
25. Applications of projective functors - II

25.1. Duflo’s theorem on primitive ideals in Uθ. Recall that a
prime ideal in a commutative ring R is a proper ideal I such that
if xy ∈ I then x ∈ I or y ∈ I. This definition is not good for non-
commutative rings: for example, the zero ideal in the matrix algebra
Matn(C), n ≥ 2, would not be prime, even though this algebra is
simple; so Matn(C) would have no prime ideals at all. However, the
definition can be reformulated so that it works well for noncommutative
rings.

Definition 25.1. A proper 2-sided ideal I in a (possibly non-commutative)
ring R is prime if whenever the product XY of two 2-sided ideals
X, Y ⊂ R is contained in I, either X or Y must be contained in I.

Note that for commutative rings this coincides with the usual defini-
tion. Indeed, if I is prime in the noncommutative sense and if xy ∈ I
then (x)(y) ⊂ I, so (x) ⊂ I or (y) ⊂ I, i.e. x or y is in I. Conversely,
if I is prime in the commutative sense and X, Y are not contained in
I then there exist x ∈ X, y ∈ Y not in I, so xy /∈ I, i.e., XY is not
contained in I. But in the noncommutative case the two definitions
differ, e.g. 0 is clearly a prime ideal (in the noncommutative sense) in
any simple algebra, e.g. in the matrix algebra Matn(C).

A ring R is called prime if 0 is a prime ideal in R. For example, if
R is an integral domain then it is prime, and the converse holds if R
is commutative. On the other hand, there are many noncommutative
prime rings which are not domains, e.g. simple rings, such as the matrix
algebras Matn(C), n ≥ 2. Also it is clear that an ideal I ⊂ R is prime
iff the ring R/I is prime (thus every maximal ideal is prime, so prime
ideals always exist). If moreover R/I is a domain, one says that I is
completely prime.

Another important notion is that of a primitive ideal.

Definition 25.2. An ideal I ⊂ R is primitive if it is the annihilator
of a simple R-module M .

It is easy to see that every primitive ideal I is prime: if X, Y are
2-sided ideals in R and XY ⊂ I then XYM = 0, so if Y is not
contained in I then YM 6= 0. Thus YM = M (as M is simple), hence
XM = XYM = 0, so X ⊂ I. Also for a commutative ring a primitive
ideal is the same thing as a maximal ideal. Indeed, if I is maximal then
R/I is a field, so a simple R-module, and I is the annihilator of R/I.
Conversely, if I is primitive and is the annihilator of a simple module
M then M = R/J is a field and I = J , so I is maximal.
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Exercise 25.3. Show that every maximal ideal in a unital ring is
primitive, and give a counterexample to the converse.

We see that in general a prime ideal need not be primitive, e.g. the
zero ideal in C[x]. Nevertheless, for Uθ we have the following remarkable
theorem due to M. Duflo:

Theorem 25.4. Every prime ideal J ⊂ Uθ is primitive and moreover is
the annihilator of a simple highest weight module Lµ−ρ, where χµ = θ.

Proof. The module M := Mλ−ρ/ν(J) has finite length, so let us endow
it with a filtration by submodules Fk = FkM with simple successive
quotients L1, ..., Ln (Lk = Fk/Fk−1). Let Ik ⊂ Uθ be the annihilators
of Lk. Since JM = 0, we have J ⊂ Ik for all k. Also IkFk ⊂ Fk−1, so
I1...InM = 0, hence I1...InMλ−ρ ⊂ JMλ−ρ. By Theorem 24.1(i), this
implies that I1....In ⊂ J . Since J is prime, this means that there exists
m such that Im ⊂ J . Then J = Im, i.e. J is the annihilator of Lm.
But Lm = Lµ−ρ for some µ such that χµ = χλ = θ. �

Note that the choice of µ is not unique, for example, for J = 0 and
generic θ, any of the |W | possible choices of µ is good. In fact, the
proof of Duflo’s theorem shows that for every dominant λ such that
θ = χλ, we can choose µ ∈ Wλ such that µ � λ.

25.2. Classification of simple Harish-Chandra bimodules. De-
note by HCn

θ the category of Harish-Chandra bimodules over g annihi-
lated on the right by the ideal (Kerθ)n. These categories form a nested
sequence; denote the corresponding nested union by HCθ. Recall that
we have a direct sum decomposition HC = ⊕θ∈h∗/WHCθ. This implies
that every simple Harish-Chandra bimodule belongs to HC1

θ for some
central character θ.

Recall also that for a finite dimensional g-module V , in HC1
θ we have

the object V ⊗ Uθ. Moreover, this object is projective: for Y ∈ HC1
θ

we have

Hom(V ⊗ Uθ, Y ) = Homg−bimod(V ⊗ U(g), Y ) = Homgad(V, Y ),

which is an exact functor since Y is a locally finite (hence semisimple)
gad-module. Finally, since Y is a finitely generated bimodule locally
finite under gad, there exists a finite dimensional gad-submodule V ⊂ Y
that generates Y as a bimodule. Then the homomorphism

î : V ⊗ U(g)→ Y

corresponding to i : V ↪→ Y is surjective and factors through the
module V ⊗ Uθ. Thus Y is a quotient of V ⊗ Uθ. Thus we have

123



Lemma 25.5. The abelian category HC1
θ has enough projectives.

We also note that this category has finite dimensional Hom spaces.
Indeed, If Y1, Y2 ∈ HC1

θ then Y1 is a quotient of V ⊗ Uθ for some
V , so Hom(Y1, Y2) ⊂ Hom(V ⊗Uθ, Y2) = Homgad(V, Y2), which is finite
dimensional. Finally, note that this category is Noetherian: any nested
sequence of subobjects of an object stabilizes.

It thus follows from the Krull-Schmidt theorem that in HC1
θ , every

object of HC1
θ is uniquely a finite direct sum of indecomposables, and

from Proposition 16.2 the indecomposable projectives and the simples
of HC1

θ labeled by the same index set. It remains to describe this
labeling set.

Theorem 25.6. The simples (and indecomposable projectives) in HC1
θ

are labeled by the set Ξ, via ξ ∈ Ξ 7→ Lξ,Pξ. Namely, if ξ = (µ, λ) is a
proper representation then Pξ is the unique indecomposable projective
in HC1

θ such that Pξ ⊗U(g) Mλ−ρ = Pµ−ρ.

Proof. Every indecomposable projective is a direct summand of V ⊗Uθ.
But (V ⊗ Uθ) ⊗U(g) Y = FV (θ)(Y ). Thus from the classification of
projective functors (Theorem 23.6) it follows that the indecomposable
summands of V ⊗ Uθ are Pξ such that Pξ⊗ = Fξ(θ). �

Corollary 25.7. Objects in HC1
θ , hence in HCθ and HC, have finite

length.

Proof. Recall that HC1
θ = ⊕χHC1

χ,θ, the decomposition according to
left generalized central characters. By Theorem 25.6, each subcategory
HC1

χ,θ has finitely many simple objects. Thus the statement follows
from Proposition 16.2. �

25.3. Equivalence between category O and category of Harish-
Chandra bimodules. Let θ = χλ where λ is dominant. Let Oλ+P be
the full subcategory of O consisting of modules with weights in λ+P .
Define the functor

Tλ : HC1
θ → Oλ+P

given by Tλ(Y ) = Y ⊗U(g) Mλ−ρ. Also let O(λ) be the full subcategory
of Oλ+P of modules M which admit a presentation

Q1 → Q0 →M → 0,

where Q0, Q1 are direct sums of Pµ−ρ with µ ∈ λ+ P and µ � Wλµ.
Note that the functor Tλ is left adjoint to the functor Hλ defined in

Subsection 19.3: Hλ(X) = Homfin(Mλ−ρ, X). Indeed,

Hom(Tλ(Y ), X) = Hom(Y ⊗U(g) Mλ−ρ, X) =

Hom(Y,Hom(Mλ−ρ, X)) = Hom(Y,Homfin(Mλ−ρ, X)) = Hom(Y,Hλ(X)).
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Theorem 25.8. (J. Bernstein-S, Gelfand) (i) If λ is a regular weight
then the functor Tλ is an equivalence of categories, with quasi-inverse
Hλ.

(ii) In general, Tλ is fully faithful and defines an equivalence

HC1
θ
∼= O(λ),

with quasi-inverse Hλ.

Remark 25.9. Note that if λ is not regular then the subcategory
O(λ) ⊂ O need not be closed under taking subquotients (even though
it is abelian by Theorem 25.8). Also the functor Tλ (and thus the
inclusion O(λ) ↪→ O) need not be (left) exact. So if f : X → Y is a
morphism in O(λ) then its kernels in O(λ) and in O may differ, and
in particular the latter may not belong to O(λ). See Example 26.2.

Proof. (i) is a special case of (ii), so let us prove (ii). To this end, we’ll
use the following general fact.

Proposition 25.10. Let A,B be abelian categories such that A has
enough projectives and T : A → B a right exact functor which maps
projectives to projectives. Suppose that T is fully faithful on projectives,
i.e., for any projectives P0, P1 ∈ A, the natural map Hom(P1, P0) →
Hom(T (P1), T (P0)) is an isomorphism. Then T is fully faithful, and
defines an equivalence of A onto the subcategory of objects Y ∈ B which
admit a presentation

T (P1)→ T (P0)→ Y → 0

for some projectives P0, P1 ∈ A.

Proof. We first show that T is faithful. Let X,X ′ ∈ A and a : X → X ′.
Pick presentations

P1 → P0 → X → 0, P ′1 → P ′0 → X ′ → 0.

We have maps p0 : P0 → X, p′0 : P ′0 → X ′, p1 : P1 → P0, p′1 : P ′1 → P ′0.
There exist morphisms a0 : P0 → P ′0, a1 : P1 → P ′1 such that (a1, a0, a)
is a morphism of presentations.

Suppose T (a) = 0. Then T (p′0)T (a0) = 0. Thus Y := ImT (a0) ⊂
KerT (p′0) = ImT (p′1). Thus the map T (a0) : T (P0) → Y lifts to
b : T (P0)→ T (P ′1) such that T (a0) = T (p′1)b. Since T is full on projec-
tives, we have b = T (c) for some c : P0 → P ′1, so T (a0) = T (p′1)T (c) =
T (p′1c). Since T is faithful on projectives, this implies that a0 = p′1c.
Thus Ima0 ⊂ Imp′1 = Kerp′0. It follows that p′0a0 = 0, hence ap0 = 0.
But p0 is an epimorphism, hence a = 0, as claimed.
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Now let us show that T is full. Let X,X ′ ∈ A and b : T (X)→ T (X ′).
The functor T maps the above presentations of X,X ′ into presentations
of T (X), T (X ′) (as it is right exact and maps projectives to projectives):

T (P1)→ T (P0)→ T (X)→ 0, T (P ′1)→ T (P ′0)→ T (X ′)→ 0,

and we can find b0 : T (P0) → T (P ′0), b1 : T (P1) → T (P ′1) such that
(b1, b0, b) is a morphism of presentations. Since T is fully faithful on
projectives, there exist a0, a1 such that T (a0) = b0, T (a1) = b1 and
a0p1 = p′1a0. Thus a0 maps Imp1 = Kerp0 into Imp′1 = Kerp′0. This
implies that a0 descends to a : X → X ′, and T (a)T (p0) = T (p′0)b0.
Hence (T (a) − b)T (p0) = 0, so since T (p0) is an epimorphism we get
T (a) = b, as claimed.

If Y ∈ Im(T ) then Y = T (X) where X has presentation

P1 → P0 → X → 0.

Thus Y has presentation

T (P1)→ T (P0)→ Y → 0.

Conversely, if Y has such a presentation as a cokernel of a morphism
f : T (P1) → T (P0) then f = T (g) where g : P1 → P0, and Y =
T (Coker(g)), which proves the last claim of the proposition. �

Now we are ready to prove Theorem 25.8. By Lemma 25.5, HC1
θ has

enough projectives. Also the functor Tλ is right exact, as it is given
by tensor product. Further, if P is projective then Hom(Tλ(P ), Y ) =
Hom(P,Hλ(Y )) is exact in Y since Hλ is exact by Proposition 19.7
and P is projective. Thus Tλ(P ) is projective. Finally, the fact that
Tλ is fully faithful on projectives was one of the main results about
projective functors (Theorem 22.4). So Proposition 25.10 applies to
A = HC1

θ , B = Oλ+P , T = Tλ. Moreover, the image of Tλ is precisely
the category O(λ) by the classification of projective functors (Theorem
23.6).

For an equivalence of categories, a right adjoint is a quasi-inverse.
Thus Hλ is quasi-inverse of Tλ, as claimed. The theorem is proved. �

Corollary 25.11. Every Harish-Chandra bimodule M with right cen-
tral character θ is realizable as Vfin where V is a (not necessarily uni-
tary) admissible representation of the complex simply connected group
G corresponding to g on a Hilbert space.

Proof. Let us prove the statement if θ = χλ where λ is a regular dom-
inant weight (the general proof is similar).

We have seen in Subsection 19.3 that Hλ(M
∨
µ−ρ) is the principal se-

ries module M(λ, µ) = Homfin(Mλ−ρ,M
∨
µ−ρ). Thus by Theorem 25.8
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M(λ, µ) is injective in HC !
θ if µ is dominant (since Mµ−ρ is projective,

hence M∨
µ−ρ is injective). Moreover, since every indecomposable pro-

jective in Oλ+P is a direct summand of V ⊗Mµ−ρ for some dominant
µ and finite dimensional g-module V , it follows that every indecom-
posable injective is a direct summand in V ⊗M∨

µ−ρ for some V and
dominant µ. Hence by Theorem 25.8, every indecomposable injective
in HC1

θ is a direct summand in V ⊗M(λ, µ) for some V and domi-
nant µ. Thus any Y ∈ HCθ

1 is contained in a direct sum of objects
V ⊗M(λ, µ) for finite dimensional V and dominant µ. Since principal
series modules M(λ, µ) are realizable in a Hilbert space by Proposition
19.5, we are done by Corollary 6.13. �

Exercise 25.12. (i) Generalize the proof of Corollary 25.11 to non-
regular dominant weights λ.

(ii) Generalize Corollary 25.11 to any Harish-Chandra bimodule with
generalized central character θ, and then to any Harish-Chandra bimod-
ule.

Hint. Recall that C∞λ,µ(G/B) is the space of smooth functions F on
G which satisfy the differential equations

(Rb − λ(b))F = (Rb − µ(b))F = 0

for b ∈ b and b ∈ b (here Rb is the vector field corresponding to the
right translation by b). Now for N ≥ 1 consider the space C∞λ,µ,N(G/B)
of smooth functions F on G satisfying the differential equations

(Rb − λ(b))NF = (Rb − µ(b))NF = 0.

(Note that C∞λ,µ,1(G/B) = C∞λ,µ(G/B).) Show that C∞λ,µ,N(G/B) are
admissible representations of G on Fréchet spaces. Then mimic the
proof of Corollary 25.11 using these instead of C∞λ,µ(G/B).

127



MIT OpenCourseWare
https://ocw.mit.edu 

18.757 Representations of Lie Groups 
Fall 2023  

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms. 


	18.757cover.pdf
	cover.pdf
	Blank Page





