25. Applications of projective functors - 11

25.1. Duflo’s theorem on primitive ideals in Uy. Recall that a
prime ideal in a commutative ring R is a proper ideal I such that
if 2y € I then z € I or y € I. This definition is not good for non-
commutative rings: for example, the zero ideal in the matrix algebra
Mat,,(C), n > 2, would not be prime, even though this algebra is
simple; so Mat, (C) would have no prime ideals at all. However, the
definition can be reformulated so that it works well for noncommutative
rings.

Definition 25.1. A proper 2-sided ideal I in a (possibly non-commutative)
ring R is prime if whenever the product XY of two 2-sided ideals
X,Y C R is contained in I, either X or Y must be contained in I.

Note that for commutative rings this coincides with the usual defini-
tion. Indeed, if [ is prime in the noncommutative sense and if xy € I
then (x)(y) C I, s0 (x) C I or (y) C I,ie x oryisin I. Conversely,
if I is prime in the commutative sense and X,Y are not contained in
I then there exist z € X,y € Y not in I, so zy ¢ I, i.e., XY is not
contained in /. But in the noncommutative case the two definitions
differ, e.g. 0 is clearly a prime ideal (in the noncommutative sense) in
any simple algebra, e.g. in the matrix algebra Mat,, (C).

A ring R is called prime if 0 is a prime ideal in R. For example, if
R is an integral domain then it is prime, and the converse holds if R
is commutative. On the other hand, there are many noncommutative
prime rings which are not domains, e.g. simple rings, such as the matrix
algebras Mat,,(C),n > 2. Also it is clear that an ideal I C R is prime
iff the ring R/I is prime (thus every maximal ideal is prime, so prime
ideals always exist). If moreover R/I is a domain, one says that [ is
completely prime.

Another important notion is that of a primitive ideal.

Definition 25.2. An ideal I C R is primitive if it is the annihilator
of a simple R-module M.

It is easy to see that every primitive ideal I is prime: if XY are
2-sided ideals in R and XY C I then XYM = 0, so if Y is not
contained in [ then Y M # 0. Thus Y M = M (as M is simple), hence
XM =XYM =0,s0 X CI. Also for a commutative ring a primitive
ideal is the same thing as a maximal ideal. Indeed, if I is maximal then
R/I is a field, so a simple R-module, and I is the annihilator of R/I.
Conversely, if I is primitive and is the annihilator of a simple module

M then M = R/J is a field and I = J, so [ is maximal.
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Exercise 25.3. Show that every maximal ideal in a unital ring is
primitive, and give a counterexample to the converse.

We see that in general a prime ideal need not be primitive, e.g. the
zero ideal in C[z]. Nevertheless, for Uy we have the following remarkable
theorem due to M. Duflo:

Theorem 25.4. Every prime ideal J C Uy is primitive and moreover is
the annihilator of a simple highest weight module L,,_,, where x,, = 0.

Proof. The module M := M,_,/v(J) has finite length, so let us endow
it with a filtration by submodules Fj, = F,M with simple successive
quotients Ly, ..., L, (Ly = Fy/Fy_1). Let I C Uy be the annihilators
of Lj. Since JM = 0, we have J C I for all k. Also I, F) C Fj_1, so
I..I,M = 0, hence I ...I,M,_, C JM,_,. By Theorem 24.1(i), this
implies that [;....I,, C J. Since J is prime, this means that there exists
m such that I,, € J. Then J = I, i.e. J is the annihilator of L,,.
But L,, = L,_, for some 1 such that x, = x) = 0. O

Note that the choice of u is not unique, for example, for J = 0 and
generic 6, any of the |W| possible choices of p is good. In fact, the
proof of Duflo’s theorem shows that for every dominant A such that
6 = x, we can choose p € WA such that u < A.

25.2. Classification of simple Harish-Chandra bimodules. De-
note by HCy the category of Harish-Chandra bimodules over g annihi-
lated on the right by the ideal (Kerf)™. These categories form a nested
sequence; denote the corresponding nested union by HCjy. Recall that
we have a direct sum decomposition HC' = ®gey/w HCy. This implies
that every simple Harish-Chandra bimodule belongs to HC} for some
central character 6.

Recall also that for a finite dimensional g-module V', in HC}y we have
the object V ® Uy. Moreover, this object is projective: for Y € HC}
we have

Hom(V ® Uy, Y) = Homg_pimea(V ® U(g),Y) = Hom,_ (V,Y),

which is an exact functor since Y is a locally finite (hence semisimple)
gag-module. Finally, since Y is a finitely generated bimodule locally
finite under g.q, there exists a finite dimensional g,q-submodule V C Y
that generates Y as a bimodule. Then the homomorphism

T VeUlg) =Y

corresponding to ¢ : V < Y is surjective and factors through the

module V ® Uy. Thus Y is a quotient of V ® Uy. Thus we have
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Lemma 25.5. The abelian category HC} has enough projectives.

We also note that this category has finite dimensional Hom spaces.
Indeed, If Y1,Ys € HCj then Y] is a quotient of V ® Uy for some
V, so Hom(Y3,Y32) C Hom(V ® Uy, Y2) = Hom,,,(V,Y2), which is finite
dimensional. Finally, note that this category is Noetherian: any nested
sequence of subobjects of an object stabilizes.

It thus follows from the Krull-Schmidt theorem that in HC}, every
object of HC} is uniquely a finite direct sum of indecomposables, and
from Proposition 16.2 the indecomposable projectives and the simples
of HC} labeled by the same index set. It remains to describe this
labeling set.

Theorem 25.6. The simples (and indecomposable projectives) in HC}
are labeled by the set =, via & € =+ L¢, Pe. Namely, if € = (u, \) is a
proper representation then P¢ is the unique indecomposable projective
in HCy such that Pe @y (g Mr—p = Py

Proof. Every indecomposable projective is a direct summand of V ® Uy.
But (V ® Up) ®@u() Y = Fy(0)(Y). Thus from the classification of
projective functors (Theorem 23.6) it follows that the indecomposable
summands of V ® Uy are P¢ such that P,® = F¢(0). O

Corollary 25.7. Objects in HC;, hence in HCy and HC', have finite
length.

Proof. Recall that HCj = @, HC, ,, the decomposition according to
left generalized central characters. By Theorem 25.6, each subcategory
H C>1<,9 has finitely many simple objects. Thus the statement follows

from Proposition 16.2. 0

25.3. Equivalence between category O and category of Harish-
Chandra bimodules. Let 6 = y, where A is dominant. Let O, p be
the full subcategory of O consisting of modules with weights in A + P.
Define the functor

T\ : H 001 — O)\+ P
given by T5(Y') =Y ®u(g) Mr—,. Also let O(A) be the full subcategory
of Oy;p of modules M which admit a presentation

Q1 — Qo — M — 0,

where @y, ()1 are direct sums of P,_, with p € A+ P and p <X Wyp.
Note that the functor T) is left adjoint to the functor H, defined in
Subsection 19.3: H)(X) = Homg,(M_,, X). Indeed,
Hom(7T)\(Y), X) = Hom(Y ®y(g) Mr—p, X) =

Hom(Y, Hom(M,_,, X)) = Hom(Y, Homg, (Mx_,, X)) = Hom(Y, H\(X)).
124



Theorem 25.8. (J. Bernstein-S, Gelfand) (i) If X is a reqular weight
then the functor Ty is an equivalence of categories, with quasi-inverse
H,y.

(i1) In general, Ty is fully faithful and defines an equivalence

HC@ = O()\),
with quasi-inverse Hy.

Remark 25.9. Note that if A is not regular then the subcategory
O(A) C O need not be closed under taking subquotients (even though
it is abelian by Theorem 25.8). Also the functor T\ (and thus the
inclusion O(A) < O) need not be (left) exact. Soif f: X — YV is a
morphism in O(A) then its kernels in O(A\) and in O may differ, and
in particular the latter may not belong to O(\). See Example 26.2.

Proof. (i) is a special case of (ii), so let us prove (ii). To this end, we’ll
use the following general fact.

Proposition 25.10. Let A, B be abelian categories such that A has
enough projectives and T : A — B a right exact functor which maps
projectives to projectives. Suppose that T is fully faithful on projectives,
i.e., for any projectives Py, P, € A, the natural map Hom(Py, Py) —
Hom(T'(Py), T(Ry)) is an isomorphism. Then T is fully faithful, and
defines an equivalence of A onto the subcategory of objects Y € B which
admit a presentation

T(P)—T(P) —-Y —0
for some projectives Py, P, € A.

Proof. We first show that T is faithful. Let X, X' € Aanda: X — X'
Pick presentations

PP —X—0, P— P —X =0

We have maps py: Py — X, p: Bj — X', p1: PL = Py, p} : P — F.
There exist morphisms ag : Py — B}, a1 : P, — P| such that (ay, ag, a)
is a morphism of presentations.

Suppose T'(a) = 0. Then T(p;)T(ap) = 0. Thus Y := ImT(ay) C
KerT(pp) = ImT(py). Thus the map T(ag) : T(F) — Y lifts to
b:T(Fy) — T(P]) such that T'(ag) = T'(p})b. Since T is full on projec-
tives, we have b = T'(c¢) for some ¢ : Py — P}, so T'(ag) = T(p})T(c) =
T(pic). Since T is faithful on projectives, this implies that ag = pec.
Thus Imag C Imp| = Kerp|. It follows that pjag = 0, hence apy = 0.

But pg is an epimorphism, hence a = 0, as claimed.
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Now let us show that 7"is full. Let X, X’ € Aandb: T(X) — T(X').
The functor T' maps the above presentations of X, X’ into presentations
of T'(X), T(X') (as it is right exact and maps projectives to projectives):

T(P) = T(P) —»T(X)—=0, T(P)—=T(F) —T(X")—0,

and we can find by : T(Py) — T(F}),by : T(P1) — T(P]) such that
(b1, bo,b) is a morphism of presentations. Since 7T is fully faithful on
projectives, there exist ag,a; such that T'(ag) = by, T(a;) = by and
aop1 = piag. Thus ay maps Imp; = Kerpy into Imp| = Kerp). This
implies that ag descends to a : X — X', and T'(a)T (po) = T (pg)bo-
Hence (T'(a) — b)T(po) = 0, so since T'(pg) is an epimorphism we get
T(a) = b, as claimed.
If Y € Im(T) then Y = T(X) where X has presentation

Ph—F—X—=0.
Thus Y has presentation

Conversely, if Y has such a presentation as a cokernel of a morphism
f:T(P) — T(FR) then f = T(g) where g : P, — Py, and Y =
T'(Coker(g)), which proves the last claim of the proposition. O

Now we are ready to prove Theorem 25.8. By Lemma 25.5, HCj has
enough projectives. Also the functor T) is right exact, as it is given
by tensor product. Further, if P is projective then Hom(7)\(P),Y) =
Hom(P, Hy(Y)) is exact in Y since H) is exact by Proposition 19.7
and P is projective. Thus T)\(P) is projective. Finally, the fact that
T is fully faithful on projectives was one of the main results about
projective functors (Theorem 22.4). So Proposition 25.10 applies to
A=HCj, B=0Oy.p, T =T, Moreover, the image of T} is precisely
the category O(\) by the classification of projective functors (Theorem
23.6).

For an equivalence of categories, a right adjoint is a quasi-inverse.
Thus H, is quasi-inverse of T}, as claimed. The theorem is proved. [

Corollary 25.11. Every Harish-Chandra bimodule M with right cen-
tral character 0 is realizable as Vi where V is a (not necessarily uni-
tary) admissible representation of the complex simply connected group
G corresponding to g on a Hilbert space.

Proof. Let us prove the statement if § = y, where X is a regular dom-
inant weight (the general proof is similar).
We have seen in Subsection 19.3 that Hy(M, ) is the principal se-

ries module M(A, 1) = Homg,(My—p, M,/ ). Thus by Theorem 25.8
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M(), p) is injective in HCj if p is dominant (since M,,_, is projective,
hence M l_ 18 injective). Moreover, since every indecomposable pro-
jective in Oy p is a direct summand of V ® M,,_, for some dominant
i and finite dimensional g-module V', it follows that every indecom-
posable injective is a direct summand in V ® M, lf , for some V' and
dominant p. Hence by Theorem 25.8, every indecomposable injective
in HC} is a direct summand in V' ® M(A, ) for some V' and domi-
nant u. Thus any Y € HCY is contained in a direct sum of objects
V @ M(A, u) for finite dimensional V' and dominant p. Since principal
series modules M (A, i) are realizable in a Hilbert space by Proposition
19.5, we are done by Corollary 6.13. O

Exercise 25.12. (i) Generalize the proof of Corollary 25.11 to non-
regular dominant weights .

(ii) Generalize Corollary 25.11 to any Harish-Chandra bimodule with
generalized central character #, and then to any Harish-Chandra bimod-
ule.

Hint. Recall that C5%,(G/B) is the space of smooth functions F' on
G which satisfy the differential equations

(Ry = A(b))F = (Ry — p(b)) F = 0
for b € b and b € b (here R is the vector field corresponding to the
right translation by b). Now for N > 1 consider the space C5°, x(G/B)
of smooth functions F' on G satisfying the differential equations
(By = A0)VF = (R — p(b)" F = 0.

(Note that C%5, (G/B) = CY,(G/B).) Show that C55, v(G/B) are
admissible representations of G on Fréchet spaces. Then mimic the
proof of Corollary 25.11 using these instead of CY°,(G/B).
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