22. Projective functors - I

22.1. Projective functors and projective θ-functors. Let $\operatorname{Rep}(\mathfrak{g})_{f}$ be the category of \mathfrak{g}-modules in which the center $Z(\mathfrak{g})$ of $U(\mathfrak{g})$ acts through its finite dimensional quotient. We have

$$
\operatorname{Rep}(\mathfrak{g})_{f}=\oplus_{\theta \in \mathfrak{h}^{*} / W} \operatorname{Rep}(\mathfrak{g})_{\theta},
$$

where $\operatorname{Rep}(\mathfrak{g})_{\theta}$ is the category of modules with generalized central character θ. Recall that for a finite dimensional \mathfrak{g}-module V we have an exact functor $F_{V}: \operatorname{Rep}(\mathfrak{g}) \rightarrow \operatorname{Rep}(\mathfrak{g})$ given by $X \mapsto V \otimes X$ (e.g., $F_{\mathbb{C}}=\mathrm{Id}$), and that if M has central character χ_{λ} then

$$
F_{V}(M)=\left(V \otimes U_{\chi_{\lambda}}\right) \otimes_{U_{\chi_{\lambda}}} M .
$$

Recall also that the central characters occurring in the left \mathfrak{g}-module $V \otimes U_{\chi_{\lambda}}$ are $\chi_{\lambda+\beta}$ for $\beta \in P(V)$ (Corollary 18.10); thus the central characters occurring in $F_{V}(M)$ belong to the same set. It follows that

$$
F_{V}\left(\operatorname{Rep}(\mathfrak{g})_{\chi_{\lambda}}\right) \subset \oplus_{\beta \in P(V)} \operatorname{Rep}(\mathfrak{g})_{\chi_{\lambda+\beta}},
$$

hence F_{V} maps $\operatorname{Rep}(\mathfrak{g})_{f}$ to itself. Finally note that $F_{V^{*}}$ is both right and left adjoint to F_{V}.

Definition 22.1. A projective functor is an endofunctor of $\operatorname{Rep}(\mathfrak{g})_{f}$ which is isomorphic to a direct summand in F_{V} for some V.

Example 22.2. For $\theta \in \mathfrak{h}^{*} / W$ let $\Pi_{\theta}: \operatorname{Rep}(\mathfrak{g})_{f} \rightarrow \operatorname{Rep}(\mathfrak{g})_{\theta}$ be the projection. Then Id $=\oplus_{\theta \in \mathfrak{h}^{*} / W} \Pi_{\theta}$, hence Π_{θ} is a projective functor.

It is easy to see that projective functors form a category which is closed under taking compositions, direct summands and finite direct sums, and every projective functor admits a left and right adjoint which are also projective functors (we'll see that they are isomorphic). It is also clear that every projective functor F has a decomposition

$$
F=\oplus_{\theta, \chi \in \mathfrak{h}^{*} / W} \Pi_{\chi} \circ F \circ \Pi_{\theta} .
$$

Finally, projective functors obviously map category \mathcal{O} to itself and by Proposition 16.5(i) send projectives of this category to projectives.

For a central character $\theta: Z(\mathfrak{g}) \rightarrow \mathbb{C}$ let $\operatorname{Rep}(\mathfrak{g})_{\theta}^{n} \subset \operatorname{Rep}(\mathfrak{g})_{\theta}$ be the subcategory of modules annihilated by $(\operatorname{Ker} \theta)^{n}$. In other words, $\operatorname{Rep}(\mathfrak{g})_{\theta}^{n}$ is the category of left modules over the algebra

$$
U_{\theta}^{(n)}:=U(\mathfrak{g}) /(\operatorname{Ker} \theta)^{n} U(\mathfrak{g})
$$

Every $M \in \operatorname{Rep}(\mathfrak{g})_{\theta}$ is the nested union of submodules $M_{n} \subset M$ of elements killed by $(\operatorname{Ker} \theta)^{n}$, and $M_{n} \in \operatorname{Rep}(\mathfrak{g})_{\theta}^{n}$. Note that $U_{\theta}^{(1)}=U_{\theta}$ and $\operatorname{Rep}(\mathfrak{g})_{\theta}^{1}$ is the category of modules with central character θ.

For a projective functor F denote by $F(\theta)$ the restriction of F to $\operatorname{Rep}(\mathfrak{g})_{\theta}^{1}$.

Definition 22.3. A projective θ-functor is a direct summand in $F_{V}(\theta)$.

For example, if F is a projective functor then $F(\theta)$ is a projective θ-functor.

Theorem 22.4. Let F_{1}, F_{2} be projective θ-functors for $\theta=\chi_{\lambda}$. Let

$$
i_{\lambda}: \operatorname{Hom}\left(F_{1}, F_{2}\right) \rightarrow \operatorname{Hom}\left(F_{1}\left(M_{\lambda-\rho}\right), F_{2}\left(M_{\lambda-\rho}\right)\right)
$$

Then i_{λ} is an isomorphism.
Proof. It suffices to assume $F_{j}=F_{V_{j}}(\theta), j=1,2$. Let $V=V_{1}^{*} \otimes V_{2}$. Then $\operatorname{Hom}\left(F_{1}, F_{2}\right)=\operatorname{Hom}\left(\operatorname{Id}(\theta), F_{V}(\theta)\right)$ and

$$
\operatorname{Hom}\left(F_{1}\left(M_{\lambda-\rho}\right), F_{2}\left(M_{\lambda-\rho}\right)\right)=\operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda-\rho}, V \otimes M_{\lambda-\rho}\right)
$$

Thus it suffices to show that the natural map

$$
i_{\lambda}: \operatorname{Hom}\left(\operatorname{Id}(\theta), F_{V}(\theta)\right) \rightarrow \operatorname{Hom}_{\mathfrak{g}}\left(M_{\lambda-\rho}, V \otimes M_{\lambda-\rho}\right)
$$

is an isomorphism.
Recall that for associative unital algebras A, B, a right exact functor $F: A-\bmod \rightarrow B-\bmod$ has the form $F(X)=F(A) \otimes_{A} X$, where $F(A)$ is the corresponding (B, A)-bimodule. Thus if F_{1}, F_{2} are two such functors then $\operatorname{Hom}\left(F_{1}, F_{2}\right) \cong \operatorname{Hom}_{(B, A)-\operatorname{bimod}}\left(F_{1}(A), F_{2}(A)\right)$. Applying this to $A=U_{\theta}$ and $B=U(\mathfrak{g})$, we get

$$
\operatorname{Hom}\left(\operatorname{Id}(\theta), F_{V}(\theta)\right)=\operatorname{Hom}_{\left(U(\mathfrak{g}), U_{\theta}\right)-\operatorname{bimod}}\left(U_{\theta}, V \otimes U_{\theta}\right)=\left(V \otimes U_{\theta}\right)^{\mathfrak{g}_{\mathrm{ad}}}
$$

Moreover, upon this identification the map i_{λ} becomes the natural map

$$
i_{\lambda}:\left(V \otimes U_{\chi_{\lambda}}\right)^{\mathfrak{g}_{\mathrm{ad}}} \rightarrow \operatorname{Hom}\left(M_{\lambda-\rho}, V \otimes M_{\lambda-\rho}\right)^{\mathfrak{g}_{\mathrm{ad}}}
$$

But this map is an isomorphism by the Duflo-Joseph theorem, as it is obtained by restricting the Duflo-Joseph isomorphism

$$
U_{\chi_{\lambda}} \cong \operatorname{Hom}_{\text {fin }}\left(M_{\lambda-\rho}, M_{\lambda-\rho}\right)
$$

to the multiplicity space of V^{*}.

22.2. Lifting projective θ-functors.

Proposition 22.5. (i) If F_{1}, F_{2} are projective functors then every morphism $\phi: F_{1}(\theta) \rightarrow F_{2}(\theta)$ lifts to a morphism $\widehat{\phi}:\left.\left.F_{1}\right|_{\operatorname{Rep}(\mathfrak{g})_{\theta}} \rightarrow F_{2}\right|_{\operatorname{Rep}(\mathfrak{g})_{\theta}}$. (ii) If $F_{1}=F_{2}$ and $\phi^{2}=\phi$ then we can choose $\widehat{\phi}$ so that $\widehat{\phi}^{2}=\widehat{\phi}$.
(iii) If ϕ is an isomorphism then so is $\widehat{\phi}$.

Proof. (i) It suffices to show that there exist morphisms

$$
\phi_{n}:\left.\left.F_{1}\right|_{\operatorname{Rep}(\mathfrak{g})_{\theta}^{n}} \rightarrow F_{2}\right|_{\operatorname{Rep}(\mathfrak{g})_{\theta}^{n}}
$$

such that ϕ_{n} restricts to ϕ_{n-1} and $\phi_{1}=\phi$; then $\widehat{\phi}$ is the projective limit of ϕ_{n}. As before, we may assume without loss of generality that $F_{1}=\mathrm{Id}$ and $F_{2}=F_{V}$. As explained in the proof of Theorem 22.4, we have

$$
\begin{gathered}
\operatorname{Hom}\left(\left.F_{1}\right|_{\operatorname{Rep}(\mathfrak{g})_{\theta}^{n}},\left.F_{2}\right|_{\operatorname{Rep}(\mathfrak{g})_{\theta}^{n}}\right)= \\
\operatorname{Hom}_{\left(U(\mathfrak{g}), U_{\theta}^{(n)}\right) \text {-bimod }}\left(U_{\theta}^{(n)}, V \otimes U_{\theta}^{(n)}\right)=\left(V \otimes U_{\theta}^{(n)}\right)^{\mathfrak{g}_{\text {ad }}} .
\end{gathered}
$$

This implies the statement, as the map $U_{\theta}^{(n)} \rightarrow U_{\theta}^{(n-1)}$ is onto and $V \otimes U_{\theta}^{(n)}$ is a semisimple $\mathfrak{g}_{\text {ad }}$-module.
(ii) Let F be a direct summand in F_{V}. Let $p: F_{V} \rightarrow F_{V}$ be the projection to F. Let $A:=\operatorname{End}(F(\theta))=p \operatorname{End}\left(F_{V}(\theta)\right) p$ and $\phi \in A$. Let $F^{n}(\theta)$ be the restriction of F to $\operatorname{Rep}(\mathfrak{g})_{\theta}^{n}$, so that $F^{1}(\theta)=F(\theta)$. We have

$$
A_{n}:=\operatorname{End}\left(F^{n}(\theta)\right)=p \operatorname{End}\left(F_{V}^{n}(\theta)\right) p=p\left(\operatorname{EndV} \otimes U_{\theta}^{(n)}\right)^{\mathfrak{g}_{\mathrm{ad}}} p
$$

So we have a chain of surjective homomorphisms

$$
\ldots \rightarrow A_{n} \rightarrow A_{n-1} \rightarrow \ldots \rightarrow A_{1}=A
$$

and our job is to show that ϕ admits a chain of lifts

$$
\ldots \mapsto \phi_{n} \mapsto \phi_{n-1} \mapsto \ldots \mapsto \phi_{1}=\phi
$$

such that $\phi_{n} \in A_{n}$ and $\phi_{n}^{2}=\phi_{n}$.
To this end, note that the kernel I of the surjection $A_{n} \rightarrow A_{n-1}$ satisfies $I^{2}=0$, so I is a left and right module over $A_{n} / I=A_{n-1}$. So we can construct the desired chain of lifts by induction in n as follows. Pick any lift e_{*} of $e_{0}:=\phi_{n-1}$. Then $e_{*}-e_{*}^{2}=a \in I$, and $e_{0} a=a e_{0}$. We look for an idempotent e in the form $e=e_{*}+b, b \in I$. The equation $e^{2}=e$ is then equivalent to

$$
e_{0} b+b e_{0}-b=a
$$

Set $b=\left(2 e_{0}-1\right) a$. Then

$$
e_{0} b+b e_{0}-b=2 e_{0} a+\left(1-2 e_{0}\right) a=a,
$$

as desired. Now we can set $\phi_{n}=e$.
(iii) If $\phi: F_{1}(\theta) \rightarrow F_{2}(\theta)$ is an isomorphism then it has the inverse $\psi: F_{2}(\theta) \rightarrow F_{1}(\theta)$ such that $\phi \circ \psi=1, \psi \circ \phi=1$. Let $\widehat{\phi}=\left(\phi_{n}\right)$ be a lift of ϕ. Our job is to show that ϕ_{n} are isomorphisms for all n, which yields (iii). We prove it by induction in n.

The base is trivial, so we just need to do the induction step from $n-1$ to n. By the induction assumption, ϕ_{n-1} is invertible with $\phi_{n-1}^{-1}=\psi_{n-1}$.

Let ψ_{n} be a lift of ψ_{n-1} and consider the composition $\psi_{n} \circ \phi_{n}$ in the corresponding algebra A_{n}. Let I be the kernel of the map $A_{n} \rightarrow A_{n-1}$. Then $\psi_{n} \circ \phi_{n}=1+a$ where $a \in I$. Since $I^{2}=0$, setting $\psi_{n}^{\prime}:=(1-a) \circ \psi_{n}$, we get $\psi_{n}^{\prime} \circ \phi_{n}=1$. Similarly we can construct $\psi_{n}^{\prime \prime}$ such that $\phi_{n} \circ \psi_{n}^{\prime \prime}=1$. Thus $\psi_{n}^{\prime}=\psi_{n}^{\prime \prime}$ is the inverse of ϕ_{n}. This completes the induction step.

Corollary 22.6. (i) Let F_{1}, F_{2} be projective functors. Then: any isomorphism $F_{1}\left(M_{\lambda-\rho}\right) \cong F_{2}\left(M_{\lambda-\rho}\right)$ lifts to an isomorphism

$$
\left.\left.F_{1}\right|_{\operatorname{Rep}(\mathfrak{g})_{\chi_{\lambda}}} \rightarrow F_{2}\right|_{\operatorname{Rep}(\mathfrak{g})_{\chi_{\lambda}}} ;
$$

(ii) Let F be a projective functor. Then any decomposition $F\left(M_{\lambda-\rho}\right)=$ $\oplus_{i} M_{i}$ can be lifted to a decomposition $F=\oplus_{i} F_{i}$ where F_{i} are projective functors and $F_{i}\left(M_{\lambda-\rho}\right)=M_{i}$;
(iii) Every projective θ-functor is of the form $F(\theta)$ for a projective functor F.

Proof. (i) follows from Proposition 22.5(i),(iii) and Theorem 22.4.
(ii) follows from Proposition 22.5(ii).

To prove (iii), let H be a projective θ-functor, so $H \oplus H^{\prime}=F_{V}(\theta)$. Thus $H\left(M_{\lambda-\rho}\right) \oplus H^{\prime}\left(M_{\lambda-\rho}\right)=F_{V}\left(M_{\lambda-\rho}\right)$. So by (ii) there is a projective functor F with $F(\theta)\left(M_{\lambda-\rho}\right) \cong F\left(M_{\lambda-\rho}\right) \cong H\left(M_{\lambda-\rho}\right)$. Thus $H \cong F(\theta)$ by Theorem 22.4.

22.3. Decomposition of projective functors.

Proposition 22.7. (i) Each projective functor F is a direct sum of indecomposable projective functors. Moreover, for $F \circ \Pi_{\theta}$ this sum is finite.
(ii) If $F=F \circ \Pi_{\chi_{\lambda}}$ for dominant λ is an indecomposable projective functor then $F\left(M_{\lambda-\rho}\right)=P_{\mu-\rho}$ for some $\mu \in \mathfrak{h}^{*}$.

Proof. (i) We have $F=\oplus_{\theta \in \mathfrak{h}^{*} / W} F \circ \Pi_{\theta}$, so it suffices to show the statement for $F \circ \Pi_{\theta}$. Let $\theta=\chi_{\lambda}$, and consider $F \circ \Pi_{\theta}\left(M_{\lambda-\rho}\right) \in \mathcal{O}$. Let us write this object as a finite direct sum of indecomposables, $\oplus_{i=1}^{N} M_{i}$. Then by Corollary 22.6(ii) we get a decomposition $F \circ \Pi_{\theta}=\oplus_{i=1}^{N} F_{i}$, and all F_{i} are indecomposable.
(ii) Since F is indecomposable and $M_{\lambda-\rho}$ is projective, $F\left(M_{\lambda-\rho}\right)$ is indecomposable and projective, so the statement follows.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

