
21. Multiplicities in category O

The multiplicities dλµ are complicated in general, and the (even-
tually successful) attempt to understand them was one of the main
developments that led to creation of geometric representation theory.
These multiplicities are given by the Kazhdan-Lusztig conjecture
(1979) proved by Beilinson-Bernstein and independently by Brylinski-
Kashiwara in 1981. By now several proofs of this conjecture are known,
but they are complicated and beyond the scope of this course. How-
ever, let us give the statement of this result. To simplify the exposition,
we do so for Oχλ when λ ∈ P+; it turns out that this case captures all
the complexity of the situation, and the general case is similar.

21.1. The Hecke algebra. Even to formulate the Kazhdan-Lusztig
conjecture, we need to introduce an object which seemingly has nothing
to do with our problem - the Hecke algebra of W . Namely, recall that
W is defined by generators si, i = 1, ..., r subject to the braid relations

sisj... = sjsi..., i 6= j,

where the length of both words is mij such that aijaji = 4 cos2 π
mij

(for

ajiaij = 0, 1, 2, 3, mij = 2, 3, 4, 6), and also the relations s2
i = 1. The

same relations of course define the group algebra ZW , in which the last
relation can be written as the quadratic relation (si + 1)(si − 1) = 0.

The Hecke algebra Hq(W ) of W is defined over Z[q
1
2 , q−

1
2 ] by the

generators Ti satisfying the same braid relations

TiTj... = TjTi..., i 6= j,

and the deformed quadratic relations

(Ti + 1)(Ti − q) = 0.

For every w ∈ W we can define the element Tw = Ti1 ...Tim for
every reduced decomposition w = si1 ....sim . This is independent on the
reduced decomposition since any two of them can be related by using
only the braid relations. Moreover, it is easy to see that the elements
Tw span Hq(W ), since any non-reduced product of Ti can be expressed
via shorter products by using the braid and quadratic relations for Ti.
Moreover, we have

Proposition 21.1. Tw, w ∈ W are linearly independent, so they form
a basis of Hq(W ). Thus Hq(W ) is a free Z[q

1
2 , q−

1
2 ]-module of rank

|W |.
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Proof. Let V be the free Z[q
1
2 , q−

1
2 ]-module with basis Xw, w ∈ W .

Define a left action of the free algebra with generators Ti on V by

TiXw = Xsiw

if `(siw) = `(w) + 1 and

TiXw = (q − 1)Xw + qXsiw

if `(siw) = `(w)−1. We claim that this action factors through Hq(W ).
To show this, define a right action of the same free algebra on V by

XwTi = Xwsi

if `(wsi) = `(w) + 1 and

XwTi = (q − 1)Xw + qXwsi

if `(wsi) = `(w) − 1. It is easy to check by a direct computation that
these two actions commute:

(16) (TiXw)Tj = Ti(XwTj).

Also the elements X1Tw clearly span V . Thus to prove the relations
of Hq(W ) for the left action, it suffices to check them on X1, which is
straightforward.

Since TwX1 = Xw are linearly independent, it follows that Tw are
linearly independent, as claimed. �

Exercise 21.2. Check identity (16).

The quadratic relation for Ti implies that it is invertible in the Hecke
algebra, with inverse

T−1
i = q−1(Ti + 1− q).

These inverses satisfy the relation (T−1
i + 1)(T−1

i − q−1) = 0 (obtained
by multiplying the quadratic relation for Ti by −T−2

i q−1), and also the
braid relations. It follows that the Hecke algebra has an involutive
automorphism D that sends q

1
2 to q−

1
2 and each Ti to T−1

i . More
generally one has D(Tw) = T−1

w−1 .

21.2. The Bruhat order. Recall that the partial Bruhat order on
W is defined as follows: y ≤ w if a reduced decomposition of y can be
obtained from a reduced decomposition of w by crossing out some si;
thus y ≤ w implies that `(y) ≤ `(w), and if the equality holds then
y = w. Moreover, if `(w) = `(y) + 1 then y < w iff y = y1y2 and
w = y1siy2 for some i, where `(y) = `(y1) + `(y2). In this case we say
that w covers y, and y ≤ w iff there exists a sequence y = x0 < x1 <
... < xm = w such that xj+1 covers xj for all j (here m = `(w)− `(y)).
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Exercise 21.3. Show that if y ≤ w then for any dominant λ ∈ P ,
wλ � yλ, and the converse holds if λ is regular (i.e., Wλ = 1).

Example 21.4. For type A1 the Bruhat order is the covering relation
1 < s. For type A2 the covering relations are

1 < s1, s2 < s1s2, s2s1 < s1s2s1 = s2s1s2.

21.3. Kazhdan-Lusztig polynomials.

Theorem 21.5. There exist unique polynomials Py,w ∈ Z[q] such that
(a) Py,w = 0 unless y ≤ w, and Pw,w = 1;

(b) If y < w then Py,w has degree at most `(w)−`(y)−1
2

;
(c) The elements

Cw := q−
`(w)
2

∑
y

Py,w(q)Ty ∈ Hq(W )

satisfy D(Cw) = Cw.

Proof. Let y = si1 ...sil be a reduced decomposition of y. Then we have

T−1
y−1 =

l∏
j=1

T−1
ij

= q−`(y)

l∏
j=1

(Tij + 1− q).

Thus there exist unique polynomials Rx,y ∈ Z[q] such that

D(Ty) = T−1
y−1 =

∑
x

q−`(x)Rx,y(q
−1)Tx,

withRx,y = 0 unless x = y (in which caseRx,y(q) = 1) or `(x) < `(y). It
is easy to check that Rx,y can be computed using the following recursive
rules: for a simple reflection s,

Rx,y = Rsx,sy, sx < x, sy < y;

Rx,y = (q − 1)Rx,sy + qRsx,sy, sx > x, sy < y.

(we have Rx,1 = δx,1 and for y 6= 1 there is always i such that siy < y).
This implies by induction in `(y) that Rx,y = 0 unless x ≤ y. Indeed, if
x′ := sx < x, y′ := sy < y then Rx,y = Rx′,y′ , so if this is nonzero then
by the induction assumption x′ ≤ y′, hence sx′ ≤ sy′, i.e., x ≤ y. On
the other hand, if sx > x, sy < y and Rx,y 6= 0 then either Rx,sy 6= 0
or Rsx,sy 6= 0, hence either x ≤ sy or sx ≤ sy. But each one of the
inequalities x ≤ sy, sx ≤ sy implies x ≤ y.

We also see by induction that degRx,y ≤ `(y)− `(x).
Now it is easy to compute that the condition that D(Cw) = Cw is

equivalent to the recursion

q
`(w)−`(x)

2 Px,w(q−1)− q
`(x)−`(w)

2 Px,w(q) =
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∑
x<y

(−1)`(x)+`(y)q
−`(x)+2`(y)−`(w)

2 Rx,y(q
−1)Py,w(q).

We can now see that this recursion has a unique solution Px,w with
required properties, as the two terms on the left are supposed to be
polynomials in q

1
2 and q−

1
2 without constant terms. �

The elements Cw form a basis of the Hecke algebra called the Kazhdan-
Lusztig basis, and the polynomials Py,w are called the Kazhdan-
Lusztig polynomials.

21.4. Kazhdan-Lusztig conjecture. The Kazhdan-Lusztig conjec-
ture (now a theorem) is:

Theorem 21.6. (i) Py,w has non-negative coefficients.
(ii) The multiplicity [My•λ : Lw•λ] equals Py,w(1).

The polynomials Py,w have the property that if y ≤ w then Py,w(0) =
1, so if in addition `(w)− `(y) ≤ 2 then Py,w(q) = 1 (indeed, it has to
be a polynomial of degree 0). Also if w = w0 then Py,w = 1 for all y.

Example 21.7. For type A2 (g = sl3) we have the following de-
compositions in the Grothendieck group of Oχλ (where we abbreviate
si1 ...sik · λ as i1...ik:

M121 = L121

M12 = L12 + L121

M21 = L21 + L121

M1 = L1 + L12 + L21 + L121

M2 = L2 + L12 + L21 + L121

M∅ = L∅ + L1 + L2 + L12 + L21 + L121.

Exercise 21.8. Compute the Cartan matrix of the category Oχλ for
g = sl3 for regular weights λ.
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