where the $\left(\mathfrak{b}_{-}, \mathfrak{b}_{+}\right)$-bimodule structure on $\mathbb{C}_{\mu-\rho}$ is defined by the character $(\mu-\rho, 0)$ and on $\mathbb{C}_{\lambda-\rho}$ by the character $(0, \lambda-\rho)$.

Proof. We have

$$
\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X, \mathbf{M}(\lambda, \mu))=\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}\left(X \otimes M_{\lambda-\rho}, M_{\mu-\rho}^{\vee}\right),
$$

where the right copy of \mathfrak{g} acts trivially on $M_{\mu-\rho}^{\vee}$ and the left copy of \mathfrak{g} acts trivially on $M_{\lambda-\rho}$. Frobenius reciprocity then yields

$$
\operatorname{Hom}_{\mathfrak{g}-\operatorname{bimod}}(X, \mathbf{M}(\lambda, \mu))=\underset{95}{\operatorname{Hom}_{(\mathfrak{b}+, \mathfrak{g})-\operatorname{bimod}}}\left(X \otimes \mathbb{C}_{\lambda-\rho}, M_{\mu-\rho}^{\vee}\right) .
$$

Since $X \otimes \mathbb{C}_{\lambda-\rho}$ is diagonalizable under the adjoint action of \mathfrak{h}, on the right hand side we may replace $M_{\mu-\rho}^{\vee}$ with its completion $\widehat{M}_{\mu-\rho}^{\vee}$ (the Cartesian product of all weight spaces). Then applying Frobenius reciprocity again, we get the desired statement.

Let us give an explicit realization of $\mathbf{M}(\lambda, \mu)$. By (15), $\mathbf{M}(\lambda, \mu)$ is spanned by elements $\Phi_{v, \ell}: M_{\lambda-\rho} \rightarrow M_{\mu-\rho}^{\vee}, v \in V, \ell \in V^{*}[\lambda-\mu]$, where

$$
\Phi_{v, \ell} u:=\left(v \otimes 1, \Phi_{\ell} u\right),
$$

and $\Phi_{\ell}: M_{\lambda-\rho} \rightarrow V^{*} \otimes M_{\mu-\rho}^{\vee}$ is the homomorphism for which $\left\langle\Phi_{\ell}\right\rangle=\ell$, for finite dimensional \mathfrak{g}-modules V. Moreover these elements easily express in terms of such elements for simple V. Thus for any V and $y \in V \otimes V^{*}(0)$ we can define the linear map $\Phi_{V}(y): M_{\lambda-\rho} \rightarrow M_{\mu-\rho}^{\vee}$ which depends linearly on y with $\Phi_{V}(v \otimes \ell)=\Phi_{v, \ell}$, and every element of $\mathbf{M}(\lambda, \mu)$ is of this form.

Proposition 19.4. The right action of \mathfrak{g} on $\mathbf{M}(\lambda, \mu)$ is given by the formula

$$
\Phi_{V}(v \otimes \ell) \cdot b=\Phi_{\mathfrak{g} \otimes V}\left([b \otimes v] \bigotimes\left[(\lambda-\rho) \otimes \ell+\sum_{\alpha \in R_{+}} f_{\alpha}^{*} \otimes f_{\alpha} \ell\right]\right)
$$

Proof. Consider the homomorphism

$$
\Psi_{\ell}:=\sum_{i} b_{i}^{*} \otimes \Phi_{\ell} b_{i}: M_{\lambda-\rho} \rightarrow \mathfrak{g}^{*} \otimes V^{*} \otimes M_{\mu-\rho}^{\vee}
$$

where $\left\{b_{i}\right\}$ is a basis of \mathfrak{g} and $\left\{b_{i}^{*}\right\}$ the dual basis of \mathfrak{g}^{*}. We have

$$
\left\langle\Psi_{\ell}\right\rangle=\sum b_{i}^{*} \otimes\left\langle\Phi_{\ell} b_{i}\right\rangle \in \mathfrak{g}^{*} \otimes V^{*}
$$

where the expectation value map \langle,$\rangle is defined in Exercise 8.13. But$

$$
\left\langle\Phi_{\ell} h\right\rangle=(\lambda-\rho, h) \ell,\left\langle\Phi_{\ell} e_{\alpha}\right\rangle=0,\left\langle\Phi_{\ell} f_{\alpha}\right\rangle=f_{\alpha} \ell
$$

for $\alpha \in R_{+}$. Thus we get

$$
\left\langle\Psi_{\ell}\right\rangle=(\lambda-\rho) \otimes \ell+\sum_{\alpha \in R_{+}} f_{\alpha}^{*} \otimes f_{\alpha} \ell
$$

hence

$$
\Psi_{\ell}=\Phi_{(\lambda-\rho) \otimes \ell+\sum_{\alpha \in R_{+}} f_{\alpha}^{*} \otimes f_{\alpha} \ell}
$$

This implies the statement since

$$
\left(\Phi_{V}(v \otimes \ell) \cdot b\right) u=\left(v \otimes 1, \Phi_{\ell} b u\right)=\left(b \otimes v \otimes 1, \Psi_{\ell} u\right), u \in M_{\lambda-\rho} .
$$

This leads to a geometric construction of the principal series. Namely, let G be the simply connected group with Lie algebra $\mathfrak{g}, B=B_{+}$be the Borel subgroup of G whose Lie algebra is \mathfrak{b}_{+}and $H=B /[B, B]$ the corresponding torus. Fix $\lambda, \mu \in \mathfrak{h}^{*}$ with $\lambda-\mu \in P$. Define a real-analytic character

$$
\psi_{\lambda, \mu}: H \rightarrow \mathbb{C}^{\times}
$$

by

$$
\psi_{\lambda, \mu}(x):=\lambda(x) \mu\left(x^{*}\right)^{-1}
$$

where x^{*} is the image of x under the compact antiholomorphic involution $*: H \rightarrow H$ (i.e., such that $H^{\sigma}=H_{c}$, the compact real form of $H)$. For example, for $G=S L_{2}, \lambda, \mu$ are complex numbers with $\lambda-\mu$ an integer and $x^{*}=\bar{x}^{-1}$, so

$$
\psi_{\lambda, \mu}(x)=x^{\lambda} \bar{x}^{\mu}=x^{\lambda-\mu}|x|^{2 \mu}
$$

Define $C_{\lambda, \mu}^{\infty}(G / B)$ to be the space of smooth functions on G satisfying

$$
F(g b)=F(g) \psi_{\lambda, \mu}(b)
$$

This is naturally an admissible representation of G : we have $G / B=$ G_{c} / H_{c}, so the multiplicity space of V in $C_{\lambda, \mu}^{\infty}(G / B)$ is $V^{*}[\lambda-\mu]$; namely, $C_{\lambda, \mu}^{\infty}(G / B)^{\mathrm{fin}}=C_{\lambda-\mu}^{\infty}\left(G_{c} / H_{c}\right)^{\mathrm{fin}}$, the space of G_{c}-finite functions on G_{c} (under left translations) such that

$$
F(g x)=F(g) \lambda(x) \mu(x)^{-1}
$$

for $x \in H_{c}$.
Proposition 19.5. We have an isomorphism

$$
\xi: \mathbf{M}(\lambda, \mu) \rightarrow C_{\lambda-\rho, \mu-\rho}^{\infty}(G / B)^{\mathrm{fin}}
$$

as Harish-Chandra bimodules. Namely, $\xi\left(\Phi_{v, \ell}\right)$ is the matrix coefficient $\psi_{v, \ell}(g):=(v, g \ell), g \in G_{c}$.

Exercise 19.6. Prove Proposition 19.5. Hint: Use Proposition 19.4 to show that ξ is a well defined isomorphism of $\mathfrak{g}_{\mathrm{ad}}$-modules, and after applying ξ the right action of \mathfrak{g} looks like

$$
(\psi \cdot b)(g)=(\lambda-\rho)(\operatorname{Ad}(g) b) \psi(g)+\sum_{\alpha \in R_{+}} f_{\alpha}^{*}(\operatorname{Ad}(g) b)\left(R\left(f_{\alpha}\right) \psi\right)(g)
$$

where $R\left(f_{\alpha}\right)$ is the left-invariant vector field equal to f_{α} at 1 . Then show that the right action of \mathfrak{g} on $C_{\lambda-\rho, \mu-\rho}^{\infty}(G / B)$ is given by the same formula.
19.3. The functor H_{λ}. Define the functor $H_{\lambda}: \mathcal{O}_{\theta} \rightarrow H C_{\theta, \chi_{\lambda}}$ given by

$$
H_{\lambda}(X):=\operatorname{Hom}_{\text {fin }}\left(M_{\lambda-\rho}, X\right) .
$$

Note that $H_{\lambda}\left(M_{\mu-\rho}^{\vee}\right)=\mathbf{M}(\lambda, \mu)$.
Proposition 19.7. The functor H_{λ} exact when λ is dominant.
Proof. If V is a finite dimensional \mathfrak{g}-module then

$$
\operatorname{Hom}_{\mathfrak{g}}\left(V, H_{\lambda}(X)\right)=\operatorname{Hom}_{\mathfrak{g}}\left(V \otimes M_{\lambda-\rho}, X\right),
$$

which is exact as $V \otimes M_{\lambda-\rho}$ is projective.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

