20. BGG reciprocity and BGG Theorem

20.1. A vanishing lemma for Ext groups.

Lemma 20.1. Let $X \in \mathcal{O}$ be a free $U\left(\mathfrak{n}_{-}\right)$-module. Then for any $\mu \in \mathfrak{h}^{*}$ we have

$$
\operatorname{Ext}_{\mathcal{O}}^{i}\left(X, M_{\mu}^{\vee}\right)=0, i>0
$$

Proof. Fix a projective resolution P_{\bullet} of X in \mathcal{O} and consider the complex $\operatorname{Hom}_{\mathfrak{g}}\left(P_{\bullet}, M_{\mu}^{\vee}\right)$ which computes the desired Ext groups. Since P_{i} have a weight decomposition,

$$
\operatorname{Hom}_{\mathfrak{g}}\left(P_{\bullet}, M_{\mu}^{\vee}\right)=\operatorname{Hom}_{\mathfrak{g}}\left(P_{\bullet}, \widehat{M}_{\mu}^{\vee}\right)
$$

where $\widehat{M}_{\mu}^{\vee}:=\prod_{\beta \in \mathfrak{h}^{*}} \widehat{M}_{\mu}^{\vee}[\beta]$ is the completion of M_{μ}^{\vee}. We have

$$
\widehat{M}_{\mu}^{\vee}=\operatorname{Coind}_{\mathfrak{b}_{-}}^{\mathfrak{g}}\left(\mathbb{C}_{\mu}\right):=\operatorname{Hom}_{\mathfrak{b}_{-}}\left(U(\mathfrak{g}), \mathbb{C}_{\mu}\right) \cong \operatorname{Hom}_{\mathbb{C}}\left(U\left(\mathfrak{n}_{+}\right), \mathbb{C}_{\mu}\right)
$$

Thus, Frobenius reciprocity yields

$$
\operatorname{Hom}_{\mathfrak{g}}\left(P_{\bullet}, \widehat{M}_{\mu}^{\vee}\right)=\operatorname{Hom}_{\mathfrak{b}_{-}}\left(P_{\bullet}, \mathbb{C}_{\mu}\right)
$$

By Proposition 16.6(ii), P_{i} are free $U\left(\mathfrak{n}_{-}\right)$-modules, so the exact sequence of $U\left(\mathfrak{n}_{-}\right)$-modules

$$
\ldots \rightarrow P_{1} \rightarrow P_{0} \rightarrow X \rightarrow 0
$$

is split. Thus the complex $\operatorname{Hom}_{\mathfrak{b}_{-}}\left(P_{\bullet}, \mathbb{C}_{\mu}\right)$ is exact in positive degrees, which implies the statement.
20.2. Standard filtrations. A standard (or Verma) filtration on $X \in \mathcal{O}$ is a filtration for which successive quotients are Verma modules. X is called standardly filtered if it admits a standard filtration. It is clear that every standardly filtered object X is necessarily a free $U\left(\mathfrak{n}_{-}\right)$-module.

Corollary 20.2. If X is standardly filtered then $\operatorname{Ext}_{\mathcal{O}}^{i}\left(X, M_{\mu}^{\vee}\right)=0$ for all $\mu \in \mathfrak{h}^{*}$ and $i>0$.

Proof. This follows from Lemma 20.1.
The converse also holds. In fact, we have
Theorem 20.3. X is standardly filtered if and only if

$$
\operatorname{Ext}_{\mathcal{O}}^{1}\left(X, M_{\lambda}^{\vee}\right)=0
$$

for all $\lambda \in \mathfrak{h}^{*}$.

Proof. Let E be a finite dimensional vector space, and suppose we have a short exact sequence in \mathcal{O} :

$$
0 \rightarrow K \rightarrow E \otimes M_{\lambda} \rightarrow Z \rightarrow 0
$$

with $K[\lambda]=0$.
Lemma 20.4. If $\operatorname{Ext}_{\mathcal{O}}^{1}\left(Z, M_{\mu}^{\vee}\right)=0$ for all $\mu \in \mathfrak{h}^{*}$ then $K=0$ and $Z \cong E \otimes M_{\lambda}$.

Proof. The long exact sequence of cohomology yields

$$
\ldots \rightarrow \operatorname{Hom}\left(E \otimes M_{\lambda}, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Hom}\left(K, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(Z, M_{\mu}^{\vee}\right)=0
$$

For $\lambda \neq \mu$, we have $\operatorname{Hom}\left(M_{\lambda}, M_{\mu}^{\vee}\right)=0$, so it follows that $\operatorname{Hom}\left(K, M_{\mu}^{\vee}\right)=$ 0 . But we also have $\operatorname{Hom}\left(K, M_{\lambda}^{\vee}\right)=0$, as $K[\lambda]=0$, while every nonzero submodule of M_{λ}^{\vee} contains L_{λ}. It follows that $K=0$.

Now let us prove the theorem. We only need to prove the "if" direction. We argue by induction in the length of X (with the base case $X=0$ being trivial). Let λ be a maximal weight in $P(X)$ and $E:=X[\lambda]$. Let Z be the submodule of X generated by E; it is a quotient of $E \otimes M_{\lambda}$ by a submodule K with $K[\lambda]=0$. We have a short exact sequence

$$
0 \rightarrow Z \rightarrow X \rightarrow Y \rightarrow 0
$$

Thus from the long exact sequence of cohomology we get an exact sequence

$$
\ldots \rightarrow \operatorname{Hom}\left(Z, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(Y, M_{\mu}^{\vee}\right) \rightarrow \operatorname{Ext}_{\mathcal{O}}^{1}\left(X, M_{\mu}^{\vee}\right)=0
$$

It follows that for $\mu \neq \lambda$ we have $\operatorname{Ext}_{\mathcal{O}}^{1}\left(Y, M_{\mu}^{\vee}\right)=0$, as in this case $\operatorname{Hom}\left(Z, M_{\mu}^{\vee}\right)=0\left(\right.$ since Z is a quotient of $\left.E \otimes M_{\lambda}\right)$. On the other hand, if $\mu=\lambda$ then by the argument in the proof of Lemma 20.1 we have

$$
\operatorname{Ext}_{\mathcal{O}}^{1}\left(Y, M_{\lambda}^{\vee}\right)=\operatorname{Ext}_{\mathcal{C}}^{1}\left(Y, \mathbb{C}_{\lambda}\right)
$$

where \mathcal{C} is the category of \mathfrak{h}-semisimple \mathfrak{b}_{-}-modules. But $\operatorname{Ext}_{\mathcal{C}}^{1}\left(Y, \mathbb{C}_{\lambda}\right)=$ 0 , as all weights of Y are not $>\lambda$ and hence any short exact sequence of \mathfrak{b}_{-}-modules

$$
0 \rightarrow \mathbb{C}_{\lambda} \rightarrow \widetilde{Y} \rightarrow Y \rightarrow 0
$$

canonically splits. By the induction assumption, it follows that Y is standardly filtered, so by Corollary 20.2, $\operatorname{Ext}^{i}\left(Y, M_{\mu}^{\vee}\right)=0$ for all $i \geq 1$, in particular for $i=1,2$. Thus the long exact sequence of Ext groups gives

$$
\operatorname{Ext}^{1}\left(Z, M_{\mu}^{\vee}\right)=\operatorname{Ext}^{1}\left(X, M_{\mu}^{\vee}\right)=0
$$

hence $Z=E \otimes M_{\lambda}$ by Lemma 20.4. This completes the induction step.

Corollary 20.5. (i) Every $X \in \mathcal{O}$ which is a free $U\left(\mathfrak{n}_{-}\right)$-module is standardly filtered. In particular, for any $\lambda \in \mathfrak{h}^{*}$ and finite dimensional \mathfrak{g}-module V, the module $V \otimes M_{\lambda}$ is standardly filtered.
(ii) Any projective object $P \in \mathcal{O}$ is standardly filtered.

Proof. (i) Follows from Theorem 20.3 and Lemma 20.1.
(ii) Immediate from Theorem 20.3.
20.3. BGG reciprocity. Denote by $d_{\lambda \mu}$ the multiplicity of L_{μ} in the Jordan-Hölder series of M_{λ}. Since characters of L_{μ} are linearly independent, these numbers are determined from the formula

$$
\sum_{\mu} d_{\lambda \mu} \operatorname{ch}\left(L_{\mu}\right)=\operatorname{ch}\left(M_{\lambda}\right)=\frac{e^{\lambda}}{\prod_{\alpha \in R_{+}}\left(1-e^{-\alpha}\right)}
$$

Thus the knowledge of $d_{\lambda \mu}$ is equivalent to the knowledge of the characters $\operatorname{ch}\left(L_{\lambda}\right)$.

Since by Proposition $] 20.5\left(\right.$ ii) the projective covers P_{λ} of L_{λ} are standardly filtered, we may also define the multiplicities $d_{\lambda \mu}^{*}$ of M_{μ} in P_{λ}. These are independent on the choice of the standard filtration and are determined by the formula

$$
\operatorname{ch}\left(P_{\lambda}\right)=\sum_{\mu} d_{\lambda \mu}^{*} \operatorname{ch}\left(M_{\lambda}\right)=\sum_{\mu} d_{\lambda \mu}^{*} \frac{e^{\lambda}}{\prod_{\alpha \in R_{+}}\left(1-e^{-\alpha}\right)}
$$

Theorem 20.6. (BGG reciprocity) We have $d_{\lambda \mu}^{*}=d_{\mu \lambda}$.
Proof. We compute $\operatorname{dim} \operatorname{Hom}\left(P_{\lambda}, M_{\mu}^{\vee}\right)$ in two ways. First using the standard filtration of P_{λ} and Lemma 20.1, we have $\operatorname{dim} \operatorname{Hom}\left(P_{\lambda}, M_{\mu}^{\vee}\right)=$ $d_{\lambda \mu}^{*}$. On the other hand, using that the multiplicity of L_{λ} in M_{μ}^{\vee} is $d_{\mu \lambda}$, we get $\operatorname{dim} \operatorname{Hom}\left(P_{\lambda}, M_{\mu}^{\vee}\right)=d_{\mu \lambda}$.

Let $c_{\lambda \mu}=\operatorname{dim} \operatorname{Hom}\left(P_{\lambda}, P_{\mu}\right)$ be the entries of the Cartan matrix C of \mathcal{O}. They are equal to the multiplicities of L_{λ} in P_{μ}.

Corollary 20.7. We have

$$
c_{\lambda \mu}=\sum_{\nu} d_{\nu \lambda} d_{\nu \mu}
$$

In other words, $C=D^{T} D$ where $D=\left(d_{\lambda \mu}\right)$.
Note that since D is upper triangular with respect to the partial order \leq with ones on the diagonal, it can be uniquely recovered from C by Gauss decomposition. Thus the knowledge of D is equivalent to the knowledge of C.

Example 20.8. Consider the structure of the category \mathcal{O}_{χ} for $\mathfrak{g}=$ $\mathfrak{s l}_{2}$. The only interesting case is $\chi=\chi_{\lambda+1}$ for $\lambda \in \mathbb{Z}_{\geq 0}$. Then the simple objects are $X=L_{\lambda}$ (finite dimensional) and $Y=M_{-\lambda-2}$. By Proposition 16.4, the projective cover P_{X} is just the Verma module M_{λ}, which has composition series $[X, Y]$, starting from the head X. To determine P_{Y}, consider the tensor product $P:=M_{-1} \otimes L_{\lambda+1}$. This is projective with character

$$
\operatorname{ch}(P)=\operatorname{ch}\left(M_{\lambda}\right)+\operatorname{ch}\left(M_{\lambda-2}\right)+\ldots+\operatorname{ch}\left(M_{-\lambda-2}\right)
$$

Thus denoting by Π_{λ} the projection functor to the generalized central character $\chi_{\lambda+1}$, we get that

$$
\operatorname{ch}\left(\Pi_{\lambda}(P)\right)=\operatorname{ch}\left(M_{\lambda}\right)+\operatorname{ch}\left(M_{-\lambda-2}\right)
$$

Note that $M_{-\lambda-2}$ is not projective since $\operatorname{Ext}_{\mathcal{O}}{ }_{\mathcal{O}}\left(M_{-\lambda-2}, L_{\lambda}\right) \neq 0$ (there is a nontrivial extension M_{λ}^{\vee}). Thus $\Pi_{\lambda}(P)$ is indecomposable (otherwise one of the summands in the decomposition would have to be $M_{-\lambda-2}$), i.e., $\Pi_{\lambda}(P)=P_{Y}$. Since it maps to Y and receives an injection from M_{λ}, its composition series is $[Y, X, Y]$. This is the big projective object of \mathcal{O}_{χ}. We this get for \mathcal{O}_{χ} :

$$
D=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), C=\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

We can now compute the (basic) algebra A whose module category is equivalent to \mathcal{O}_{χ}. This is the algebra $A=\operatorname{End}\left(P_{X} \oplus P_{Y}\right)$, and it has dimension $\sum_{i, j} c_{i j}=5$. The basis is formed by $1_{X}, 1_{Y}$ and morphisms $a: P_{X} \rightarrow P_{Y}, b: P_{Y} \rightarrow P_{X}$ and $a b: P_{Y} \rightarrow P_{Y}$. Moreover, we have $b a=0$. Thus the algebra A is the path algebra of the quiver with two vertices x, y with edges $a: x \rightarrow y$ and $b: y \rightarrow x$ with the only relation $b a=0$.
20.4. The duality functor. Let $\tau: \mathfrak{g} \rightarrow \mathfrak{g}$ be the Cartan involution given by $\tau\left(e_{i}\right)=f_{i}, \tau\left(f_{i}\right)=e_{i}, \tau\left(h_{i}\right)=-h_{i}$. For $X \in \mathcal{O}$ let X^{τ} be the module X twisted by τ, and $X^{\vee}=\left(X^{\tau}\right)_{\text {fin }}^{*}$, the \mathfrak{h}-finite part of $\left(X^{\tau}\right)^{*}$. The following proposition is easy:

Proposition 20.9. (i) $X^{\vee} \in \mathcal{O}$ and has the same character and composition series as X.
(ii) $\left(M_{\lambda}\right)^{\vee}=M_{\lambda}^{\vee}, L_{\lambda}^{\vee}=L_{\lambda}$.
(iii) the assignment $X \mapsto X^{\vee}$ is an involutive equivalence of categories $\mathcal{O} \rightarrow \mathcal{O}^{\mathrm{op}}$ which preserves the decomposition into $\mathcal{O}_{\chi}(S)$.

Corollary 20.10. \mathcal{O} has enough injectives, namely the injective hull of L_{λ} is P_{λ}^{\vee}.
20.5. The Jantzen filtration. It turns out that every Verma module M_{λ} carries a canonical finite filtration by submodules called the Jantzen filtration, which plays an important role in studying category \mathcal{O}. In fact, this filtration is defined much more generally, as follows.

Let k be a field and V, U be free $k[[t]]$-modules of the same rank $d<\infty$, and let $B \in \operatorname{Hom}(V, W)$ be such that $\operatorname{det} B:=\wedge^{d} B$ is nonzero. Let $V_{0}:=V / t V$. Define $V_{m} \subset V_{0}$ to be the space of all $v_{0} \in V_{0}$ such that there exists a lift $v \in V$ of v_{0} for which $B v \in t^{m} W$. It is clear that $V_{0} \supset V_{1} \supset V_{2} \supset \ldots$ with $V_{1}=\operatorname{Ker} B(0)$, and $V_{m}=0$ for some m. Thus we get a finite descending filtration $\left\{V_{j}\right\}$ of V_{0} called the Jantzen filtration attached to B.

Exercise 20.11. (i) Show that there exist unique nonnegative integers $n_{1} \leq \ldots \leq n_{d}$ such that for some bases e_{1}, \ldots, e_{d} of V and f_{1}, \ldots, f_{d} of W over $k[[t]]$ one has $B e_{i}=t^{n_{i}} f_{i}$, and that Coker $B \cong \oplus_{i=1}^{d}\left(k[t] / t^{n_{i}}\right)$ as a $k[[t]]$-module. Deduce that the order of vanishing of $\operatorname{det} B$ at $t=0$ equals $\operatorname{dim}_{k} \operatorname{Coker} B=\sum_{i=1}^{d} n_{i}$.
(ii) Suppose $\operatorname{dim} V_{j}=d_{j}$ (so $d_{0}=d$). Show that for all $j \in \mathbb{Z}_{\geq 0}$, $n_{i}=j$ if and only if $d-d_{j}<i \leq d-d_{j+1}$, and deduce the Jantzen sum formula: the order of vanishing of $\operatorname{det} B$ at $t=0$ equals $\sum_{j \geq 1} d_{j}$.
(iii) Suppose that V, W are modules over some $k[[t]]$-algebra A with $A_{0}:=A / t A$ (for example, $A=A_{0}[[t]]$ and V, W are A_{0}-modules), and B is an A-module homomorphism. Show that the Jantzen filtration of V_{0} attached to B is a filtration by A_{0}-submodules.

The Jantzen filtration on M_{λ} is now defined using the homomorphism $B: M_{\lambda(t)} \rightarrow M_{\lambda(t)}^{\vee}$ over $A_{0}:=U(\mathfrak{g})$ corresponding to the Shapovalov form, where $\lambda(t):=\lambda+t \rho$. Namely, we define it separately on each weight subspace. For example, $\left(M_{\lambda}\right)_{1}=J_{\lambda}$ is the maximal proper submodule of M_{λ}.

Exercise 20.12. (Jantzen sum formula for M_{λ}) Use the Jantzen sum formula of Exercise 20.11 and the formula for the determinant of the Shapovalov form (Exercise 8.15) to show that

$$
\sum_{j \geq 1} \operatorname{ch}\left(\left(M_{\lambda}\right)_{j}\right)=\sum_{\alpha \in R_{+}:\left(\lambda+\rho, \alpha^{\vee}\right) \in \mathbb{Z}_{\geq 1}} \operatorname{ch}\left(M_{\lambda-\left(\lambda+\rho, \alpha^{\vee}\right) \alpha}\right) .
$$

20.6. The BGG theorem. The following is the converse to Theorem 15.11.

Theorem 20.13. (Bernstein - I. Gelfand -S. Gelfand) If $L_{\mu-\rho}$ occurs in the composition series of $M_{\lambda-\rho}\left(\right.$ i.e., $\left.d_{\lambda-\rho, \mu-\rho} \neq 0\right)$ then $\mu \preceq \lambda$.

Proof. It is clear that $\lambda-\mu \in Q_{+}$. The proof is by induction in the integer $n:=\left(\lambda-\mu, \rho^{\vee}\right)$. If $n=0$, the statement is obvious, so we only need to justify the induction step for $n>0$. Then $L_{\mu-\rho}$ occurs in $J_{\lambda-\rho}=\left(M_{\lambda-\rho}\right)_{1}$, the degree 1 part of the Jantzen filtration of M_{λ}. Thus by the Jantzen sum formula (Exercise 20.12), $L_{\mu-\rho}$ must occur in $M_{\lambda-\rho-\left(\lambda, \alpha^{\vee}\right) \alpha}=M_{s_{\alpha} \lambda-\rho}$ for some $\alpha \in R_{+}$such that $\left(\lambda, \alpha^{\vee}\right) \in \mathbb{Z}_{\geq 1}$. By the induction assumption, we then have $\mu \preceq s_{\alpha} \lambda$. But $s_{\alpha} \lambda \prec \lambda$, so we get $\mu \prec \lambda$.

Corollary 20.14. The following conditions on $\mu \leq \lambda$ are equivalent.
(i) $\mu \preceq \lambda$
(ii) $L_{\mu-\rho}$ occurs in $M_{\lambda-\rho}$.
(iii) $\operatorname{dim} \operatorname{Hom}\left(M_{\mu-\rho}, M_{\lambda-\rho}\right) \neq 0$.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

