
26. Representations of SL2(C)

26.1. Harish-Chandra bimodules for sl2(C). Let us now work out
the simplest example, g = sl2(C). In this case h∗ = C, P = Z, χλ =
λ2. So by Theorem 25.6, irreducible Harish-Chandra bimodules Lξ are
parametrized by pairs ξ = (µ, λ) of complex numbers such that λ− µ
is an integer, modulo the map (µ, λ) 7→ (−µ,−λ), and we may (and
will) assume that (µ, λ) is a proper representation of ξ, i.e., λ /∈ Z<0

and if λ = 0 then µ ∈ Z≤0. Let us describe these bimodules in terms
of the principal series bimodules M(λ, µ).

Proposition 26.1. (i) The principal series bimodule M(λ, µ) is ir-
reducible and isomorphic to M(−λ,−µ) unless λ, µ are nonzero inte-
gers of the same sign. Otherwise such bimodules are pairwise non-
isomorphic.

(ii) If λ, µ are both nonzero integers of the same sign then M(λ, µ) is
indecomposable and has a finite dimensional constituent L∗|λ|−1⊗L|µ|−1,
which is a submodule if λ > 0 and quotient if λ < 0. The other
composition factor is M(λ,−µ) ∼= M(−λ, µ), which is irreducible.

(iii) If ξ = (µ, λ) is a proper representation with λ /∈ Z≥1 then
Lξ = M(λ, µ). If ξ = (µ, λ) where λ ∈ Z≥1 then Lξ = L∗λ−1 ⊗ Lµ−1 if
µ ≥ 1 and Lξ = M(λ, µ) if µ ≤ 0.

Proof. (i),(ii) Consider first the case when λ and µ are both non-
integers. Then the weights ±λ are dominant and M∨

±µ−1 are simple, so
by Theorem 25.8 M(λ, µ) is also simple and isomorphic to M(−λ,−µ).

Now suppose λ, µ are integers. Recall that M(λ, µ) decomposes over
the diagonal copy of g as

(18) M(λ, µ) = ⊕j≥0L|λ−µ|+2j.

If λ = 0 and µ ≥ 0, then the equivalence Tλ = T0 maps M(0,±µ)
to M∨

±µ−1. So if µ = 0, we have a simple bimodule M(0, 0). On the
other hand, if µ > 0, we have two bimodules M(0,−µ),M(0, µ) and a
natural map

a : M(0, µ) = Homfin(M−1,M
∨
µ−1)→M(0,−µ) = Homfin(M−1,M

∨
−µ−1)

induced by the surjection M∨
µ−1 → M∨

−µ−1. The kernel of this map is
Kera = Homfin(M−1, Lµ−1) = 0, which implies that a is an isomorphism
(as the K-type of the bimodules M(0, µ),M(0,−µ) is the same by
(18)). So we have the simple bimodule M(µ, 0) = M(−µ, 0). If µ =
0, λ 6= 0, the situation is similar, as λ and µ play a symmetric role.

It remains to consider the situation when λ, µ ∈ Z\0. So let n,m be
positive integers. By Theorem 25.8, the bimodule M(n,−m) is simple,
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as it corresponds to the simple module M∨
−m−1. Similarly, M(−n,m)

is simple. Now, we have homomorphisms

a : M(n,m)→M(n,−m), b : M(n,−m)→M(−n,−m).

Since M(n,−m) is simple and a 6= 0, it is surjective, so in view of (18)
we have a short exact sequence

0→ L∗n−1 ⊗ Lm−1 →M(n,m)→M(n,−m)→ 0.

Similarly, since b 6= 0, it is injective, so in view of (18) we have a short
exact sequence

0→M(n,−m)→M(−m,−n)→ L∗n−1 ⊗ Lm−1 → 0.

Moreover, these sequences are not split by Theorem 25.8. This proves
(i),(ii).

(iii) follows immediately from (i),(ii). The proposition is proved. �

Example 26.2. One may also describe explicitly the projectives Pξ.
As an example let us do so for ξ = (−1, 0). Consider the tensor product
L1 ⊗ U0, which is a projective object. We have (L1 ⊗ U0) ⊗U0 M−1 =
L1 ⊗ M−1 = P−2, the big projective object with composition series
[M−2,C,M−2]. Thus L1 ⊗ U0 = Pξ. Over the diagonal copy of g we
have

Pξ = L1 ⊗ U0 = L1 ⊗ (L0 ⊕ L2 ⊕ ...) = 2L1 ⊕ 2L3 ⊕ ...

Thus we have a short exact sequence

(19) 0→ Lξ → Pξ → Lξ → 0,

where Lξ = M(0,−1) = M(0, 1), which is not split.
This shows that the functor Tλ = T0 is not exact in this case. Indeed,

T0(Lξ) = M∨
0 (M∨

0 ∈ O(0) with presentation P−2 → P−2 → M∨
0 → 0

and H0(M∨
0 ) = M(0, 1)), so the image of (19) under T0 is the sequence

0→M∨
0 → P−2 →M∨

0 → 0,

which is not exact in the leftmost nontrivial term (the cohomology is
C). This sequence is, however, exact in the category O(0), which has
just two indecomposable objects M∨

0 and P−2 (so O(0) is not closed
under taking subquotients and the inclusion O(0) ↪→ O is not exact).

26.2. Representations of SL2(C). Let us now consider represen-
tations of G = SL2(C). We have g = sl2(C), K = SU(2). We
have already classified the irreducible Harish-Chandra (bi)modules and
shown that the only ones are finite dimensional modules and princi-
pal series modules. Moreover, we realized the principal series module
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M(λ, µ) as the space of K-finite vectors in the space of smooth func-
tions F : G→ C such that

F (gb) = F (g)t(b)λ−µ|t(b)|2µ−2, b ∈ B,
where B ⊂ G is the subgroup of upper triangular matrices. Thus,
similarly to the real case, setting µ − λ = m ∈ Z, we may represent
M(λ, µ) as the space of polynomial tensor fields on CP1 = S2 of the
form

ω = φ(u)(du)
m
2 |du|1−µ,

and we have an admissible realization of M(λ, µ) by the vector space
C∞λ−1,µ−1(G/B) of smooth tensor fields of the same form. The (right)
action of the group G on this space is given by(

φ ◦
(
a b
c d

))
(u) = φ

(
au+ b

cu+ d

)
(cu+ d)−m|cu+ d|2µ−2.

We may also upgrade this realization to a Hilbert space realization by
completing it with respect to the inner product

‖ω‖2 =

∫
S2

|φ(u)|2dA,

where dA is the rotation-invariant probability measure on S2. However,
this inner product is not G-invariant, in general; it is only G-invariant if
Reµ = m

2
, i.e., µ = m

2
+ s, s ∈ iR. This shows that the (g, K)-modules

M(−m
2

+ s, m
2

+ s) are unitary and irreducible for any imaginary s,
with the Hilbert space completion being L2

−m
2

+s−1,m
2

+s−1(G/B) – the

unitary principal series.
Also the trivial representation is obviously unitary. Are there any

other unitary irreducible representations? Clearly, they cannot be finite
dimensional. However, the answer is yes. To find them, let us first
determine which M(λ, µ) are Hermitian. It is easy to show that this
happens whenever λ2 = µ2, i.e., λ = ±µ. If λ = −µ, we get 2Reµ = m,
so µ = m

2
+ s, λ = −m

2
+ s, s ∈ iR, exactly as above. On the other

hand, if λ = µ then we get µ − µ = m, which implies that m = 0,
i.e., λ = µ ∈ R. In this case by Theorem 25.6 the module M(µ, µ) is
irreducible if and only if µ /∈ Z. Thus we see that for 0 < |µ| < 1, this
module is unitary, as we have a continuous family of simple Hermitian
modules X(c) := M(

√
c,
√
c) for c ∈ (−∞, 1), and these modules are in

the unitary principal series for c ≤ 0. This family of unitary modules
for c > 0 (0 < |µ| < 1) is called the complementary series; it is
analogous to the complementary series in the real case.

It remains to consider the intervals m < |µ| < m + 1 for m ∈ Z≥0.
If M(µ, µ) is unitary for at least one point in such interval, then it is
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so for the whole interval, and taking the limit µ→ m+ 1, we see that
L∗m+1⊗Lm+1, which is a composition factor of M(m+ 1,m+ 1), would
have to be unitary, which it is not. This shows that we have no unitary
modules in these intervals. Thus we obtain the following result.

Theorem 26.3. (Gelfand-Naimark) The irreducible unitary represen-
tations of SL2(C) are Hilbert space completions of the following unitary
Harish-Chandra modules:
• Unitary principal series M(−m

2
+ s, m

2
+ s), m ∈ Z, s ∈ iR;

• Complementary series M(s, s), −1 < s < 1;
• The trivial representation C.
Here M(−m

2
+ s, m

2
+ s) ∼= M(m

2
− s,−m

2
− s), M(s, s) = M(−s,−s)

and there are no other isomorphisms.

Exercise 26.4. Compute the map M 7→ M∨ from Exercise 5.17 on
the set of irreducible Harish-Chandra modules for SL2(R) and SL2(C).

Exercise 26.5. The following exercise is the complex analog of Exer-
cise 9.6.

(i) Show that for −1 < s < 0 the formula

(f, g)s :=

∫
C2

f(y)g(z)|y − z|−2s−2dydydzdz

defines a positive definite inner product on the space C0(C) of continu-
ous functions f : C→ C with compact support (Hint: pass to Fourier
transforms).

(ii) Deduce that if f is a measurable function on C then

0 ≤ (f, f)s ≤ ∞,
so measurable functions f with (f, f)s < ∞ modulo those for which
(f, f)s = 0 form a Hilbert space Hs with inner product (, )s, which is
the completion of C0(C) under (, )s.

(iii) Let us view Hs as the space of tensor fields f(y)|dy|1−s, where f
is as in (ii). Show that the complementary series unitary representation

M̂(s, s) of SL2(C) may be realized in Hs with G acting naturally on
such tensor fields.
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