
22. Projective functors - I

22.1. Projective functors and projective θ-functors. Let Rep(g)f
be the category of g-modules in which the center Z(g) of U(g) acts
through its finite dimensional quotient. We have

Rep(g)f = ⊕θ∈h∗/W Rep(g)θ,

where Rep(g)θ is the category of modules with generalized central char-
acter θ. Recall that for a finite dimensional g-module V we have an
exact functor FV : Rep(g) → Rep(g) given by X 7→ V ⊗ X (e.g.,
FC = Id), and that if M has central character χλ then

FV (M) = (V ⊗ Uχλ)⊗Uχλ M.

Recall also that the central characters occurring in the left g-module
V ⊗ Uχλ are χλ+β for β ∈ P (V ) (Corollary 18.10); thus the central
characters occurring in FV (M) belong to the same set. It follows that

FV (Rep(g)χλ) ⊂ ⊕β∈P (V ) Rep(g)χλ+β ,

hence FV maps Rep(g)f to itself. Finally note that FV ∗ is both right
and left adjoint to FV .

Definition 22.1. A projective functor is an endofunctor of Rep(g)f
which is isomorphic to a direct summand in FV for some V .

Example 22.2. For θ ∈ h∗/W let Πθ : Rep(g)f → Rep(g)θ be the
projection. Then Id = ⊕θ∈h∗/WΠθ, hence Πθ is a projective functor.

It is easy to see that projective functors form a category which is
closed under taking compositions, direct summands and finite direct
sums, and every projective functor admits a left and right adjoint which
are also projective functors (we’ll see that they are isomorphic). It is
also clear that every projective functor F has a decomposition

F = ⊕θ,χ∈h∗/WΠχ ◦ F ◦ Πθ.

Finally, projective functors obviously map category O to itself and by
Proposition 16.5(i) send projectives of this category to projectives.

For a central character θ : Z(g) → C let Rep(g)nθ ⊂ Rep(g)θ be
the subcategory of modules annihilated by (Kerθ)n. In other words,
Rep(g)nθ is the category of left modules over the algebra

U
(n)
θ := U(g)/(Kerθ)nU(g).

Every M ∈ Rep(g)θ is the nested union of submodules Mn ⊂ M of

elements killed by (Kerθ)n, and Mn ∈ Rep(g)nθ . Note that U
(1)
θ = Uθ

and Rep(g)1
θ is the category of modules with central character θ.
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For a projective functor F denote by F (θ) the restriction of F to
Rep(g)1

θ.

Definition 22.3. A projective θ-functor is a direct summand in
FV (θ).

For example, if F is a projective functor then F (θ) is a projective
θ-functor.

Theorem 22.4. Let F1, F2 be projective θ-functors for θ = χλ. Let

iλ : Hom(F1, F2)→ Hom(F1(Mλ−ρ), F2(Mλ−ρ)).

Then iλ is an isomorphism.

Proof. It suffices to assume Fj = FVj(θ), j = 1, 2. Let V = V ∗1 ⊗ V2.
Then Hom(F1, F2) = Hom(Id(θ), FV (θ)) and

Hom(F1(Mλ−ρ), F2(Mλ−ρ)) = Homg(Mλ−ρ, V ⊗Mλ−ρ).

Thus it suffices to show that the natural map

iλ : Hom(Id(θ), FV (θ))→ Homg(Mλ−ρ, V ⊗Mλ−ρ)

is an isomorphism.
Recall that for associative unital algebras A,B, a right exact functor

F : A − mod → B − mod has the form F (X) = F (A) ⊗A X, where
F (A) is the corresponding (B,A)-bimodule. Thus if F1, F2 are two such
functors then Hom(F1, F2) ∼= Hom(B,A)−bimod(F1(A), F2(A)). Applying
this to A = Uθ and B = U(g), we get

Hom(Id(θ), FV (θ)) = Hom(U(g),Uθ)−bimod(Uθ, V ⊗ Uθ) = (V ⊗ Uθ)gad .

Moreover, upon this identification the map iλ becomes the natural map

iλ : (V ⊗ Uχλ)gad → Hom(Mλ−ρ, V ⊗Mλ−ρ)
gad .

But this map is an isomorphism by the Duflo-Joseph theorem, as it is
obtained by restricting the Duflo-Joseph isomorphism

Uχλ
∼= Homfin(Mλ−ρ,Mλ−ρ)

to the multiplicity space of V ∗. �

22.2. Lifting projective θ-functors.

Proposition 22.5. (i) If F1, F2 are projective functors then every mor-

phism φ : F1(θ)→ F2(θ) lifts to a morphism φ̂ : F1|Rep(g)θ → F2|Rep(g)θ .

(ii) If F1 = F2 and φ2 = φ then we can choose φ̂ so that φ̂2 = φ̂.

(iii) If φ is an isomorphism then so is φ̂.
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Proof. (i) It suffices to show that there exist morphisms

φn : F1|Rep(g)nθ
→ F2|Rep(g)nθ

such that φn restricts to φn−1 and φ1 = φ; then φ̂ is the projective
limit of φn. As before, we may assume without loss of generality that
F1 = Id and F2 = FV . As explained in the proof of Theorem 22.4, we
have

Hom(F1|Rep(g)nθ
, F2|Rep(g)nθ

) =

Hom
(U(g),U

(n)
θ )−bimod

(U
(n)
θ , V ⊗ U (n)

θ ) = (V ⊗ U (n)
θ )gad .

This implies the statement, as the map U
(n)
θ → U

(n−1)
θ is onto and

V ⊗ U (n)
θ is a semisimple gad-module.

(ii) Let F be a direct summand in FV . Let p : FV → FV be the
projection to F . Let A := End(F (θ)) = pEnd(FV (θ))p and φ ∈ A. Let
F n(θ) be the restriction of F to Rep(g)nθ , so that F 1(θ) = F (θ). We
have

An := End(F n(θ)) = pEnd(F n
V (θ))p = p(EndV ⊗ U (n)

θ )gadp.

So we have a chain of surjective homomorphisms

...→ An → An−1 → ...→ A1 = A

and our job is to show that φ admits a chain of lifts

... 7→ φn 7→ φn−1 7→ ... 7→ φ1 = φ

such that φn ∈ An and φ2
n = φn.

To this end, note that the kernel I of the surjection An → An−1

satisfies I2 = 0, so I is a left and right module over An/I = An−1. So
we can construct the desired chain of lifts by induction in n as follows.
Pick any lift e∗ of e0 := φn−1. Then e∗−e2

∗ = a ∈ I, and e0a = ae0. We
look for an idempotent e in the form e = e∗ + b, b ∈ I. The equation
e2 = e is then equivalent to

e0b+ be0 − b = a.

Set b = (2e0 − 1)a. Then

e0b+ be0 − b = 2e0a+ (1− 2e0)a = a,

as desired. Now we can set φn = e.
(iii) If φ : F1(θ) → F2(θ) is an isomorphism then it has the inverse

ψ : F2(θ) → F1(θ) such that φ ◦ ψ = 1, ψ ◦ φ = 1. Let φ̂ = (φn) be a
lift of φ. Our job is to show that φn are isomorphisms for all n, which
yields (iii). We prove it by induction in n.

The base is trivial, so we just need to do the induction step from n−1
to n. By the induction assumption, φn−1 is invertible with φ−1

n−1 = ψn−1.
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Let ψn be a lift of ψn−1 and consider the composition ψn ◦ φn in the
corresponding algebra An. Let I be the kernel of the map An → An−1.
Then ψn◦φn = 1+a where a ∈ I. Since I2 = 0, setting ψ′n := (1−a)◦ψn,
we get ψ′n◦φn = 1. Similarly we can construct ψ′′n such that φn◦ψ′′n = 1.
Thus ψ′n = ψ′′n is the inverse of φn. This completes the induction
step. �

Corollary 22.6. (i) Let F1, F2 be projective functors. Then: any iso-
morphism F1(Mλ−ρ) ∼= F2(Mλ−ρ) lifts to an isomorphism

F1|Rep(g)χλ
→ F2|Rep(g)χλ

;

(ii) Let F be a projective functor. Then any decomposition F (Mλ−ρ) =
⊕iMi can be lifted to a decomposition F = ⊕iFi where Fi are projective
functors and Fi(Mλ−ρ) = Mi;

(iii) Every projective θ-functor is of the form F (θ) for a projective
functor F .

Proof. (i) follows from Proposition 22.5(i),(iii) and Theorem 22.4.
(ii) follows from Proposition 22.5(ii).
To prove (iii), let H be a projective θ-functor, so H ⊕H ′ = FV (θ).

Thus H(Mλ−ρ)⊕H ′(Mλ−ρ) = FV (Mλ−ρ). So by (ii) there is a projective
functor F with F (θ)(Mλ−ρ) ∼= F (Mλ−ρ) ∼= H(Mλ−ρ). Thus H ∼= F (θ)
by Theorem 22.4. �

22.3. Decomposition of projective functors.

Proposition 22.7. (i) Each projective functor F is a direct sum of
indecomposable projective functors. Moreover, for F ◦ Πθ this sum is
finite.

(ii) If F = F ◦ Πχλ for dominant λ is an indecomposable projective
functor then F (Mλ−ρ) = Pµ−ρ for some µ ∈ h∗.

Proof. (i) We have F = ⊕θ∈h∗/WF ◦ Πθ, so it suffices to show the
statement for F ◦Πθ. Let θ = χλ, and consider F ◦Πθ(Mλ−ρ) ∈ O. Let
us write this object as a finite direct sum of indecomposables, ⊕Ni=1Mi.
Then by Corollary 22.6(ii) we get a decomposition F ◦ Πθ = ⊕Ni=1Fi,
and all Fi are indecomposable.

(ii) Since F is indecomposable and Mλ−ρ is projective, F (Mλ−ρ) is
indecomposable and projective, so the statement follows. �
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