23. Projective functors - II

23.1. The Grothendieck group of \mathcal{O}. The Grothendieck group $K(\mathcal{O})$ of \mathcal{O} is freely spanned by the classes of simple modules $\left[L_{\lambda-\rho}\right.$] or, more conveniently, by the classes of Verma modules $\left[M_{\lambda-\rho}\right]$, which we'll denote δ_{λ}; so it is a basis of $K(\mathcal{O})$. Put an inner product on $K(\mathcal{O})$ by declaring this basis to be orthonormal. Note that if P is projective then

$$
([P],[M])=\operatorname{dim} \operatorname{Hom}(P, M) .
$$

Indeed, in this case $\operatorname{dim} \operatorname{Hom}(P, M)$ is a linear function of $[M]$, and for $M=L_{\mu}$ by the BGG reciprocity we have:

$$
\operatorname{dim} \operatorname{Hom}\left(P_{\lambda}, M_{\mu}\right)=d_{\mu \lambda}=d_{\lambda \mu}^{*}=\left(\sum_{\nu} d_{\lambda \nu}^{*} \delta_{\nu+\rho}, \delta_{\mu+\rho}\right)=\left(\left[P_{\lambda}\right],\left[M_{\mu}\right]\right)
$$

Since every projective functor F is exact, it defines an endomorphism $[F]$ of $K(\mathcal{O})$. For example,

$$
\left[F_{V}\right] \delta_{\lambda}=\sum_{\beta} m_{V}(\beta) \delta_{\lambda+\beta},
$$

where $m_{V}(\beta)$ is the weight multiplicity of β in V. Clearly $\left[F_{1} \oplus F_{2}\right]=$ $\left[F_{1}\right]+\left[F_{2}\right]$ and $\left[F_{1} \circ F_{2}\right]=\left[F_{1}\right]\left[F_{2}\right]$.

Theorem 23.1. (i) If F_{1}, F_{2} are projective functors with $\left[F_{1}\right]=\left[F_{2}\right]$ then $F_{1} \cong F_{2}$.
(ii) If $\left(F, F^{\vee}\right)$ are an adjoint pair of projective functors then $[F]$ is adjoint to $\left[F^{\vee}\right]$ under the inner product on $K(\mathcal{O})$.
(iii) For a projective functor F, its left and right adjoint are isomorphic.

Proof. (i) By Corollary 22.6, to prove (i), it suffices to show that

$$
F_{1}\left(M_{\lambda-\rho}\right) \cong F_{2}\left(M_{\lambda-\rho}\right)
$$

for all dominant λ. These objects are projective, so it is enough to check that they have the same character (or define the same element of $K(\mathcal{O})$). This implies the claim.
(ii) We need to show that $([F] x, y)=\left(x,\left[F^{\vee}\right] y\right)$. It suffices to take $x=[P]$ for projective P and $y=[M]$. Then, since $F(P)$ is projective, we have

$$
\begin{gathered}
([F][P],[M])=([F(P)],[M])=\operatorname{dim} \operatorname{Hom}(F(P), M)= \\
\operatorname{dim} \operatorname{Hom}\left(P, F^{\vee}(M)\right)=\left([P],\left[F^{\vee}(M)\right]\right)=\left([P],\left[F^{\vee}\right][M]\right),
\end{gathered}
$$

as claimed.
(iii) follows from (i),(ii).
23.2. W-invariance. We have an action of the Weyl group W on $K(\mathcal{O})$ by $w \delta_{\lambda}:=\delta_{w \lambda}$.

Theorem 23.2. If F is a projective functor then $[F]$ commutes with W on $K(\mathcal{O})$.

Proof. We may assume that $F=\Pi_{\chi} \circ F \circ \Pi_{\theta}$ for $\chi, \theta \in \mathfrak{h}^{*} / W$ and F is indecomposable. Let λ be a dominant weight such that $\theta=\chi_{\lambda}$. Define

$$
S=\left\{\mu \in \lambda+P: \chi_{\mu}=\chi\right\} .
$$

Let us say that λ dominates χ if for every $\mu \in S$ we have $\lambda-\mu \in P_{+}$.
Lemma 23.3. When λ dominates χ then
(i) Theorem 23.2 holds;
(ii) For each $\mu \in S$ there exists an indecomposable projective functor F_{μ} sending $M_{\lambda-\rho}$ to $P_{\mu-\rho}$.
Proof. (i) For a finite dimensional \mathfrak{g}-module V, let $G_{V}:=\Pi_{\chi} \circ F_{V} \circ \Pi_{\theta}$. Since the character of V is W-invariant, $\left[F_{V}\right]$ commutes with W, hence so does $\left[G_{V}\right]$. Thus its suffices to show that $[F]$ is an integer linear combination of $\left[G_{V}\right]$ for various V.

By Proposition 22.7(ii), $F\left(M_{\lambda-\rho}\right)=P_{\mu-\rho}$, where $\mu \in S$. Let $\beta:=$ $\lambda-\mu$. By our assumption, $\beta \in P_{+}$. Define $n(\beta):=\left(\beta, 2 \rho^{\vee}\right)$, a nonnegative integer. We will prove the required statement by induction in $n(\beta)$.

The base of induction is $n(\beta)=0$, hence $\beta=0$ and $\mu=\lambda$. So $F\left(M_{\lambda-\rho}\right)=P_{\lambda-\rho}=M_{\lambda-\rho}$. This implies that $F=\Pi_{\theta}$, so $[F]$ is clearly commutes with W.

So it remains to justify the induction step. Let $L:=L_{\beta}^{*}$, a finite dimensional \mathfrak{g}-module. Consider the decomposition of the functor G_{L} into indecomposables (which we have shown to exist in Proposition 22.7(ii)): $G_{L}=\oplus_{j} F_{\nu_{j}}$, where $\nu_{j} \in S$ and $F_{\nu_{j}}\left(M_{\lambda-\rho}\right)=P_{\nu_{j}-\rho}$ (this direct sum may contain repetitions). So $G_{L}\left(M_{\lambda-\rho}\right)=\oplus_{j} P_{\nu_{j}-\rho}$. Thus

$$
\left[G_{L}\right] \delta_{\lambda}=\sum_{j, \gamma} d_{\nu_{j}, \gamma}^{*} \delta_{\gamma}=\sum_{j, \gamma} d_{\gamma, \nu_{j}} \delta_{\gamma}=\sum_{j} \delta_{\nu_{j}}+\sum_{j, \gamma>\nu_{j}} d_{\gamma, \nu_{j}} \delta_{\gamma} .
$$

On the other hand,

$$
\begin{gathered}
{\left[G_{L}\right] \delta_{\lambda}=\left[G_{L}\left(M_{\lambda-\rho}\right)\right]=\left[\Pi_{\chi}\left(L \otimes M_{\lambda-\rho}\right)\right]=\left[\Pi_{\chi}\right] \sum_{\eta} m_{L}(\eta) \delta_{\lambda+\eta}=} \\
{\left[\Pi_{\chi}\right] \sum_{\eta} m_{L_{\beta}}(\eta) \delta_{\lambda-\eta}=\sum_{\eta: \chi_{\lambda-\eta}=\chi} m_{L_{\beta}}(\eta) \delta_{\lambda-\eta}=\sum_{\nu: \chi_{\nu}=\chi} m_{L_{\beta}}(\beta+\mu-\nu) \delta_{\nu}=} \\
\delta_{\mu}+\sum_{\nu>\mu: \chi_{\nu}=\chi} m_{L_{\beta}}(\beta+\mu-\nu) \delta_{\nu}
\end{gathered}
$$

These two formulas for $\left[G_{L}\right] \delta_{\lambda}$ jointly imply that $\nu_{j} \geq \mu$ for all j, and only one of them equals μ, i.e.,

$$
\begin{equation*}
G_{L}=F_{\mu} \oplus \bigoplus_{\nu \in S, \nu>\mu} c_{\nu \mu} F_{\nu} \tag{17}
\end{equation*}
$$

for some constants $c_{\nu \mu} \in \mathbb{Z}_{\geq 0}$. But if $\nu>\mu$ then $n(\lambda-\nu)<n(\lambda-\mu)$, so by the induction assumption $\left[F_{\nu}\right]$ for all $\nu>\mu$ in this sum are linear combinations of $\left[G_{V}\right]$ for various V. Thus so is F_{μ}. But $F\left(M_{\lambda-\rho}\right)=$ $F_{\mu}\left(M_{\lambda-\rho}\right)$, so $F \cong F_{\mu}$ and the induction step follows.
(ii) The functor F_{μ} from (17) has the desired property.

Now we are ready to prove the theorem in the general case. So λ no longer needs to dominate χ. However, for sufficiently large integer N, the weight $\lambda+N \rho$ dominates both χ and θ. Let $\theta_{N}:=\chi_{\lambda+N \rho}$. We have shown in Lemma 23.3(ii) that there exists an indecomposable projective functor $G=\Pi_{\theta} \circ G \circ \Pi_{\theta_{N}}$ such that $G\left(M_{\lambda+(N-1) \rho}\right)=P_{\lambda-\rho}=$ $M_{\lambda-\rho}$. Moreover, by Lemma $23.3(\mathrm{i}), W$ commutes with both $[G]$ and $[F \circ G]=[F][G]$. Thus for $w \in W$, $w[F] \delta_{\lambda}=w[F][G] \delta_{\lambda+N \rho}=[F][G] w \delta_{\lambda+N \rho}=[F] w[G] \delta_{\lambda+N \rho}=[F] w \delta_{\lambda}=[F] \delta_{w \lambda}$.
So for $u \in W$,

$$
u[F] \delta_{w \lambda}=u w[F] \delta_{\lambda}=[F] u w \delta_{\lambda}=[F] u \delta_{w \lambda},
$$

i.e.,

$$
u[F] \delta_{\mu}=[F] u \delta_{\mu}
$$

for all $\mu \in \mathfrak{h}^{*}$, as claimed.
Lemma 23.4. Let $\lambda \in \mathfrak{h}^{*}$ be dominant and $\phi, \psi \in \lambda+P, \psi \preceq \phi$. Then $(\lambda-\phi)^{2} \leq(\lambda-\psi)^{2}$, and if $(\lambda-\phi)^{2}=(\lambda-\psi)^{2}$ then $\psi \in W_{\lambda} \phi$.

Proof. Consider the subgroup $W_{\lambda+Q} \subset W$. By Proposition 15.12, it is the Weyl group of a root system $R^{\prime} \subset R$. Let us first prove the result when $\mu<_{\alpha} \lambda, \alpha \in R$, i.e., $\psi=s_{\alpha} \phi, \psi \neq \phi$. Then $\alpha \in R^{\prime}$ and thus by Proposition 16.1

$$
\left(\lambda, \alpha^{\vee}\right)=a \in \mathbb{Z}_{\geq 1}, \quad\left(\phi, \alpha^{\vee}\right)=-\left(\psi, \alpha^{\vee}\right)=b \in \mathbb{Z}_{\geq 0}
$$

We have $\lambda=\frac{1}{2} a \alpha+\lambda^{\prime}, \phi=\frac{1}{2} b \alpha+\phi^{\prime}, \psi=-\frac{1}{2} b \alpha+\phi^{\prime}$. where $\lambda^{\prime}, \phi^{\prime}$ are orthogonal to α. Thus

$$
(\lambda-\psi)^{2}-(\lambda-\phi)^{2}=\left(\left(\frac{a+b}{2}\right)^{2}-\left(\frac{a-b}{2}\right)^{2}\right) \alpha^{2}=a b \alpha^{2} .
$$

So this is ≥ 0, and if it is zero then either $b=0$, in which case $\phi=\psi$ and there is nothing to prove, or $a=0$, so $s_{\alpha} \lambda=\lambda$ and $s_{\alpha} \in W_{\lambda}$, as claimed.

Now let us consider the general case. By assumption, there is a chain

$$
\psi=\psi_{m}<_{\alpha^{m}} \psi_{m-1} \ldots<_{\alpha^{1}} \psi_{0}=\phi
$$

where $\alpha^{1}, \ldots, \alpha^{m}$ are positive roots of R. Thus, as we've shown,

$$
\left(\lambda-\psi_{i}\right)^{2} \leq\left(\lambda-\psi_{i-1}\right)^{2}
$$

for all $i \geq 1$, so $(\lambda-\phi)^{2} \leq(\lambda-\psi)^{2}$. Moreover, if $(\lambda-\phi)^{2}=(\lambda-\psi)^{2}$ then $\left(\lambda-\psi_{i-1}\right)^{2}=\left(\lambda-\psi_{i}\right)^{2}$ for all $i \geq 1$ so $\psi_{i-1} \in W_{\lambda} \psi_{i}$, hence $\psi \in W_{\lambda} \phi$.

Remark 23.5. The last statement of Lemma 23.4 fails if the partial order \preceq is replaced with \leq. For example, take $R=A_{3}$ and $\psi=$ $(0,3,1,2), \phi=(1,2,3,0)$, as in Remark 15.10 (so $\psi<\phi$ but $\psi \nprec \phi$), and let $\lambda:=(1,1,0,0)$. Then $(\lambda-\phi)^{2}=(\lambda-\psi)^{2}=10$, but $W_{\lambda}=$ $\langle(12),(34)\rangle$, so $\psi \notin W_{\lambda} \phi$.
23.3. Classification of indecomposable projective functors. Denote by Ξ_{0} the set of pairs (λ, μ) of weights in \mathfrak{h}^{*} such that $\lambda-\mu \in P$, and let $\Xi:=\Xi_{0} / W$. So in general an element $\xi \in \Xi$ can be represented by more than one pair. Let us say that the pair (μ, λ) representing ξ is proper if λ is dominant and μ is a minimal element of $W_{\lambda} \mu$ with respect to the partial order \preceq (where W_{λ} is the stabilizer of λ in W). It is clear that any ξ has a proper representative. This representative is not unique in general, but for every dominant λ in the W-orbit of the second coordinate of ξ, there is a unique μ such that (μ, λ) is a proper representation of ξ (indeed, $W_{\lambda} \mu$ has a unique minimal element).

Theorem 23.6. For any $\xi \in \Xi$ there exists an indecomposable projective functor F_{ξ} such that $F_{\xi}\left(M_{\nu-\rho}\right)=0$ if $\chi_{\nu} \neq \chi_{\lambda}$ and $F_{\xi}\left(M_{\lambda-\rho}\right)=$ $P_{\mu-\rho}$ for any proper representation (μ, λ) of ξ. The assignment $\xi \mapsto F_{\xi}$ is a bijection between Ξ and the set of isomorphism classes of indecomposable projective functors.
Proof. For a projective functor F let

$$
a_{F}(\mu, \lambda):=\left(\delta_{\mu},[F] \delta_{\lambda}\right)
$$

be the matrix coefficients of $[F]$. If λ is dominant then $F\left(M_{\lambda-\rho}\right)$ is projective, so $a_{F}(\mu, \lambda) \geq 0$ for all $\mu \in \mathfrak{h}^{*}$. Since by Theorem $23.2[F]$ commutes with W, this holds for all $\lambda \in \mathfrak{h}^{*}$.

Let $S(F):=\left\{(\mu, \lambda) \in \mathfrak{h}^{*} \times \mathfrak{h}^{*}: a_{F}(\mu, \lambda)>0\right\}$. Since $a_{F}(\mu, \lambda) \geq 0$, if $F=\oplus_{i} F_{i}$ then $S(F)=\cup_{i} S\left(F_{i}\right)$. Also it is clear that $S\left(F_{V}\right) \subset \Xi_{0}$. It follows that $S(F) \subset \Xi_{0}$ for any F, so for $(\mu, \lambda) \in S(F)$ we have $\lambda-\mu \in P$.

Let $S_{*}(F)$ be the set of elements of $S(F)$ for which $(\lambda-\mu)^{2}$ has maximal value (it is clear that $(\lambda-\mu)^{2}$ is bounded on $S(F)$, so $S_{*}(F)$
is nonempty if $F \neq 0$). Since by Theorem $23.2[F]$ commutes with W, both $S(F)$ and $S_{*}(F)$ are W-invariant.

We claim that if F is indecomposable, then $S_{*}(F)$ is a single W orbit. More specifically, recall that $F=F \circ \Pi_{\chi_{\lambda}}$ for some dominant λ and $F\left(M_{\lambda-\rho}\right)=P_{\mu-\rho}$ for some μ.
Lemma 23.7. In this case $S_{*}(F)=\xi:=W(\mu, \lambda)$ and (μ, λ) is a proper representation of ξ.
Proof. It suffices to check that if $(\phi, \lambda) \in S_{*}(F)$ then $\phi \in W_{\lambda} \mu$ and $\mu \preceq \phi$. So let $(\phi, \lambda) \in S_{*}(F)$. Since F is indecomposable, $\chi_{\mu}=\chi_{\phi}$, so there exists $w \in W$ such that $\mu=w \phi$. Moreover, by Theorem 20.13,

$$
\left[P_{\mu-\rho}\right]=\sum_{\mu \preceq \eta} d_{\mu \eta}^{*} \delta_{\eta},
$$

we get that $\mu \preceq \psi$. Thus we may apply Lemma 23.4 with $\psi=\mu$. It follows that $(\lambda-\phi)^{2} \leq(\lambda-\mu)^{2}$. But by the definition of $S_{*}(F)$, we have $(\lambda-\phi)^{2} \geq(\lambda-\mu)^{2}$. Thus $(\lambda-\phi)^{2}=(\lambda-\mu)^{2}$. Then Lemma 23.4 implies that $\phi \in W_{\lambda} \mu$, as claimed.

Thus to every indecomposable projective functor F we have assigned $\xi=S_{*}(F) / W \in \Xi$. If (μ, λ) is a proper representation of ξ then it follows that $F\left(M_{\lambda-\rho}\right)=P_{\mu-\rho}$, so F is completely determined by ξ by Corollary 22.6. It remains to show that any $\xi \in \Xi$ is obtained in this way. To this end, let $\xi=W(\mu, \lambda)$ (a proper representation), and let V be a finite dimensional \mathfrak{g}-module with extremal weight $\mu-\lambda$. Then $(\mu-\lambda)^{2} \geq \beta^{2}$ for any weight β of V, so $(\mu, \lambda) \in S_{*}\left(F_{V}\right)$. This implies that $(\mu, \lambda) \in S_{*}(F)$ for some indecomposable direct summand F of F_{V}. Since $S_{*}(F) / W$ consists of one element, this F must correspond to the element ξ.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

