24. Applications of projective functors - I

24.1. **Translation functors.** Let $\theta, \chi \in \mathfrak{h}^*/W$ and V be a finite dimensional irreducible \mathfrak{g} -module. Write $F_{\chi,V,\theta}$ for the projective functor $\Pi_{\chi} \circ F_{V} \circ \Pi_{\theta}$, and let us view it as a functor $\operatorname{Rep}(\mathfrak{g})_{\theta} \to \operatorname{Rep}(\mathfrak{g})_{\chi}$.

Pick dominant weights $\lambda, \mu \in \mathfrak{h}^*$ such that $\theta = \chi_{\lambda}, \chi = \chi_{\mu}$, and $\lambda - \mu \in P$ (this can be done if $F_{\chi,V,\theta} \neq 0$, which we will assume).

Theorem 24.1. If $W_{\lambda} = W_{\mu}$ and V has extremal weight $\mu - \lambda$ then $F_{\chi,V,\theta} : \operatorname{Rep}(\mathfrak{g})_{\theta} \to \operatorname{Rep}(\mathfrak{g})_{\chi}$ is an equivalence of categories. A quasi-inverse equivalence is given by the functor $F_{\theta,V^*,\chi}$.

Proof. It suffices to show that

$$F_{\chi,V,\theta}(M_{\lambda-\rho}) = M_{\mu-\rho}, \ F_{\theta,V^*,\chi}(M_{\mu-\rho}) = M_{\lambda-\rho}.$$

Indeed, then

$$F_{\theta,V^*,\chi}\circ F_{\chi,V,\theta}(M_{\lambda-\rho})=M_{\lambda-\rho},\ F_{\chi,V,\theta}\circ F_{\theta,V^*,\chi}(M_{\mu-\rho})=M_{\mu-\rho},$$

SO

$$F_{\theta,V^*,\chi} \circ F_{\chi,V,\theta} \cong \mathrm{Id}_{\mathrm{Rep}(\mathfrak{g})_{\theta}}, \ F_{\chi,V,\theta} \circ F_{\theta,V^*,\chi} \cong \mathrm{Id}_{\mathrm{Rep}(\mathfrak{g})_{\chi}},$$

i.e., $F_{\chi,V,\theta}$, $F_{\theta,V^*,\chi}$ are mutually quasi-inverse equivalences.

We only prove the first statement, the second one being similar. We have

$$F_{\chi,V,\theta}(M_{\lambda-\rho}) = \Pi_{\chi}(V \otimes M_{\lambda-\rho}).$$

By Corollary 20.5(i), $V \otimes M_{\lambda-\rho}$ has a standard filtration whose composition factors are $M_{\lambda+\beta-\rho}$ where β is a weight of V. The only ones among them that survive the application of Π_{χ} are those for which $\chi_{\lambda+\beta} = \chi_{\mu}$, i.e., $\lambda + \beta = w\mu$ for some $w \in W$. So $w\mu \leq \mu$ (as μ is dominant). Thus, applying Lemma 23.4 with $\phi = \mu, \psi = w\mu$, we get

$$(\lambda - \mu)^2 < (\lambda - w\mu)^2 = \beta^2.$$

On the other hand, since $\mu - \lambda$ is an extremal weight of V, we have $(\lambda - \mu)^2 \geq \beta^2$. It follows that $(\lambda - \mu)^2 = \beta^2 = (\lambda - w\mu)^2$. Thus by Lemma 23.4 we may choose $w \in W_{\lambda}$. But since $W_{\lambda} \subset W_{\mu}$, it follows that $w\mu = \mu$, so $\beta = \mu - \lambda$. Since the weight multiplicity of an extremal weight is 1, it follows that $F_{\chi,V,\theta}(M_{\lambda-\rho}) = M_{\mu-\rho}$, as claimed. \square

Theorem 24.1 shows that for dominant λ the category $\operatorname{Rep}(\mathfrak{g})_{\chi_{\lambda}}$ depends (up to equivalence) only on the coset $\lambda + P$ and the subgroup $W_{\lambda} \subset W$. In view of Theorem 24.1, the functors $F_{\chi,V,\theta}$ are called **translation functors** (as they translate between different central characters).

Remark 24.2. Suppose we only have $W_{\lambda} \subset W_{\mu}$ instead of $W_{\lambda} = W_{\mu}$ (with all the other assumptions being the same). Then the proof of Theorem 24.1 still shows that $F_{\chi,V,\theta}(M_{\lambda-\rho}) = M_{\mu-\rho}$. Thus $[F_{\chi,V,\theta}]\delta_{\lambda} = \delta_{\mu}$, and since by Theorem 23.2 $[F_{\chi,V,\theta}]$ is W-invariant, it follows that $[F_{\chi,V,\theta}]\delta_{\nu} = \delta_{\mu}$ for all $\nu \in W_{\mu}\lambda$.

On the other hand, we no longer have $F_{\theta,V^*,\chi}(M_{\mu-\rho}) = M_{\lambda-\rho}$, in general. Namely, the proof of Theorem 24.1 shows that $F_{\theta,V^*,\chi}(M_{\mu-\rho})$ has a filtration whose successive quotients are $M_{\nu-\rho}$, $\nu \in W_{\mu}\lambda$, each occurring with multiplicity 1 (so the length of this filtration is $|W_{\mu}/W_{\lambda}|$). Thus

$$[F_{\theta,V^*,\chi}]\delta_{\mu} = \sum_{\nu \in W_{\mu}\lambda} \delta_{\nu}.$$

It follows that

$$[F_{\chi,V,\theta}][F_{\theta,V^*,\chi}]\delta_{\mu} = |W_{\mu}/W_{\lambda}|\delta_{\mu},$$

hence $F_{\chi,V,\theta} \circ F_{\theta,V^*,\chi}(M_{\mu-\rho}) = |W_{\mu}/W_{\lambda}|M_{\mu-\rho}$ (as the left hand side is projective). Thus $F_{\chi,V,\theta} \circ F_{\theta,V^*,\chi} \cong |W_{\mu}/W_{\lambda}| \mathrm{Id}$.

Remark 24.3. Let $\mathcal{C} \subset \text{Rep}(\mathfrak{g})$ be a full subcategory invariant under all F_V and Π_{θ} , and $\mathcal{C}_{\theta} := \Pi_{\theta}\mathcal{C} = \mathcal{C} \cap \text{Rep}(\mathfrak{g})_{\theta}$. Then Theorem 24.1 implies that if $W_{\lambda} = W_{\mu}$ then the functors $F_{\chi,V,\theta}, F_{\theta,V^*,\chi}$ are mutually quasi-inverse equivalences between \mathcal{C}_{θ} and \mathcal{C}_{χ} . Interesting examples of this include:

- 1. $C = \mathcal{O}$. In this case we obtain that for dominant λ the category $\mathcal{O}_{\chi_{\lambda}}$ up to equivalence depends only on $\lambda + P$ and the stabilizer W_{λ} . In particular, for regular dominant integral λ all these categories are equivalent.
- 2. \mathcal{C} is the category of \mathfrak{g} -modules which are locally finite and semisimple with respect to a reductive Lie subalgebra $\mathfrak{k} \subset \mathfrak{g}$. If \mathfrak{k} is the fixed subalgebra of an involution of \mathfrak{g} , this category contains the category of $(\mathfrak{g}_{\mathbb{R}}, K)$ -modules for any connected compact group K such that $\text{Lie}K = \mathfrak{k}$. Namely, it is just the subcategory of modules that integrate to K.
- 24.2. Two-sided ideals in U_{θ} and submodules of Verma modules. Let $\theta = \chi_{\lambda}$ for dominant λ . Let Ω_{θ} denote the lattice of two-sided ideals in U_{θ} (i.e., the set of two-sided ideals equipped with the operations of sum and intersection). Likewise, let $\Omega(\lambda)$ be the lattice of submodules of $M_{\lambda-\rho}$. We have a map $\nu:\Omega_{\theta}\to\Omega(\lambda)$ given by $\nu(J)=JM_{\lambda-\rho}$. It is clear that ν preserves inclusion and arbitrary sums.

Theorem 24.4. (i) $I \subset J$ iff $\nu(I) \subset \nu(J)$. In particular, ν is injective.

- (ii) The image of ν is the set of submodules of $M_{\lambda-\rho}$ which are quotients of direct sums of $P_{\mu-\rho}$ where $\chi_{\mu} = \chi_{\lambda}$, $\mu \leq \lambda$ and $\mu \leq W_{\lambda}\mu$.
- (iii) If λ is regular (i.e., $W_{\lambda} = 1$) then ν is an isomorphism of lattices.

Proof. (i) Let F be a projective θ -functor, and $\phi: F \to \mathrm{Id}_{\theta}$ a morphism of functors $\mathrm{Rep}(\mathfrak{g})^1_{\theta} \to \mathrm{Rep}(\mathfrak{g})$. Let $M(\phi, F)$ be the image of the map $\phi_{M_{\lambda-\rho}}: F(M_{\lambda-\rho}) \to M_{\lambda-\rho}$ and $J(\phi, F)$ the image of $\phi_{U_{\theta}}: F(U_{\theta}) \to U_{\theta}$. Note that $\phi_{U_{\theta}}$ is a morphism of $(U(\mathfrak{g}), U_{\theta})$ -bimodules, so $J(\phi, F)$ is a subbimodule of U_{θ} , i.e., a 2-sided ideal. Let $a: U_{\theta} \to M_{\lambda-\rho}$ be the surjection given by $a(u) = uv_{\lambda-\rho}$. Then by functoriality of ϕ

$$a \circ \phi_{U_{\theta}} = \phi_{M_{\lambda-\rho}} \circ a.$$

Hence

$$\nu(J(\phi, F)) = J(\phi, F)M_{\lambda - \rho} = J(\phi, F)v_{\lambda - \rho} = a(J(\phi, F)) =$$
$$\operatorname{Im}(a \circ \phi_{U_{\theta}}) = \operatorname{Im}(\phi_{M_{\lambda - \rho}} \circ a) = \operatorname{Im}(\phi_{M_{\lambda - \rho}}) = M(\phi, F).$$

Let us show that any 2-sided ideal J in U_{θ} is of the form $J(\phi, F)$ for some F, ϕ . Since U_{θ} is Noetherian, J is generated by some finite dimensional subspace $V \subset J$ which can be chosen \mathfrak{g}_{ad} -invariant. Then by Frobenius reciprocity the \mathfrak{g}_{ad} -morphism $\iota: V \to U_{\theta}$ can be lifted to a morphism of $(U(\mathfrak{g}), U_{\theta})$ -bimodules $\widehat{\phi}: V \otimes U_{\theta} = F_V(U_{\theta}) \to U_{\theta}$, i.e., to a functorial morphism $\phi: F_V(\theta) \to \mathrm{Id}_{\theta}$. It is clear that then $J = J(\phi, F)$.

We are now ready to prove (i), i.e., that $M(\phi, F) \subset M(\phi', F')$ implies $J(\phi, F) \subset J(\phi', F')$. Since $F(M_{\lambda-\rho})$, $F'(M_{\lambda-\rho})$ are projective, the inclusion $M(\phi, F) \hookrightarrow M(\phi', F')$ lifts to a map $\widetilde{\alpha} : F(M_{\lambda-\rho}) \to F'(M_{\lambda-\rho})$, i.e., $\phi'_{M_{\lambda-\rho}} \circ \widetilde{\alpha} = \phi_{M_{\lambda-\rho}}$. But by Theorem 22.4, morphisms of projective θ -functors are the same as morphisms of the images of $M_{\lambda-\rho}$ under these functors. Thus there is $\alpha : F \to F'$ which maps to $\widetilde{\alpha}$ and such that $\phi' \circ \alpha = \phi$. Hence

$$J(\phi, F) = \operatorname{Im}(\phi_{U_{\theta}}) \subset \operatorname{Im}(\phi'_{U_{\theta}}) = J(\phi', F'),$$

and (i) follows.

(ii) The proof of (i) implies that the image of ν consists exactly of the submodules $M(\phi, F)$. Such a submodule is the image of $F(M_{\lambda-\rho})$ under a morphism. But F is a projective θ -functor, so by Corollary 22.6(iii), it is of the form $\widetilde{F}(\theta)$, where \widetilde{F} is a projective functor. Also by Theorem 23.6, \widetilde{F} is a direct sum of F_{ξ} , so $F(M_{\lambda-\rho})$ is a direct sum of $P_{\mu-\rho}$, where (μ, λ) is a proper representation of ξ . Thus $\mu \leq \lambda$ and $\mu \leq W_{\lambda}\mu$. Conversely, if for such μ we have a homomorphism

 $\gamma: P_{\mu-\rho} = F_{\xi}(M_{\lambda-\rho}) \to M_{\lambda-\rho}$ then $\gamma = \phi_{M_{\lambda-\rho}}$ where $\phi: F_{\xi}(\theta) \to \mathrm{Id}_{\theta}$. So $\mathrm{Im}(\gamma) = \nu(J(\phi, F_{\xi}(\theta)))$. Since ν preserves sums, (ii) follows.

(iii) Every submodule of $M_{\lambda-\rho}$ is a quotient of a direct sum of $P_{\mu-\rho}$ with $\chi_{\mu} = \chi_{\lambda}, \mu \leq \lambda$. Hence by Proposition 16.1 $\mu \leq \lambda$, as λ is dominant. (This also follows from Theorem 20.13). So if $W_{\lambda} = 1$ then by (ii) ν is surjective, hence bijective by (i). Since $I \cap J$ is the largest of all ideals contained both in I and in J and similarly for submodules, ν also preserves intersections by (i). Thus ν is an isomorphism of lattices.

Corollary 24.5. Let $\theta = \chi_{\lambda}$ where λ is dominant. If $M_{\lambda-\rho}$ is irreducible then U_{θ} is a simple algebra. Conversely, if U_{θ} is simple then $M_{\mu-\rho}$ is irreducible for all μ with $\chi_{\mu} = \theta$.

Proof. The direct implication follows from Theorem 24.4. For the reverse implication, suppose for some distinct $\mu_1, \mu_2 \in W\lambda$, we have $M_{\mu_1-\rho} \hookrightarrow M_{\mu_2-\rho}$ and $M_{\mu_1-\rho}$ is simple. Then in view of the Duflo-Joseph theorem we have an inclusion

$$J := \operatorname{Hom}_{\operatorname{fin}}(M_{\mu_2 - \rho}, M_{\mu_1 - \rho}) \hookrightarrow \operatorname{Hom}_{\operatorname{fin}}(M_{\mu_2 - \rho}, M_{\mu_2 - \rho}) = U_{\theta},$$

and J is a proper 2-sided ideal (as it does not contain 1) which is not zero (as $M_{\mu_1-\rho} \cong M_{\mu_1-\rho}^{\vee}$ and hence for a finite dimensional \mathfrak{g} -module V, $\operatorname{Hom}(M_{\mu_2-\rho}, V \otimes M_{\mu_1-\rho}) \cong V[\mu_2 - \mu_1]$).

Using the determinant formula for the Shapovalov form, this gives an explicit description of the locus of $\theta \in \mathfrak{h}^*/W$ where U_{θ} is simple.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.