
20. BGG reciprocity and BGG Theorem

20.1. A vanishing lemma for Ext groups.

Lemma 20.1. Let X ∈ O be a free U(n−)-module. Then for any
µ ∈ h∗ we have

ExtiO(X,M∨
µ ) = 0, i > 0.

Proof. Fix a projective resolution P• of X in O and consider the com-
plex Homg(P•,M

∨
µ ) which computes the desired Ext groups. Since Pi

have a weight decomposition,

Homg(P•,M
∨
µ ) = Homg(P•, M̂

∨
µ ),

where M̂∨
µ :=

∏
β∈h∗ M̂

∨
µ [β] is the completion of M∨

µ . We have

M̂∨
µ = Coindg

b−
(Cµ) := Homb−(U(g),Cµ) ∼= HomC(U(n+),Cµ).

Thus, Frobenius reciprocity yields

Homg(P•, M̂
∨
µ ) = Homb−(P•,Cµ).

By Proposition 16.6(ii), Pi are free U(n−)-modules, so the exact se-
quence of U(n−)-modules

...→ P1 → P0 → X → 0

is split. Thus the complex Homb−(P•,Cµ) is exact in positive degrees,
which implies the statement. �

20.2. Standard filtrations. A standard (or Verma) filtration on
X ∈ O is a filtration for which successive quotients are Verma modules.
X is called standardly filtered if it admits a standard filtration. It
is clear that every standardly filtered object X is necessarily a free
U(n−)-module.

Corollary 20.2. If X is standardly filtered then ExtiO(X,M∨
µ ) = 0 for

all µ ∈ h∗ and i > 0.

Proof. This follows from Lemma 20.1. �

The converse also holds. In fact, we have

Theorem 20.3. X is standardly filtered if and only if

Ext1
O(X,M∨

λ ) = 0

for all λ ∈ h∗.
99



Proof. Let E be a finite dimensional vector space, and suppose we have
a short exact sequence in O:

0→ K → E ⊗Mλ → Z → 0

with K[λ] = 0.

Lemma 20.4. If Ext1
O(Z,M∨

µ ) = 0 for all µ ∈ h∗ then K = 0 and
Z ∼= E ⊗Mλ.

Proof. The long exact sequence of cohomology yields

...→ Hom(E ⊗Mλ,M
∨
µ )→ Hom(K,M∨

µ )→ Ext1
O(Z,M∨

µ ) = 0.

For λ 6= µ, we have Hom(Mλ,M
∨
µ ) = 0, so it follows that Hom(K,M∨

µ ) =
0. But we also have Hom(K,M∨

λ ) = 0, asK[λ] = 0, while every nonzero
submodule of M∨

λ contains Lλ. It follows that K = 0. �

Now let us prove the theorem. We only need to prove the “if” di-
rection. We argue by induction in the length of X (with the base
case X = 0 being trivial). Let λ be a maximal weight in P (X) and
E := X[λ]. Let Z be the submodule of X generated by E; it is a
quotient of E⊗Mλ by a submodule K with K[λ] = 0. We have a short
exact sequence

0→ Z → X → Y → 0.

Thus from the long exact sequence of cohomology we get an exact
sequence

...→ Hom(Z,M∨
µ )→ Ext1

O(Y,M∨
µ )→ Ext1

O(X,M∨
µ ) = 0.

It follows that for µ 6= λ we have Ext1
O(Y,M∨

µ ) = 0, as in this case
Hom(Z,M∨

µ ) = 0 (since Z is a quotient of E ⊗ Mλ). On the other
hand, if µ = λ then by the argument in the proof of Lemma 20.1 we
have

Ext1
O(Y,M∨

λ ) = Ext1
C(Y,Cλ),

where C is the category of h-semisimple b−-modules. But Ext1
C(Y,Cλ) =

0, as all weights of Y are not > λ and hence any short exact sequence
of b−-modules

0→ Cλ → Ỹ → Y → 0

canonically splits. By the induction assumption, it follows that Y is
standardly filtered, so by Corollary 20.2, Exti(Y,M∨

µ ) = 0 for all i ≥ 1,
in particular for i = 1, 2. Thus the long exact sequence of Ext groups
gives

Ext1(Z,M∨
µ ) = Ext1(X,M∨

µ ) = 0,

hence Z = E ⊗ Mλ by Lemma 20.4. This completes the induction
step. �
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Corollary 20.5. (i) Every X ∈ O which is a free U(n−)-module is
standardly filtered. In particular, for any λ ∈ h∗ and finite dimensional
g-module V , the module V ⊗Mλ is standardly filtered.

(ii) Any projective object P ∈ O is standardly filtered.

Proof. (i) Follows from Theorem 20.3 and Lemma 20.1.
(ii) Immediate from Theorem 20.3. �

20.3. BGG reciprocity. Denote by dλµ the multiplicity of Lµ in the
Jordan-Hölder series of Mλ. Since characters of Lµ are linearly inde-
pendent, these numbers are determined from the formula∑

µ

dλµch(Lµ) = ch(Mλ) =
eλ∏

α∈R+
(1− e−α)

.

Thus the knowledge of dλµ is equivalent to the knowledge of the char-
acters ch(Lλ).

Since by Proposition ]20.5(ii) the projective covers Pλ of Lλ are stan-
dardly filtered, we may also define the multiplicities d∗λµ of Mµ in Pλ.
These are independent on the choice of the standard filtration and are
determined by the formula

ch(Pλ) =
∑
µ

d∗λµch(Mλ) =
∑
µ

d∗λµ
eλ∏

α∈R+
(1− e−α)

.

Theorem 20.6. (BGG reciprocity) We have d∗λµ = dµλ.

Proof. We compute dim Hom(Pλ,M
∨
µ ) in two ways. First using the

standard filtration of Pλ and Lemma 20.1, we have dim Hom(Pλ,M
∨
µ ) =

d∗λµ. On the other hand, using that the multiplicity of Lλ in M∨
µ is dµλ,

we get dim Hom(Pλ,M
∨
µ ) = dµλ. �

Let cλµ = dim Hom(Pλ, Pµ) be the entries of the Cartan matrix C of
O. They are equal to the multiplicities of Lλ in Pµ.

Corollary 20.7. We have

cλµ =
∑
ν

dνλdνµ.

In other words, C = DTD where D = (dλµ).

Note that since D is upper triangular with respect to the partial
order ≤ with ones on the diagonal, it can be uniquely recovered from
C by Gauss decomposition. Thus the knowledge of D is equivalent to
the knowledge of C.
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Example 20.8. Consider the structure of the category Oχ for g =
sl2. The only interesting case is χ = χλ+1 for λ ∈ Z≥0. Then the
simple objects are X = Lλ (finite dimensional) and Y = M−λ−2. By
Proposition 16.4, the projective cover PX is just the Verma module
Mλ, which has composition series [X, Y ], starting from the head X.
To determine PY , consider the tensor product P := M−1 ⊗ Lλ+1. This
is projective with character

ch(P ) = ch(Mλ) + ch(Mλ−2) + ...+ ch(M−λ−2).

Thus denoting by Πλ the projection functor to the generalized central
character χλ+1, we get that

ch(Πλ(P )) = ch(Mλ) + ch(M−λ−2).

Note that M−λ−2 is not projective since Ext1
O(M−λ−2, Lλ) 6= 0 (there is

a nontrivial extension M∨
λ ). Thus Πλ(P ) is indecomposable (otherwise

one of the summands in the decomposition would have to be M−λ−2),
i.e., Πλ(P ) = PY . Since it maps to Y and receives an injection from
Mλ, its composition series is [Y,X, Y ]. This is the big projective
object of Oχ. We this get for Oχ:

D =

(
1 1
0 1

)
, C =

(
1 1
1 2

)
.

We can now compute the (basic) algebra A whose module category is
equivalent to Oχ. This is the algebra A = End(PX ⊕ PY ), and it has
dimension

∑
i,j cij = 5. The basis is formed by 1X , 1Y and morphisms

a : PX → PY , b : PY → PX and ab : PY → PY . Moreover, we have
ba = 0. Thus the algebra A is the path algebra of the quiver with two
vertices x, y with edges a : x→ y and b : y → x with the only relation
ba = 0.

20.4. The duality functor. Let τ : g→ g be the Cartan involution
given by τ(ei) = fi, τ(fi) = ei, τ(hi) = −hi. For X ∈ O let Xτ be the
module X twisted by τ , and X∨ = (Xτ )∗fin, the h-finite part of (Xτ )∗.
The following proposition is easy:

Proposition 20.9. (i) X∨ ∈ O and has the same character and com-
position series as X.

(ii) (Mλ)
∨ = M∨

λ , L∨λ = Lλ.
(iii) the assignment X 7→ X∨ is an involutive equivalence of cate-

gories O → Oop which preserves the decomposition into Oχ(S).

Corollary 20.10. O has enough injectives, namely the injective hull
of Lλ is P∨λ .
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20.5. The Jantzen filtration. It turns out that every Verma mod-
ule Mλ carries a canonical finite filtration by submodules called the
Jantzen filtration, which plays an important role in studying cat-
egory O. In fact, this filtration is defined much more generally, as
follows.

Let k be a field and V, U be free k[[t]]-modules of the same rank
d <∞, and let B ∈ Hom(V,W ) be such that detB := ∧dB is nonzero.
Let V0 := V/tV . Define Vm ⊂ V0 to be the space of all v0 ∈ V0 such
that there exists a lift v ∈ V of v0 for which Bv ∈ tmW . It is clear
that V0 ⊃ V1 ⊃ V2 ⊃ ... with V1 = KerB(0), and Vm = 0 for some m.
Thus we get a finite descending filtration {Vj} of V0 called the Jantzen
filtration attached to B.

Exercise 20.11. (i) Show that there exist unique nonnegative integers
n1 ≤ ... ≤ nd such that for some bases e1, ..., ed of V and f1, ..., fd of
W over k[[t]] one has Bei = tnifi, and that CokerB ∼= ⊕di=1(k[t]/tni) as
a k[[t]]-module. Deduce that the order of vanishing of detB at t = 0

equals dimk CokerB =
∑d

i=1 ni.
(ii) Suppose dimVj = dj (so d0 = d). Show that for all j ∈ Z≥0,

ni = j if and only if d − dj < i ≤ d − dj+1, and deduce the Jantzen
sum formula: the order of vanishing of detB at t = 0 equals

∑
j≥1 dj.

(iii) Suppose that V,W are modules over some k[[t]]-algebra A with
A0 := A/tA (for example, A = A0[[t]] and V,W are A0-modules), and
B is an A-module homomorphism. Show that the Jantzen filtration of
V0 attached to B is a filtration by A0-submodules.

The Jantzen filtration onMλ is now defined using the homomorphism
B : Mλ(t) → M∨

λ(t) over A0 := U(g) corresponding to the Shapovalov

form, where λ(t) := λ + tρ. Namely, we define it separately on each
weight subspace. For example, (Mλ)1 = Jλ is the maximal proper
submodule of Mλ.

Exercise 20.12. (Jantzen sum formula for Mλ) Use the Jantzen sum
formula of Exercise 20.11 and the formula for the determinant of the
Shapovalov form (Exercise 8.15) to show that∑

j≥1

ch((Mλ)j) =
∑

α∈R+:(λ+ρ,α∨)∈Z≥1

ch(Mλ−(λ+ρ,α∨)α).

20.6. The BGG theorem. The following is the converse to Theorem
15.11.

Theorem 20.13. (Bernstein – I. Gelfand – S. Gelfand) If Lµ−ρ occurs
in the composition series of Mλ−ρ (i.e., dλ−ρ,µ−ρ 6= 0) then µ � λ.
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Proof. It is clear that λ − µ ∈ Q+. The proof is by induction in the
integer n := (λ − µ, ρ∨). If n = 0, the statement is obvious, so we
only need to justify the induction step for n > 0. Then Lµ−ρ occurs
in Jλ−ρ = (Mλ−ρ)1, the degree 1 part of the Jantzen filtration of Mλ.
Thus by the Jantzen sum formula (Exercise 20.12), Lµ−ρ must occur
in Mλ−ρ−(λ,α∨)α = Msαλ−ρ for some α ∈ R+ such that (λ, α∨) ∈ Z≥1.
By the induction assumption, we then have µ � sαλ. But sαλ ≺ λ, so
we get µ ≺ λ. �

Corollary 20.14. The following conditions on µ ≤ λ are equivalent.
(i) µ � λ
(ii) Lµ−ρ occurs in Mλ−ρ.
(iii) dim Hom(Mµ−ρ,Mλ−ρ) 6= 0.
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