24. Applications of projective functors - I

24.1. Translation functors. Let 6, x € h*/WW and V be a finite di-
mensional irreducible g-module. Write F) vy for the projective functor
II, o Fy o Ily, and let us view it as a functor Rep(g)s — Rep(g),-

Pick dominant weights A, € h* such that 8 = x\,x = x,, and
A — p1 € P (this can be done if F) v # 0, which we will assume).

Theorem 24.1. If Wy = W, and V has extremal weight ;1 — X\ then
F.ve : Rep(g)g — Rep(g)y is an equivalence of categories. A quasi-
inverse equivalence is given by the functor Fyy+ .

Proof. Tt suffices to show that
Fx,Vﬂ(MA—p) = Mu—pv
Indeed, then
Fovex o Fyvo(My—p) = Mr—p, Fyvgo Fove (Mup) = My,

FG,V*,X(Mu—p) = M/\—p'

SO
Fovex o Fyve = Idrep(a)s: Fx.vi0 © Fovex = Idrep(g),

ie., F\ v, Fpv-, are mutually quasi-inverse equivalences.
We only prove the first statement, the second one being similar. We
have

Feve(My—p) = IL(V @ My_,).

By Corollary 20.5(i), V ® M,_, has a standard filtration whose com-
position factors are My;3_, where 3 is a weight of V. The only ones
among them that survive the application of II, are those for which
Xot8 = Xpu» 1€, A+ 3 = wp for some w € W. So wp = p (as p is
dominant). Thus, applying Lemma 23.4 with ¢ = u, v = wpu, we get

(A= p)?* < (A —wp)* = B2

On the other hand, since ;1 — A is an extremal weight of V', we have
(A — p)? > B2 Tt follows that (A — u)? = 32 = (A — wpu)? Thus by
Lemma 23.4 we may choose w € W). But since Wy C W, it follows
that wpu = p, so B = pu— . Since the weight multiplicity of an extremal

weight is 1, it follows that F) y¢(Mr_,) = M,_,, as claimed. O

Theorem 24.1 shows that for dominant A the category Rep(g),, de-
pends (up to equivalence) only on the coset A + P and the subgroup
Wy C W. In view of Theorem 24.1, the functors F, v are called trans-
lation functors (as they translate between different central charac-

ters).
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Remark 24.2. Suppose we only have W, C W, instead of W = W,
(with all the other assumptions being the same). Then the proof of
Theorem 24.1 still shows that F) vg(My_,) = M,_,. Thus [F ve|dx =
d,, and since by Theorem 23.2 [F) y,] is W-invariant, it follows that
[F\veld, =0, for all v € W,

On the other hand, we no longer have Fyy-,(M,_,) = M,_,, in
general. Namely, the proof of Theorem 24.1 shows that Fy -, (M,_,)
has a filtration whose successive quotients are M, _,, v € W, A, each oc-
curring with multiplicity 1 (so the length of this filtration is |[W,,/W,]).

Thus
[Fov- Z 5,

veWuA
It follows that
[FX,V,G][FB,V*,X](SAL - |WM/W>\|5W

hence Fy v o Fy v+ (M,—,) = |W,/Wi|M,_, (as the left hand side is
projective). Thus F) v 0 Fyy-, = |W,/W,|Id.

Remark 24.3. Let C C Rep(g) be a full subcategory invariant under
all Fy and Iy, and Cy := II4C = C N Rep(g)g. Then Theorem 24.1
implies that if W) = W, then the functors F, vy, Fy v+, are mutually
quasi-inverse equivalences between Cy and C,. Interesting examples of
this include:

1. C = O. In this case we obtain that for dominant A\ the category
O,, up to equivalence depends only on A + P and the stabilizer W,.
In particular, for regular dominant integral A all these categories are
equivalent.

2. C is the category of g-modules which are locally finite and semisim-
ple with respect to a reductive Lie subalgebra ¢ C g. If £ is the
fixed subalgebra of an involution of g, this category contains the cate-
gory of (ggr, K)-modules for any connected compact group K such that
LieK = ¢. Namely, it is just the subcategory of modules that integrate
to K.

24.2. Two-sided ideals in U, and submodules of Verma mod-
ules. Let 8 = x, for dominant A. Let €y denote the lattice of two-
sided ideals in Uy (i.e., the set of two-sided ideals equipped with the
operations of sum and intersection). Likewise, let Q(\) be the lattice
of submodules of M,_,. We have a map v : {0y — (M) given by
v(J) = JMy_,. It is clear that v preserves inclusion and arbitrary
sums.

Theorem 24.4. (i) I C J iffv(I) C v(J). In particular, v is injective.
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(it) The image of v is the set of submodules of My_, which are quo-
tients of direct sums of P,_, where x, = xx, # 2 A and pp <X Wip.

(i1i) If X is reqular (i.e., Wy = 1) then v is an isomorphism of
lattices.

Proof. (i) Let F be a projective #-functor, and ¢ : F' — Idy a morphism
of functors Rep(g); — Rep(g). Let M(¢, F') be the image of the map
by, F(My_,) — My_, and J(¢, I') the image of ¢y, : F(Up) — Up.
Note that ¢y, is a morphism of (U(g), Up)-bimodules, so J(¢, F') is a
subbimodule of Uy, i.e., a 2-sided ideal. Let a : Uy — M,_, be the
surjection given by a(u) = uvy_,. Then by functoriality of ¢

ao Py, = Pu,_, 0 a.

Hence
v(J(¢,F)) = J(o, F)My—, = J(&, F)ur-p = a(J (¢, F)) =

Im(a o ¢p,) = Im(gzﬁMAW oa)= Im(¢MA7p) =M(¢, F).

Let us show that any 2-sided ideal J in Uy is of the form J(¢, F')
for some F', ¢. Since Uy is Noetherian, J is generated by some finite
dimensional subspace V' C J which can be chosen g.4-invariant. Then
by Frobenius reciprocity the g,q-morphism ¢ : V' — Uy can be lifted
to a morphism of (U(g), Up)-bimodules VU = Fy(Uy) — Uy,
i.e., to a functorial morphism ¢ : Fy(6) — Idy. It is clear that then
J=J(o,F).

We are now ready to prove (i), i.e., that M (¢, F') C M (¢, F') implies
J(¢, F) C J(¢', F"). Since F(My_,), F'(My_,) are projective, the in-
clusion M (¢, F) — M(¢', F") lifts to a map a : FI(M,_,) — F'(M,_,),
ie., <;$’MA7P oa = ¢y,_,. But by Theorem 22.4, morphisms of projective
f-functors are the same as morphisms of the images of M,_, under

these functors. Thus there is o : F' — F’ which maps to a and such
that ¢’ o a = ¢. Hence

J(6, F) = Im(¢y,) C Im(¢y,) = J(¢', F),

and (i) follows.

(ii) The proof of (i) implies that the image of v consists exactly of
the submodules M (¢, F'). Such a submodule is the image of F'(M)_,)
under a morphism. But F is a projective #-functor, so by Corollary
22.6(iii), it is of the form F'(6), where F' is a projective functor. Also

by Theorem 23.6, F' is a direct sum of F¢, so F'(My_,) is a direct sum

of P,_,, where (u,\) is a proper representation of . Thus p < A
and pu = Wypu. Conversely, if for such g we have a homomorphism

120



Y Py = Fe(My_)) = My, then v = ¢y, where ¢ @ F¢(0) — 1dy.
So Im(vy) = v(J(¢, Fe(0))). Since v preserves sums, (ii) follows.

(iii) Every submodule of M,_, is a quotient of a direct sum of P,_,
with x, = xa,p# < A. Hence by Proposition 16.1 1 < A, as A is
dominant. (This also follows from Theorem 20.13). So if W) = 1 then
by (ii) v is surjective, hence bijective by (i). Since I N J is the largest
of all ideals contained both in I and in J and similarly for submodules,
v also preserves intersections by (i). Thus v is an isomorphism of
lattices. U

Corollary 24.5. Let 0 = x, where X is dominant. If My_, is irre-
ducible then Uy is a simple algebra. Conversely, if Uy is simple then
M

u—p 18 trreducible for all p with x, = 0.

Proof. The direct implication follows from Theorem 24.4. For the re-
verse implication, suppose for some distinct pq,us € WA, we have
M,_-, — M,,_, and M, _, is simple. Then in view of the Duflo-
Joseph theorem we have an inclusion

J := Homg,(M,y—p, M, —p) = Homen (M,,,—,, M,,,—,) = U,

and J is a proper 2-sided ideal (as it does not contain 1) which is not

zero (as My, , = M, _, and hence for a finite dimensional g-module
V, Hom(My,—p, V& My, —p) = Vpz — pa]). O

Using the determinant formula for the Shapovalov form, this gives
an explicit description of the locus of 6 € h* /W where Uy is simple.
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