20. BGG reciprocity and BGG Theorem

20.1. A vanishing lemma for Ext groups.

Lemma 20.1. Let $X \in \mathcal{O}$ be a free $U(\mathfrak{n}_{-})$ -module. Then for any $\mu \in \mathfrak{h}^*$ we have

$$\operatorname{Ext}^{i}_{\mathcal{O}}(X, M^{\vee}_{\mu}) = 0, \ i > 0.$$

Proof. Fix a projective resolution P_{\bullet} of X in \mathcal{O} and consider the complex $\operatorname{Hom}_{\mathfrak{g}}(P_{\bullet}, M_{\mu}^{\vee})$ which computes the desired Ext groups. Since P_i have a weight decomposition,

$$\operatorname{Hom}_{\mathfrak{g}}(P_{\bullet}, M_{\mu}^{\vee}) = \operatorname{Hom}_{\mathfrak{g}}(P_{\bullet}, \widetilde{M}_{\mu}^{\vee}),$$

where $\widehat{M}_{\mu}^{\vee} := \prod_{\beta \in \mathfrak{h}^*} \widehat{M}_{\mu}^{\vee}[\beta]$ is the completion of M_{μ}^{\vee} . We have

$$\widehat{M}_{\mu}^{\vee} = \operatorname{Coind}_{\mathfrak{b}_{-}}^{\mathfrak{g}}(\mathbb{C}_{\mu}) := \operatorname{Hom}_{\mathfrak{b}_{-}}(U(\mathfrak{g}), \mathbb{C}_{\mu}) \cong \operatorname{Hom}_{\mathbb{C}}(U(\mathfrak{n}_{+}), \mathbb{C}_{\mu}).$$

Thus, Frobenius reciprocity yields

$$\operatorname{Hom}_{\mathfrak{g}}(P_{\bullet}, \widehat{M}_{\mu}^{\vee}) = \operatorname{Hom}_{\mathfrak{b}_{-}}(P_{\bullet}, \mathbb{C}_{\mu}).$$

By Proposition 16.6(ii), P_i are free $U(\mathfrak{n}_-)$ -modules, so the exact sequence of $U(\mathfrak{n}_-)$ -modules

$$\dots \to P_1 \to P_0 \to X \to 0$$

is split. Thus the complex $\operatorname{Hom}_{\mathfrak{b}_{-}}(P_{\bullet}, \mathbb{C}_{\mu})$ is exact in positive degrees, which implies the statement. \Box

20.2. Standard filtrations. A standard (or Verma) filtration on $X \in \mathcal{O}$ is a filtration for which successive quotients are Verma modules. X is called **standardly filtered** if it admits a standard filtration. It is clear that every standardly filtered object X is necessarily a free $U(\mathfrak{n}_{-})$ -module.

Corollary 20.2. If X is standardly filtered then $\operatorname{Ext}^{i}_{\mathcal{O}}(X, M^{\vee}_{\mu}) = 0$ for all $\mu \in \mathfrak{h}^{*}$ and i > 0.

Proof. This follows from Lemma 20.1.

The converse also holds. In fact, we have

Theorem 20.3. X is standardly filtered if and only if

$$\operatorname{Ext}^{1}_{\mathcal{O}}(X, M^{\vee}_{\lambda}) = 0$$

for all $\lambda \in \mathfrak{h}^*$.

Proof. Let E be a finite dimensional vector space, and suppose we have a short exact sequence in \mathcal{O} :

$$0 \to K \to E \otimes M_{\lambda} \to Z \to 0$$

with $K[\lambda] = 0$.

Lemma 20.4. If $\operatorname{Ext}^{1}_{\mathcal{O}}(Z, M^{\vee}_{\mu}) = 0$ for all $\mu \in \mathfrak{h}^{*}$ then K = 0 and $Z \cong E \otimes M_{\lambda}$.

Proof. The long exact sequence of cohomology yields

...
$$\to \operatorname{Hom}(E \otimes M_{\lambda}, M_{\mu}^{\vee}) \to \operatorname{Hom}(K, M_{\mu}^{\vee}) \to \operatorname{Ext}^{1}_{\mathcal{O}}(Z, M_{\mu}^{\vee}) = 0.$$

For $\lambda \neq \mu$, we have $\operatorname{Hom}(M_{\lambda}, M_{\mu}^{\vee}) = 0$, so it follows that $\operatorname{Hom}(K, M_{\mu}^{\vee}) = 0$. But we also have $\operatorname{Hom}(K, M_{\lambda}^{\vee}) = 0$, as $K[\lambda] = 0$, while every nonzero submodule of M_{λ}^{\vee} contains L_{λ} . It follows that K = 0.

Now let us prove the theorem. We only need to prove the "if" direction. We argue by induction in the length of X (with the base case X = 0 being trivial). Let λ be a maximal weight in P(X) and $E := X[\lambda]$. Let Z be the submodule of X generated by E; it is a quotient of $E \otimes M_{\lambda}$ by a submodule K with $K[\lambda] = 0$. We have a short exact sequence

$$0 \to Z \to X \to Y \to 0.$$

Thus from the long exact sequence of cohomology we get an exact sequence

$$\dots \to \operatorname{Hom}(Z, M_{\mu}^{\vee}) \to \operatorname{Ext}^{1}_{\mathcal{O}}(Y, M_{\mu}^{\vee}) \to \operatorname{Ext}^{1}_{\mathcal{O}}(X, M_{\mu}^{\vee}) = 0.$$

It follows that for $\mu \neq \lambda$ we have $\operatorname{Ext}^{1}_{\mathcal{O}}(Y, M^{\vee}_{\mu}) = 0$, as in this case $\operatorname{Hom}(Z, M^{\vee}_{\mu}) = 0$ (since Z is a quotient of $E \otimes M_{\lambda}$). On the other hand, if $\mu = \lambda$ then by the argument in the proof of Lemma 20.1 we have

$$\operatorname{Ext}^{1}_{\mathcal{O}}(Y, M_{\lambda}^{\vee}) = \operatorname{Ext}^{1}_{\mathcal{C}}(Y, \mathbb{C}_{\lambda}),$$

where \mathcal{C} is the category of \mathfrak{h} -semisimple \mathfrak{b}_- -modules. But $\operatorname{Ext}^1_{\mathcal{C}}(Y, \mathbb{C}_{\lambda}) = 0$, as all weights of Y are not $> \lambda$ and hence any short exact sequence of \mathfrak{b}_- -modules

$$0 \to \mathbb{C}_{\lambda} \to Y \to 0$$

canonically splits. By the induction assumption, it follows that Y is standardly filtered, so by Corollary 20.2, $\operatorname{Ext}^{i}(Y, M_{\mu}^{\vee}) = 0$ for all $i \geq 1$, in particular for i = 1, 2. Thus the long exact sequence of Ext groups gives

$$\operatorname{Ext}^{1}(Z, M_{\mu}^{\vee}) = \operatorname{Ext}^{1}(X, M_{\mu}^{\vee}) = 0,$$

hence $Z = E \otimes M_{\lambda}$ by Lemma 20.4. This completes the induction step.

Corollary 20.5. (i) Every $X \in \mathcal{O}$ which is a free $U(\mathfrak{n}_{-})$ -module is standardly filtered. In particular, for any $\lambda \in \mathfrak{h}^*$ and finite dimensional \mathfrak{g} -module V, the module $V \otimes M_{\lambda}$ is standardly filtered.

(ii) Any projective object $P \in \mathcal{O}$ is standardly filtered.

Proof. (i) Follows from Theorem 20.3 and Lemma 20.1.

(ii) Immediate from Theorem 20.3.

20.3. **BGG reciprocity.** Denote by $d_{\lambda\mu}$ the multiplicity of L_{μ} in the Jordan-Hölder series of M_{λ} . Since characters of L_{μ} are linearly independent, these numbers are determined from the formula

$$\sum_{\mu} d_{\lambda\mu} \operatorname{ch}(L_{\mu}) = \operatorname{ch}(M_{\lambda}) = \frac{e^{\lambda}}{\prod_{\alpha \in R_{+}} (1 - e^{-\alpha})}$$

Thus the knowledge of $d_{\lambda\mu}$ is equivalent to the knowledge of the characters $ch(L_{\lambda})$.

Since by Proposition]20.5(ii) the projective covers P_{λ} of L_{λ} are standardly filtered, we may also define the multiplicities $d^*_{\lambda\mu}$ of M_{μ} in P_{λ} . These are independent on the choice of the standard filtration and are determined by the formula

$$\operatorname{ch}(P_{\lambda}) = \sum_{\mu} d^*_{\lambda\mu} \operatorname{ch}(M_{\lambda}) = \sum_{\mu} d^*_{\lambda\mu} \frac{e^{\lambda}}{\prod_{\alpha \in R_+} (1 - e^{-\alpha})}.$$

Theorem 20.6. (BGG reciprocity) We have $d^*_{\lambda\mu} = d_{\mu\lambda}$.

Proof. We compute dim Hom $(P_{\lambda}, M_{\mu}^{\vee})$ in two ways. First using the standard filtration of P_{λ} and Lemma 20.1, we have dim Hom $(P_{\lambda}, M_{\mu}^{\vee}) = d_{\lambda\mu}^{*}$. On the other hand, using that the multiplicity of L_{λ} in M_{μ}^{\vee} is $d_{\mu\lambda}$, we get dim Hom $(P_{\lambda}, M_{\mu}^{\vee}) = d_{\mu\lambda}$.

Let $c_{\lambda\mu} = \dim \operatorname{Hom}(P_{\lambda}, P_{\mu})$ be the entries of the Cartan matrix C of \mathcal{O} . They are equal to the multiplicities of L_{λ} in P_{μ} .

Corollary 20.7. We have

$$c_{\lambda\mu} = \sum_{\nu} d_{\nu\lambda} d_{\nu\mu}.$$

In other words, $C = D^T D$ where $D = (d_{\lambda\mu})$.

Note that since D is upper triangular with respect to the partial order \leq with ones on the diagonal, it can be uniquely recovered from C by Gauss decomposition. Thus the knowledge of D is equivalent to the knowledge of C.

Example 20.8. Consider the structure of the category \mathcal{O}_{χ} for $\mathfrak{g} = \mathfrak{sl}_2$. The only interesting case is $\chi = \chi_{\lambda+1}$ for $\lambda \in \mathbb{Z}_{\geq 0}$. Then the simple objects are $X = L_{\lambda}$ (finite dimensional) and $Y = M_{-\lambda-2}$. By Proposition 16.4, the projective cover P_X is just the Verma module M_{λ} , which has composition series [X, Y], starting from the head X. To determine P_Y , consider the tensor product $P := M_{-1} \otimes L_{\lambda+1}$. This is projective with character

$$\operatorname{ch}(P) = \operatorname{ch}(M_{\lambda}) + \operatorname{ch}(M_{\lambda-2}) + \dots + \operatorname{ch}(M_{-\lambda-2}).$$

Thus denoting by Π_{λ} the projection functor to the generalized central character $\chi_{\lambda+1}$, we get that

$$\operatorname{ch}(\Pi_{\lambda}(P)) = \operatorname{ch}(M_{\lambda}) + \operatorname{ch}(M_{-\lambda-2}).$$

Note that $M_{-\lambda-2}$ is not projective since $\operatorname{Ext}^{1}_{\mathcal{O}}(M_{-\lambda-2}, L_{\lambda}) \neq 0$ (there is a nontrivial extension M_{λ}^{\vee}). Thus $\Pi_{\lambda}(P)$ is indecomposable (otherwise one of the summands in the decomposition would have to be $M_{-\lambda-2}$), i.e., $\Pi_{\lambda}(P) = P_{Y}$. Since it maps to Y and receives an injection from M_{λ} , its composition series is [Y, X, Y]. This is the **big projective object** of \mathcal{O}_{χ} . We this get for \mathcal{O}_{χ} :

$$D = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}.$$

We can now compute the (basic) algebra A whose module category is equivalent to \mathcal{O}_{χ} . This is the algebra $A = \operatorname{End}(P_X \oplus P_Y)$, and it has dimension $\sum_{i,j} c_{ij} = 5$. The basis is formed by $1_X, 1_Y$ and morphisms $a : P_X \to P_Y, b : P_Y \to P_X$ and $ab : P_Y \to P_Y$. Moreover, we have ba = 0. Thus the algebra A is the path algebra of the quiver with two vertices x, y with edges $a : x \to y$ and $b : y \to x$ with the only relation ba = 0.

20.4. The duality functor. Let $\tau : \mathfrak{g} \to \mathfrak{g}$ be the Cartan involution given by $\tau(e_i) = f_i$, $\tau(f_i) = e_i$, $\tau(h_i) = -h_i$. For $X \in \mathcal{O}$ let X^{τ} be the module X twisted by τ , and $X^{\vee} = (X^{\tau})^*_{\text{fin}}$, the \mathfrak{h} -finite part of $(X^{\tau})^*$. The following proposition is easy:

Proposition 20.9. (i) $X^{\vee} \in \mathcal{O}$ and has the same character and composition series as X.

 $(ii) \ (M_{\lambda})^{\vee} = M_{\lambda}^{\vee}, \ L_{\lambda}^{\vee} = L_{\lambda}.$

(iii) the assignment $X \mapsto X^{\vee}$ is an involutive equivalence of categories $\mathcal{O} \to \mathcal{O}^{\text{op}}$ which preserves the decomposition into $\mathcal{O}_{\chi}(S)$.

Corollary 20.10. \mathcal{O} has enough injectives, namely the injective hull of L_{λ} is P_{λ}^{\vee} .

20.5. The Jantzen filtration. It turns out that every Verma module M_{λ} carries a canonical finite filtration by submodules called the Jantzen filtration, which plays an important role in studying category \mathcal{O} . In fact, this filtration is defined much more generally, as follows.

Let k be a field and V, U be free k[[t]]-modules of the same rank $d < \infty$, and let $B \in \text{Hom}(V, W)$ be such that $\det B := \wedge^d B$ is nonzero. Let $V_0 := V/tV$. Define $V_m \subset V_0$ to be the space of all $v_0 \in V_0$ such that there exists a lift $v \in V$ of v_0 for which $Bv \in t^m W$. It is clear that $V_0 \supset V_1 \supset V_2 \supset \ldots$ with $V_1 = \text{Ker}B(0)$, and $V_m = 0$ for some m. Thus we get a finite descending filtration $\{V_j\}$ of V_0 called the **Jantzen** filtration attached to B.

Exercise 20.11. (i) Show that there exist unique nonnegative integers $n_1 \leq ... \leq n_d$ such that for some bases $e_1, ..., e_d$ of V and $f_1, ..., f_d$ of W over k[[t]] one has $Be_i = t^{n_i}f_i$, and that $\operatorname{Coker} B \cong \bigoplus_{i=1}^d (k[t]/t^{n_i})$ as a k[[t]]-module. Deduce that the order of vanishing of det B at t = 0 equals $\dim_k \operatorname{Coker} B = \sum_{i=1}^d n_i$.

(ii) Suppose dim $V_j = d_j$ (so $d_0 = d$). Show that for all $j \in \mathbb{Z}_{\geq 0}$, $n_i = j$ if and only if $d - d_j < i \leq d - d_{j+1}$, and deduce the **Jantzen** sum formula: the order of vanishing of det B at t = 0 equals $\sum_{j>1} d_j$.

(iii) Suppose that V, W are modules over some k[[t]]-algebra A with $A_0 := A/tA$ (for example, $A = A_0[[t]]$ and V, W are A_0 -modules), and B is an A-module homomorphism. Show that the Jantzen filtration of V_0 attached to B is a filtration by A_0 -submodules.

The Jantzen filtration on M_{λ} is now defined using the homomorphism $B: M_{\lambda(t)} \to M_{\lambda(t)}^{\vee}$ over $A_0 := U(\mathfrak{g})$ corresponding to the Shapovalov form, where $\lambda(t) := \lambda + t\rho$. Namely, we define it separately on each weight subspace. For example, $(M_{\lambda})_1 = J_{\lambda}$ is the maximal proper submodule of M_{λ} .

Exercise 20.12. (Jantzen sum formula for M_{λ}) Use the Jantzen sum formula of Exercise 20.11 and the formula for the determinant of the Shapovalov form (Exercise 8.15) to show that

$$\sum_{j\geq 1} \operatorname{ch}((M_{\lambda})_j) = \sum_{\alpha\in R_+: (\lambda+\rho, \alpha^{\vee})\in\mathbb{Z}_{\geq 1}} \operatorname{ch}(M_{\lambda-(\lambda+\rho, \alpha^{\vee})\alpha}).$$

20.6. **The BGG theorem.** The following is the converse to Theorem 15.11.

Theorem 20.13. (Bernstein – I. Gelfand – S. Gelfand) If $L_{\mu-\rho}$ occurs in the composition series of $M_{\lambda-\rho}$ (i.e., $d_{\lambda-\rho,\mu-\rho} \neq 0$) then $\mu \leq \lambda$. Proof. It is clear that $\lambda - \mu \in Q_+$. The proof is by induction in the integer $n := (\lambda - \mu, \rho^{\vee})$. If n = 0, the statement is obvious, so we only need to justify the induction step for n > 0. Then $L_{\mu-\rho}$ occurs in $J_{\lambda-\rho} = (M_{\lambda-\rho})_1$, the degree 1 part of the Jantzen filtration of M_{λ} . Thus by the Jantzen sum formula (Exercise 20.12), $L_{\mu-\rho}$ must occur in $M_{\lambda-\rho-(\lambda,\alpha^{\vee})\alpha} = M_{s_\alpha\lambda-\rho}$ for some $\alpha \in R_+$ such that $(\lambda, \alpha^{\vee}) \in \mathbb{Z}_{\geq 1}$. By the induction assumption, we then have $\mu \leq s_\alpha \lambda$. But $s_\alpha \lambda \prec \lambda$, so we get $\mu \prec \lambda$.

Corollary 20.14. The following conditions on $\mu \leq \lambda$ are equivalent. (i) $\mu \leq \lambda$ (ii) $L_{\mu-\rho}$ occurs in $M_{\lambda-\rho}$. (iii) dim Hom $(M_{\mu-\rho}, M_{\lambda-\rho}) \neq 0$.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.