24. Applications of projective functors - I

24.1. Translation functors. Let $\theta, \chi \in \mathfrak{h}^{*} / W$ and V be a finite dimensional irreducible \mathfrak{g}-module. Write $F_{\chi, V, \theta}$ for the projective functor $\Pi_{\chi} \circ F_{V} \circ \Pi_{\theta}$, and let us view it as a functor $\operatorname{Rep}(\mathfrak{g})_{\theta} \rightarrow \operatorname{Rep}(\mathfrak{g})_{\chi}$.

Pick dominant weights $\lambda, \mu \in \mathfrak{h}^{*}$ such that $\theta=\chi_{\lambda}, \chi=\chi_{\mu}$, and $\lambda-\mu \in P$ (this can be done if $F_{\chi, V, \theta} \neq 0$, which we will assume).

Theorem 24.1. If $W_{\lambda}=W_{\mu}$ and V has extremal weight $\mu-\lambda$ then $F_{\chi, V, \theta}: \operatorname{Rep}(\mathfrak{g})_{\theta} \rightarrow \operatorname{Rep}(\mathfrak{g})_{\chi}$ is an equivalence of categories. A quasiinverse equivalence is given by the functor $F_{\theta, V^{*}, \chi}$.

Proof. It suffices to show that

$$
F_{\chi, V, \theta}\left(M_{\lambda-\rho}\right)=M_{\mu-\rho}, F_{\theta, V^{*}, \chi}\left(M_{\mu-\rho}\right)=M_{\lambda-\rho} .
$$

Indeed, then

$$
F_{\theta, V^{*}, \chi} \circ F_{\chi, V, \theta}\left(M_{\lambda-\rho}\right)=M_{\lambda-\rho}, \quad F_{\chi, V, \theta} \circ F_{\theta, V^{*}, \chi}\left(M_{\mu-\rho}\right)=M_{\mu-\rho}
$$

so

$$
F_{\theta, V^{*}, \chi} \circ F_{\chi, V, \theta} \cong \operatorname{Id}_{\operatorname{Rep}(\mathfrak{g})_{\theta}}, F_{\chi, V, \theta} \circ F_{\theta, V^{*}, \chi} \cong \operatorname{Id}_{\operatorname{Rep}(\mathfrak{g})_{\chi}}
$$

i.e., $F_{\chi, V, \theta}, F_{\theta, V^{*}, \chi}$ are mutually quasi-inverse equivalences.

We only prove the first statement, the second one being similar. We have

$$
F_{\chi, V, \theta}\left(M_{\lambda-\rho}\right)=\Pi_{\chi}\left(V \otimes M_{\lambda-\rho}\right)
$$

By Corollary 20.5(i), $V \otimes M_{\lambda-\rho}$ has a standard filtration whose composition factors are $M_{\lambda+\beta-\rho}$ where β is a weight of V. The only ones among them that survive the application of Π_{χ} are those for which $\chi_{\lambda+\beta}=\chi_{\mu}$, i.e., $\lambda+\beta=w \mu$ for some $w \in W$. So $w \mu \preceq \mu$ (as μ is dominant). Thus, applying Lemma 23.4 with $\phi=\mu, \psi=w \mu$, we get

$$
(\lambda-\mu)^{2} \leq(\lambda-w \mu)^{2}=\beta^{2}
$$

On the other hand, since $\mu-\lambda$ is an extremal weight of V, we have $(\lambda-\mu)^{2} \geq \beta^{2}$. It follows that $(\lambda-\mu)^{2}=\beta^{2}=(\lambda-w \mu)^{2}$. Thus by Lemma 23.4 we may choose $w \in W_{\lambda}$. But since $W_{\lambda} \subset W_{\mu}$, it follows that $w \mu=\mu$, so $\beta=\mu-\lambda$. Since the weight multiplicity of an extremal weight is 1 , it follows that $F_{\chi, V, \theta}\left(M_{\lambda-\rho}\right)=M_{\mu-\rho}$, as claimed.

Theorem 24.1 shows that for dominant λ the category $\operatorname{Rep}(\mathfrak{g})_{\chi_{\lambda}}$ depends (up to equivalence) only on the coset $\lambda+P$ and the subgroup $W_{\lambda} \subset W$. In view of Theorem 24.1, the functors $F_{\chi, V, \theta}$ are called translation functors (as they translate between different central characters).

Remark 24.2. Suppose we only have $W_{\lambda} \subset W_{\mu}$ instead of $W_{\lambda}=W_{\mu}$ (with all the other assumptions being the same). Then the proof of Theorem 24.1 still shows that $F_{\chi, V, \theta}\left(M_{\lambda-\rho}\right)=M_{\mu-\rho}$. Thus $\left[F_{\chi, V, \theta}\right] \delta_{\lambda}=$ δ_{μ}, and since by Theorem $23.2\left[F_{\chi, V, \theta}\right]$ is W-invariant, it follows that $\left[F_{\chi, V, \theta}\right] \delta_{\nu}=\delta_{\mu}$ for all $\nu \in W_{\mu} \lambda$.

On the other hand, we no longer have $F_{\theta, V^{*}, \chi}\left(M_{\mu-\rho}\right)=M_{\lambda-\rho}$, in general. Namely, the proof of Theorem 24.1 shows that $F_{\theta, V^{*}, \chi}\left(M_{\mu-\rho}\right)$ has a filtration whose successive quotients are $M_{\nu-\rho}, \nu \in W_{\mu} \lambda$, each occurring with multiplicity 1 (so the length of this filtration is $\left|W_{\mu} / W_{\lambda}\right|$). Thus

$$
\left[F_{\theta, V^{*}, \chi}\right] \delta_{\mu}=\sum_{\nu \in W_{\mu} \lambda} \delta_{\nu}
$$

It follows that

$$
\left[F_{\chi, V, \theta}\right]\left[F_{\theta, V^{*}, \chi}\right] \delta_{\mu}=\left|W_{\mu} / W_{\lambda}\right| \delta_{\mu},
$$

hence $F_{\chi, V, \theta} \circ F_{\theta, V^{*}, \chi}\left(M_{\mu-\rho}\right)=\left|W_{\mu} / W_{\lambda}\right| M_{\mu-\rho}$ (as the left hand side is projective). Thus $F_{\chi, V, \theta} \circ F_{\theta, V^{*}, \chi} \cong\left|W_{\mu} / W_{\lambda}\right| \mathrm{Id}$.

Remark 24.3. Let $\mathcal{C} \subset \operatorname{Rep}(\mathfrak{g})$ be a full subcategory invariant under all F_{V} and Π_{θ}, and $\mathcal{C}_{\theta}:=\Pi_{\theta} \mathcal{C}=\mathcal{C} \cap \operatorname{Rep}(\mathfrak{g})_{\theta}$. Then Theorem 24.1 implies that if $W_{\lambda}=W_{\mu}$ then the functors $F_{\chi, V, \theta}, F_{\theta, V^{*}, \chi}$ are mutually quasi-inverse equivalences between \mathcal{C}_{θ} and \mathcal{C}_{χ}. Interesting examples of this include:

1. $\mathcal{C}=\mathcal{O}$. In this case we obtain that for dominant λ the category $\mathcal{O}_{\chi_{\lambda}}$ up to equivalence depends only on $\lambda+P$ and the stabilizer W_{λ}. In particular, for regular dominant integral λ all these categories are equivalent.
2. \mathcal{C} is the category of \mathfrak{g}-modules which are locally finite and semisimple with respect to a reductive Lie subalgebra $\mathfrak{k} \subset \mathfrak{g}$. If \mathfrak{k} is the fixed subalgebra of an involution of \mathfrak{g}, this category contains the category of $\left(\mathfrak{g}_{\mathbb{R}}, K\right)$-modules for any connected compact group K such that Lie $K=\mathfrak{k}$. Namely, it is just the subcategory of modules that integrate to K.

24.2. Two-sided ideals in U_{θ} and submodules of Verma mod-

 ules. Let $\theta=\chi_{\lambda}$ for dominant λ. Let Ω_{θ} denote the lattice of twosided ideals in U_{θ} (i.e., the set of two-sided ideals equipped with the operations of sum and intersection). Likewise, let $\Omega(\lambda)$ be the lattice of submodules of $M_{\lambda-\rho}$. We have a map $\nu: \Omega_{\theta} \rightarrow \Omega(\lambda)$ given by $\nu(J)=J M_{\lambda-\rho}$. It is clear that ν preserves inclusion and arbitrary sums.Theorem 24.4. (i) $I \subset J$ iff $\nu(I) \subset \nu(J)$. In particular, ν is injective.
(ii) The image of ν is the set of submodules of $M_{\lambda-\rho}$ which are quotients of direct sums of $P_{\mu-\rho}$ where $\chi_{\mu}=\chi_{\lambda}, \mu \preceq \lambda$ and $\mu \preceq W_{\lambda} \mu$.
(iii) If λ is regular (i.e., $W_{\lambda}=1$) then ν is an isomorphism of lattices.

Proof. (i) Let F be a projective θ-functor, and $\phi: F \rightarrow \mathrm{Id}_{\theta}$ a morphism of functors $\operatorname{Rep}(\mathfrak{g})_{\theta}^{1} \rightarrow \operatorname{Rep}(\mathfrak{g})$. Let $M(\phi, F)$ be the image of the map $\phi_{M_{\lambda-\rho}}: F\left(M_{\lambda-\rho}\right) \rightarrow M_{\lambda-\rho}$ and $J(\phi, F)$ the image of $\phi_{U_{\theta}}: F\left(U_{\theta}\right) \rightarrow U_{\theta}$. Note that $\phi_{U_{\theta}}$ is a morphism of $\left(U(\mathfrak{g}), U_{\theta}\right)$-bimodules, so $J(\phi, F)$ is a subbimodule of U_{θ}, i.e., a 2-sided ideal. Let $a: U_{\theta} \rightarrow M_{\lambda-\rho}$ be the surjection given by $a(u)=u v_{\lambda-\rho}$. Then by functoriality of ϕ

$$
a \circ \phi_{U_{\theta}}=\phi_{M_{\lambda-\rho}} \circ a .
$$

Hence

$$
\begin{gathered}
\nu(J(\phi, F))=J(\phi, F) M_{\lambda-\rho}=J(\phi, F) v_{\lambda-\rho}=a(J(\phi, F))= \\
\operatorname{Im}\left(a \circ \phi_{U_{\theta}}\right)=\operatorname{Im}\left(\phi_{M_{\lambda-\rho}} \circ a\right)=\operatorname{Im}\left(\phi_{M_{\lambda-\rho}}\right)=M(\phi, F) .
\end{gathered}
$$

Let us show that any 2 -sided ideal J in U_{θ} is of the form $J(\phi, F)$ for some F, ϕ. Since U_{θ} is Noetherian, J is generated by some finite dimensional subspace $V \subset J$ which can be chosen $\mathfrak{g}_{\text {ad }}$-invariant. Then by Frobenius reciprocity the $\mathfrak{g}_{\text {ad }}$-morphism $\iota: V \rightarrow U_{\theta}$ can be lifted to a morphism of $\left(U(\mathfrak{g}), U_{\theta}\right)$-bimodules $\widehat{\phi}: V \otimes U_{\theta}=F_{V}\left(U_{\theta}\right) \rightarrow U_{\theta}$, i.e., to a functorial morphism $\phi: F_{V}(\theta) \rightarrow \mathrm{Id}_{\theta}$. It is clear that then $J=J(\phi, F)$.

We are now ready to prove (i), i.e., that $M(\phi, F) \subset M\left(\phi^{\prime}, F^{\prime}\right)$ implies $J(\phi, F) \subset J\left(\phi^{\prime}, F^{\prime}\right)$. Since $F\left(M_{\lambda-\rho}\right), F^{\prime}\left(M_{\lambda-\rho}\right)$ are projective, the inclusion $M(\phi, F) \hookrightarrow M\left(\phi^{\prime}, F^{\prime}\right)$ lifts to a map $\widetilde{\alpha}: F\left(M_{\lambda-\rho}\right) \rightarrow F^{\prime}\left(M_{\lambda-\rho}\right)$, i.e., $\phi_{M_{\lambda-\rho}}^{\prime} \circ \widetilde{\alpha}=\phi_{M_{\lambda-\rho}}$. But by Theorem 22.4, morphisms of projective θ-functors are the same as morphisms of the images of $M_{\lambda-\rho}$ under these functors. Thus there is $\alpha: F \rightarrow F^{\prime}$ which maps to $\widetilde{\alpha}$ and such that $\phi^{\prime} \circ \alpha=\phi$. Hence

$$
J(\phi, F)=\operatorname{Im}\left(\phi_{U_{\theta}}\right) \subset \operatorname{Im}\left(\phi_{U_{\theta}}^{\prime}\right)=J\left(\phi^{\prime}, F^{\prime}\right),
$$

and (i) follows.
(ii) The proof of (i) implies that the image of ν consists exactly of the submodules $M(\phi, F)$. Such a submodule is the image of $F\left(M_{\lambda-\rho}\right)$ under a morphism. But F is a projective θ-functor, so by Corollary 22.6(iii), it is of the form $\widetilde{F}(\theta)$, where \widetilde{F} is a projective functor. Also by Theorem 23.6, \widetilde{F} is a direct sum of F_{ξ}, so $F\left(M_{\lambda-\rho}\right)$ is a direct sum of $P_{\mu-\rho}$, where (μ, λ) is a proper representation of ξ. Thus $\mu \preceq \lambda$ and $\mu \preceq W_{\lambda} \mu$. Conversely, if for such μ we have a homomorphism
$\gamma: P_{\mu-\rho}=F_{\xi}\left(M_{\lambda-\rho}\right) \rightarrow M_{\lambda-\rho}$ then $\gamma=\phi_{M_{\lambda-\rho}}$ where $\phi: F_{\xi}(\theta) \rightarrow \operatorname{Id}_{\theta}$. So $\operatorname{Im}(\gamma)=\nu\left(J\left(\phi, F_{\xi}(\theta)\right)\right)$. Since ν preserves sums, (ii) follows.
(iii) Every submodule of $M_{\lambda-\rho}$ is a quotient of a direct sum of $P_{\mu-\rho}$ with $\chi_{\mu}=\chi_{\lambda}, \mu \leq \lambda$. Hence by Proposition $16.1 \mu \preceq \lambda$, as λ is dominant. (This also follows from Theorem 20.13). So if $W_{\lambda}=1$ then by (ii) ν is surjective, hence bijective by (i). Since $I \cap J$ is the largest of all ideals contained both in I and in J and similarly for submodules, ν also preserves intersections by (i). Thus ν is an isomorphism of lattices.

Corollary 24.5. Let $\theta=\chi_{\lambda}$ where λ is dominant. If $M_{\lambda-\rho}$ is irreducible then U_{θ} is a simple algebra. Conversely, if U_{θ} is simple then $M_{\mu-\rho}$ is irreducible for all μ with $\chi_{\mu}=\theta$.
Proof. The direct implication follows from Theorem 24.4. For the reverse implication, suppose for some distinct $\mu_{1}, \mu_{2} \in W \lambda$, we have $M_{\mu_{1}-\rho} \hookrightarrow M_{\mu_{2}-\rho}$ and $M_{\mu_{1}-\rho}$ is simple. Then in view of the DufloJoseph theorem we have an inclusion

$$
J:=\operatorname{Hom}_{\text {fin }}\left(M_{\mu_{2}-\rho}, M_{\mu_{1}-\rho}\right) \hookrightarrow \operatorname{Hom}_{\text {fin }}\left(M_{\mu_{2}-\rho}, M_{\mu_{2}-\rho}\right)=U_{\theta},
$$

and J is a proper 2 -sided ideal (as it does not contain 1) which is not zero (as $M_{\mu_{1}-\rho} \cong M_{\mu_{1}-\rho}^{\vee}$ and hence for a finite dimensional \mathfrak{g}-module $\left.V, \operatorname{Hom}\left(M_{\mu_{2}-\rho}, V \otimes M_{\mu_{1}-\rho}\right) \cong V\left[\mu_{2}-\mu_{1}\right]\right)$.

Using the determinant formula for the Shapovalov form, this gives an explicit description of the locus of $\theta \in \mathfrak{h}^{*} / W$ where U_{θ} is simple.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

