23. Projective functors - II

23.1. The Grothendieck group of \mathcal{O} . The Grothendieck group $K(\mathcal{O})$ of \mathcal{O} is freely spanned by the classes of simple modules $[L_{\lambda-\rho}]$ or, more conveniently, by the classes of Verma modules $[M_{\lambda-\rho}]$, which we'll denote δ_{λ} ; so it is a basis of $K(\mathcal{O})$. Put an inner product on $K(\mathcal{O})$ by declaring this basis to be orthonormal. Note that if P is projective then

$$([P], [M]) = \dim \operatorname{Hom}(P, M).$$

Indeed, in this case dim Hom(P, M) is a linear function of [M], and for $M = L_{\mu}$ by the BGG reciprocity we have:

$$\dim \operatorname{Hom}(P_{\lambda}, M_{\mu}) = d_{\mu\lambda} = d_{\lambda\mu}^* = (\sum_{\nu} d_{\lambda\nu}^* \delta_{\nu+\rho}, \delta_{\mu+\rho}) = ([P_{\lambda}], [M_{\mu}]).$$

Since every projective functor F is exact, it defines an endomorphism [F] of $K(\mathcal{O})$. For example,

$$[F_V]\delta_{\lambda} = \sum_{\beta} m_V(\beta)\delta_{\lambda+\beta},$$

where $m_V(\beta)$ is the weight multiplicity of β in V. Clearly $[F_1 \oplus F_2] = [F_1] + [F_2]$ and $[F_1 \circ F_2] = [F_1][F_2]$.

Theorem 23.1. (i) If F_1, F_2 are projective functors with $[F_1] = [F_2]$ then $F_1 \cong F_2$.

(ii) If (F, F^{\vee}) are an adjoint pair of projective functors then [F] is adjoint to $[F^{\vee}]$ under the inner product on $K(\mathcal{O})$.

(iii) For a projective functor F, its left and right adjoint are isomorphic.

Proof. (i) By Corollary 22.6, to prove (i), it suffices to show that

$$F_1(M_{\lambda-\rho}) \cong F_2(M_{\lambda-\rho})$$

for all dominant λ . These objects are projective, so it is enough to check that they have the same character (or define the same element of $K(\mathcal{O})$). This implies the claim.

(ii) We need to show that $([F]x, y) = (x, [F^{\vee}]y)$. It suffices to take x = [P] for projective P and y = [M]. Then, since F(P) is projective, we have

$$([F][P], [M]) = ([F(P)], [M]) = \dim \operatorname{Hom}(F(P), M) = \dim \operatorname{Hom}(P, F^{\vee}(M)) = ([P], [F^{\vee}(M)]) = ([P], [F^{\vee}][M]),$$

as claimed.

(iii) follows from (i),(ii).

23.2. *W*-invariance. We have an action of the Weyl group *W* on $K(\mathcal{O})$ by $w\delta_{\lambda} := \delta_{w\lambda}$.

Theorem 23.2. If F is a projective functor then [F] commutes with W on $K(\mathcal{O})$.

Proof. We may assume that $F = \prod_{\chi} \circ F \circ \prod_{\theta}$ for $\chi, \theta \in \mathfrak{h}^*/W$ and F is indecomposable. Let λ be a dominant weight such that $\theta = \chi_{\lambda}$. Define

$$S = \{ \mu \in \lambda + P : \chi_{\mu} = \chi \}.$$

Let us say that λ dominates χ if for every $\mu \in S$ we have $\lambda - \mu \in P_+$.

Lemma 23.3. When λ dominates χ then

(i) Theorem 23.2 holds;

(ii) For each $\mu \in S$ there exists an indecomposable projective functor F_{μ} sending $M_{\lambda-\rho}$ to $P_{\mu-\rho}$.

Proof. (i) For a finite dimensional \mathfrak{g} -module V, let $G_V := \Pi_{\chi} \circ F_V \circ \Pi_{\theta}$. Since the character of V is W-invariant, $[F_V]$ commutes with W, hence so does $[G_V]$. Thus its suffices to show that [F] is an integer linear combination of $[G_V]$ for various V.

By Proposition 22.7(ii), $F(M_{\lambda-\rho}) = P_{\mu-\rho}$, where $\mu \in S$. Let $\beta := \lambda - \mu$. By our assumption, $\beta \in P_+$. Define $n(\beta) := (\beta, 2\rho^{\vee})$, a non-negative integer. We will prove the required statement by induction in $n(\beta)$.

The base of induction is $n(\beta) = 0$, hence $\beta = 0$ and $\mu = \lambda$. So $F(M_{\lambda-\rho}) = P_{\lambda-\rho} = M_{\lambda-\rho}$. This implies that $F = \Pi_{\theta}$, so [F] is clearly commutes with W.

So it remains to justify the induction step. Let $L := L_{\beta}^*$, a finite dimensional g-module. Consider the decomposition of the functor G_L into indecomposables (which we have shown to exist in Proposition 22.7(ii)): $G_L = \bigoplus_j F_{\nu_j}$, where $\nu_j \in S$ and $F_{\nu_j}(M_{\lambda-\rho}) = P_{\nu_j-\rho}$ (this direct sum may contain repetitions). So $G_L(M_{\lambda-\rho}) = \bigoplus_j P_{\nu_j-\rho}$. Thus

$$[G_L]\delta_{\lambda} = \sum_{j,\gamma} d^*_{\nu_j,\gamma}\delta_{\gamma} = \sum_{j,\gamma} d_{\gamma,\nu_j}\delta_{\gamma} = \sum_j \delta_{\nu_j} + \sum_{j,\gamma>\nu_j} d_{\gamma,\nu_j}\delta_{\gamma}.$$

On the other hand,

$$[G_L]\delta_{\lambda} = [G_L(M_{\lambda-\rho})] = [\Pi_{\chi}(L \otimes M_{\lambda-\rho})] = [\Pi_{\chi}]\sum_{\eta} m_L(\eta)\delta_{\lambda+\eta} = [\Pi_{\chi}]\sum_{\eta} m_{L_{\beta}}(\eta)\delta_{\lambda-\eta} = \sum_{\eta:\chi_{\lambda-\eta}=\chi} m_{L_{\beta}}(\eta)\delta_{\lambda-\eta} = \sum_{\nu:\chi_{\nu}=\chi} m_{L_{\beta}}(\beta+\mu-\nu)\delta_{\nu} = \delta_{\mu} + \sum_{\nu>\mu:\chi_{\nu}=\chi} m_{L_{\beta}}(\beta+\mu-\nu)\delta_{\nu}.$$
114

These two formulas for $[G_L]\delta_{\lambda}$ jointly imply that $\nu_j \geq \mu$ for all j, and only one of them equals μ , i.e.,

(17)
$$G_L = F_\mu \oplus \bigoplus_{\nu \in S, \nu > \mu} c_{\nu\mu} F_\nu$$

for some constants $c_{\nu\mu} \in \mathbb{Z}_{\geq 0}$. But if $\nu > \mu$ then $n(\lambda - \nu) < n(\lambda - \mu)$, so by the induction assumption $[F_{\nu}]$ for all $\nu > \mu$ in this sum are linear combinations of $[G_V]$ for various V. Thus so is F_{μ} . But $F(M_{\lambda-\rho}) =$ $F_{\mu}(M_{\lambda-\rho})$, so $F \cong F_{\mu}$ and the induction step follows.

(ii) The functor F_{μ} from (17) has the desired property.

Now we are ready to prove the theorem in the general case. So λ no longer needs to dominate χ . However, for sufficiently large integer N, the weight $\lambda + N\rho$ dominates both χ and θ . Let $\theta_N := \chi_{\lambda+N\rho}$. We have shown in Lemma 23.3(ii) that there exists an indecomposable projective functor $G = \Pi_{\theta} \circ G \circ \Pi_{\theta_N}$ such that $G(M_{\lambda+(N-1)\rho}) = P_{\lambda-\rho} = M_{\lambda-\rho}$. Moreover, by Lemma 23.3(i), W commutes with both [G] and $[F \circ G] = [F][G]$. Thus for $w \in W$,

$$w[F]\delta_{\lambda} = w[F][G]\delta_{\lambda+N\rho} = [F][G]w\delta_{\lambda+N\rho} = [F]w[G]\delta_{\lambda+N\rho} = [F]w\delta_{\lambda} = [F]\delta_{w\lambda}$$

So for $u \in W$,

$$u[F]\delta_{w\lambda} = uw[F]\delta_{\lambda} = [F]uw\delta_{\lambda} = [F]u\delta_{w\lambda},$$

i.e.,

$$u[F]\delta_{\mu} = [F]u\delta_{\mu}$$

for all $\mu \in \mathfrak{h}^*$, as claimed.

Lemma 23.4. Let $\lambda \in \mathfrak{h}^*$ be dominant and $\phi, \psi \in \lambda + P, \psi \preceq \phi$. Then $(\lambda - \phi)^2 \leq (\lambda - \psi)^2$, and if $(\lambda - \phi)^2 = (\lambda - \psi)^2$ then $\psi \in W_{\lambda}\phi$.

Proof. Consider the subgroup $W_{\lambda+Q} \subset W$. By Proposition 15.12, it is the Weyl group of a root system $R' \subset R$. Let us first prove the result when $\mu <_{\alpha} \lambda$, $\alpha \in R$, i.e., $\psi = s_{\alpha}\phi$, $\psi \neq \phi$. Then $\alpha \in R'$ and thus by Proposition 16.1

$$(\lambda, \alpha^{\vee}) = a \in \mathbb{Z}_{\geq 1}, \ (\phi, \alpha^{\vee}) = -(\psi, \alpha^{\vee}) = b \in \mathbb{Z}_{\geq 0}.$$

We have $\lambda = \frac{1}{2}a\alpha + \lambda'$, $\phi = \frac{1}{2}b\alpha + \phi'$, $\psi = -\frac{1}{2}b\alpha + \phi'$. where λ', ϕ' are orthogonal to α . Thus

$$(\lambda - \psi)^2 - (\lambda - \phi)^2 = ((\frac{a+b}{2})^2 - (\frac{a-b}{2})^2)\alpha^2 = ab\alpha^2.$$

So this is ≥ 0 , and if it is zero then either b = 0, in which case $\phi = \psi$ and there is nothing to prove, or a = 0, so $s_{\alpha}\lambda = \lambda$ and $s_{\alpha} \in W_{\lambda}$, as claimed. Now let us consider the general case. By assumption, there is a chain

$$\psi = \psi_m <_{\alpha^m} \psi_{m-1} \dots <_{\alpha^1} \psi_0 = \phi,$$

where $\alpha^1, ..., \alpha^m$ are positive roots of R. Thus, as we've shown,

$$(\lambda - \psi_i)^2 \le (\lambda - \psi_{i-1})^2$$

for all $i \ge 1$, so $(\lambda - \phi)^2 \le (\lambda - \psi)^2$. Moreover, if $(\lambda - \phi)^2 = (\lambda - \psi)^2$ then $(\lambda - \psi_{i-1})^2 = (\lambda - \psi_i)^2$ for all $i \ge 1$ so $\psi_{i-1} \in W_\lambda \psi_i$, hence $\psi \in W_\lambda \phi$.

Remark 23.5. The last statement of Lemma 23.4 fails if the partial order \leq is replaced with \leq . For example, take $R = A_3$ and $\psi = (0, 3, 1, 2), \phi = (1, 2, 3, 0)$, as in Remark 15.10 (so $\psi < \phi$ but $\psi \not\prec \phi$), and let $\lambda := (1, 1, 0, 0)$. Then $(\lambda - \phi)^2 = (\lambda - \psi)^2 = 10$, but $W_{\lambda} = \langle (12), (34) \rangle$, so $\psi \notin W_{\lambda} \phi$.

23.3. Classification of indecomposable projective functors. Denote by Ξ_0 the set of pairs (λ, μ) of weights in \mathfrak{h}^* such that $\lambda - \mu \in P$, and let $\Xi := \Xi_0/W$. So in general an element $\xi \in \Xi$ can be represented by more than one pair. Let us say that the pair (μ, λ) representing ξ is **proper** if λ is dominant and μ is a minimal element of $W_{\lambda}\mu$ with respect to the partial order \preceq (where W_{λ} is the stabilizer of λ in W). It is clear that any ξ has a proper representative. This representative is not unique in general, but for every dominant λ in the W-orbit of the second coordinate of ξ , there is a unique μ such that (μ, λ) is a proper representation of ξ (indeed, $W_{\lambda}\mu$ has a unique minimal element).

Theorem 23.6. For any $\xi \in \Xi$ there exists an indecomposable projective functor F_{ξ} such that $F_{\xi}(M_{\nu-\rho}) = 0$ if $\chi_{\nu} \neq \chi_{\lambda}$ and $F_{\xi}(M_{\lambda-\rho}) = P_{\mu-\rho}$ for any proper representation (μ, λ) of ξ . The assignment $\xi \mapsto F_{\xi}$ is a bijection between Ξ and the set of isomorphism classes of indecomposable projective functors.

Proof. For a projective functor F let

$$a_F(\mu,\lambda) := (\delta_\mu, [F]\delta_\lambda)$$

be the matrix coefficients of [F]. If λ is dominant then $F(M_{\lambda-\rho})$ is projective, so $a_F(\mu, \lambda) \geq 0$ for all $\mu \in \mathfrak{h}^*$. Since by Theorem 23.2 [F]commutes with W, this holds for all $\lambda \in \mathfrak{h}^*$.

Let $S(F) := \{(\mu, \lambda) \in \mathfrak{h}^* \times \mathfrak{h}^* : a_F(\mu, \lambda) > 0\}$. Since $a_F(\mu, \lambda) \ge 0$, if $F = \bigoplus_i F_i$ then $S(F) = \bigcup_i S(F_i)$. Also it is clear that $S(F_V) \subset \Xi_0$. It follows that $S(F) \subset \Xi_0$ for any F, so for $(\mu, \lambda) \in S(F)$ we have $\lambda - \mu \in P$.

Let $S_*(F)$ be the set of elements of S(F) for which $(\lambda - \mu)^2$ has maximal value (it is clear that $(\lambda - \mu)^2$ is bounded on S(F), so $S_*(F)$ is nonempty if $F \neq 0$). Since by Theorem 23.2 [F] commutes with W, both S(F) and $S_*(F)$ are W-invariant.

We claim that if F is indecomposable, then $S_*(F)$ is a single Worbit. More specifically, recall that $F = F \circ \prod_{\chi_{\lambda}}$ for some dominant λ and $F(M_{\lambda-\rho}) = P_{\mu-\rho}$ for some μ .

Lemma 23.7. In this case $S_*(F) = \xi := W(\mu, \lambda)$ and (μ, λ) is a proper representation of ξ .

Proof. It suffices to check that if $(\phi, \lambda) \in S_*(F)$ then $\phi \in W_{\lambda}\mu$ and $\mu \leq \phi$. So let $(\phi, \lambda) \in S_*(F)$. Since F is indecomposable, $\chi_{\mu} = \chi_{\phi}$, so there exists $w \in W$ such that $\mu = w\phi$. Moreover, by Theorem 20.13,

$$[P_{\mu-\rho}] = \sum_{\mu \preceq \eta} d^*_{\mu\eta} \delta_{\eta},$$

we get that $\mu \leq \psi$. Thus we may apply Lemma 23.4 with $\psi = \mu$. It follows that $(\lambda - \phi)^2 \leq (\lambda - \mu)^2$. But by the definition of $S_*(F)$, we have $(\lambda - \phi)^2 \geq (\lambda - \mu)^2$. Thus $(\lambda - \phi)^2 = (\lambda - \mu)^2$. Then Lemma 23.4 implies that $\phi \in W_{\lambda}\mu$, as claimed.

Thus to every indecomposable projective functor F we have assigned $\xi = S_*(F)/W \in \Xi$. If (μ, λ) is a proper representation of ξ then it follows that $F(M_{\lambda-\rho}) = P_{\mu-\rho}$, so F is completely determined by ξ by Corollary 22.6. It remains to show that any $\xi \in \Xi$ is obtained in this way. To this end, let $\xi = W(\mu, \lambda)$ (a proper representation), and let V be a finite dimensional \mathfrak{g} -module with extremal weight $\mu - \lambda$. Then $(\mu - \lambda)^2 \geq \beta^2$ for any weight β of V, so $(\mu, \lambda) \in S_*(F_V)$. This implies that $(\mu, \lambda) \in S_*(F)$ for some indecomposable direct summand F of F_V . Since $S_*(F)/W$ consists of one element, this F must correspond to the element ξ .

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.