
26. Representations of SL2(C)

26.1. Harish-Chandra bimodules for sl2(C). Let us now work out
the simplest example, g = sl2(C). In this case h∗ = C, P = Z, χλ =
λ2. So by Theorem 25.6, irreducible Harish-Chandra bimodules Lξ are
parametrized by pairs ξ = (µ, λ) of complex numbers such that λ− µ
is an integer, modulo the map (µ, λ) 7→ (−µ,−λ), and we may (and
will) assume that (µ, λ) is a proper representation of ξ, i.e., λ /∈ Z<0

and if λ = 0 then µ ∈ Z≤0. Let us describe these bimodules in terms
of the principal series bimodules M(λ, µ).

Proposition 26.1. (i) The principal series bimodule M(λ, µ) is ir-
reducible and isomorphic to M(−λ,−µ) unless λ, µ are nonzero inte-
gers of the same sign. Otherwise such bimodules are pairwise non-
isomorphic.

(ii) If λ, µ are both nonzero integers of the same sign then M(λ, µ) is
indecomposable and has a finite-dimensional constituent L∗|λ|−1⊗L|µ|−1,
which is a submodule if λ > 0 and quotient if λ < 0. The other
composition factor is M(λ,−µ) ∼= M(−λ, µ), which is irreducible.

(iii) If ξ = (µ, λ) is a proper representation with λ /∈ Z≥1 then
Lξ = M(λ, µ). If ξ = (µ, λ) where λ ∈ Z≥1 then Lξ = L∗λ−1 ⊗ Lµ−1 if
µ ≥ 1 and Lξ = M(λ, µ) if µ ≤ 0.

Proof. (i),(ii) Consider first the case when λ and µ are both non-
integers. Then the weights ±λ are dominant and M∨

±µ−1 are simple, so
by Theorem 25.8 M(λ, µ) is also simple and isomorphic to M(−λ,−µ).

Now suppose λ, µ are integers. Recall that M(λ, µ) decomposes over
the diagonal copy of g as

(18) M(λ, µ) = ⊕j≥0L|λ−µ|+2j.

If λ = 0 and µ ≥ 0, then the equivalence Tλ = T0 maps M(0,±µ)
to M∨

±µ−1. So if µ = 0, we have a simple bimodule M(0, 0). On the
other hand, if µ > 0, we have two bimodules M(0,−µ),M(0, µ) and a
natural map

a : M(0, µ) = Homfin(M−1,M
∨
µ−1)→M(0,−µ) = Homfin(M−1,M

∨
−µ−1)

induced by the surjection M∨
µ−1 → M∨

−µ−1. The kernel of this map is
Kera = Homfin(M−1, Lµ−1) = 0, which implies that a is an isomorphism
(as the K-type of the bimodules M(0, µ),M(0,−µ) is the same by
(18)). So we have the simple bimodule M(µ, 0) = M(−µ, 0). If µ =
0, λ 6= 0, the situation is similar, as λ and µ play a symmetric role.

It remains to consider the situation when λ, µ ∈ Z\0. So let n,m be
positive integers. By Theorem 25.8, the bimodule M(n,−m) is simple,
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as it corresponds to the simple module M∨
−m−1. Similarly, M(−n,m)

is simple. Now, we have homomorphisms

a : M(n,m)→M(n,−m), b : M(n,−m)→M(−n,−m).

Since M(n,−m) is simple and a 6= 0, it is surjective, so in view of (18)
we have a short exact sequence

0→ L∗n−1 ⊗ Lm−1 →M(n,m)→M(n,−m)→ 0.

Similarly, since b 6= 0, it is injective, so in view of (18) we have a short
exact sequence

0→M(n,−m)→M(−m,−n)→ L∗n−1 ⊗ Lm−1 → 0.

Moreover, these sequences are not split by Theorem 25.8. This proves
(i),(ii).

(iii) follows immediately from (i),(ii). The proposition is proved. �

Example 26.2. One may also describe explicitly the projectives Pξ.
As an example let us do so for ξ = (−1, 0). Consider the tensor product
L1 ⊗ U0, which is a projective object. We have (L1 ⊗ U0) ⊗U0 M−1 =
L1 ⊗ M−1 = P−2, the big projective object with composition series
[M−2,C,M−2]. Thus L1 ⊗ U0 = Pξ. Over the diagonal copy of g we
have

Pξ = L1 ⊗ U0 = L1 ⊗ (L0 ⊕ L2 ⊕ ...) = 2L1 ⊕ 2L3 ⊕ ...

Thus we have a short exact sequence

(19) 0→ Lξ → Pξ → Lξ → 0,

where Lξ = M(0,−1) = M(0, 1), which is not split.
This shows that the functor Tλ = T0 is not exact in this case. Indeed,

T0(Lξ) = M∨
0 (M∨

0 ∈ O(0) with presentation P−2 → P−2 → M∨
0 → 0

and H0(M∨
0 ) = M(0, 1)), so the image of (19) under T0 is the sequence

0→M∨
0 → P−2 →M∨

0 → 0,

which is not exact in the leftmost nontrivial term (the cohomology is
C). This sequence is, however, exact in the category O(0), which has
just two indecomposable objects M∨

0 and P−2 (so O(0) is not closed
under taking subquotients and the inclusion O(0) ↪→ O is not exact).

26.2. Representations of SL2(C). Let us now consider represen-
tations of G = SL2(C). We have g = sl2(C), K = SU(2). We
have already classified the irreducible Harish-Chandra (bi)modules and
shown that the only ones are finite-dimensional modules and princi-
pal series modules. Moreover, we realized the principal series module
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M(λ, µ) as the space of K-finite vectors in the space of smooth func-
tions F : G→ C such that

F (gb) = F (g)t(b)λ−µ|t(b)|2µ−2, b ∈ B,
where B ⊂ G is the subgroup of upper triangular matrices. Thus,
similarly to the real case, setting µ − λ = m ∈ Z, we may represent
M(λ, µ) as the space of polynomial tensor fields on CP1 = S2 of the
form

ω = φ(u)(du)
m
2 |du|1−µ,

and we have an admissible realization of M(λ, µ) by the vector space
C∞λ−1,µ−1(G/B) of smooth tensor fields of the same form. The (right)
action of the group G on this space is given by(

φ ◦
(
a b
c d

))
(u) = φ

(
au+ b

cu+ d

)
(cu+ d)−m|cu+ d|2µ−2.

We may also upgrade this realization to a Hilbert space realization by
completing it with respect to the inner product

‖ω‖2 =

∫
S2

|φ(u)|2dA,

where dA is the rotation-invariant probability measure on S2. However,
this inner product is not G-invariant, in general; it is only G-invariant if
Reµ = m

2
, i.e., µ = m

2
+ s, s ∈ iR. This shows that the (g, K)-modules

M(−m
2

+ s, m
2

+ s) are unitary and irreducible for any imaginary s,
with the Hilbert space completion being L2

−m
2

+s−1,m
2

+s−1(G/B) – the

unitary principal series.
Also the trivial representation is obviously unitary. Are there any

other unitary irreducible representations? Clearly, they cannot be
finite-dimensional. However, the answer is yes. To find them, let
us first determine which M(λ, µ) are Hermitian. It is easy to show
that this happens whenever λ2 = µ2, i.e., λ = ±µ. If λ = −µ, we get
2Reµ = m, so µ = m

2
+s, λ = −m

2
+s, s ∈ iR, exactly as above. On the

other hand, if λ = µ then we get µ−µ = m, which implies that m = 0,
i.e., λ = µ ∈ R. In this case by Theorem 25.6 the module M(µ, µ) is
irreducible if and only if µ /∈ Z. Thus we see that for 0 < |µ| < 1, this
module is unitary, as we have a continuous family of simple Hermitian
modules X(c) := M(

√
c,
√
c) for c ∈ (−∞, 1), and these modules are in

the unitary principal series for c ≤ 0. This family of unitary modules
for c > 0 (0 < |µ| < 1) is called the complementary series; it is
analogous to the complementary series in the real case.

It remains to consider the intervals m < |µ| < m + 1 for m ∈ Z≥0.
If M(µ, µ) is unitary for at least one point in such interval, then it is
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so for the whole interval, and taking the limit µ→ m+ 1, we see that
L∗m+1⊗Lm+1, which is a composition factor of M(m+ 1,m+ 1), would
have to be unitary, which it is not. This shows that we have no unitary
modules in these intervals. Thus we obtain the following result.

Theorem 26.3. (Gelfand-Naimark) The irreducible unitary represen-
tations of SL2(C) are Hilbert space completions of the following unitary
Harish-Chandra modules:
• Unitary principal series M(−m

2
+ s, m

2
+ s), m ∈ Z, s ∈ iR;

• Complementary series M(s, s), −1 < s < 1;
• The trivial representation C.
Here M(−m

2
+ s, m

2
+ s) ∼= M(m

2
− s,−m

2
− s), M(s, s) = M(−s,−s)

and there are no other isomorphisms.

Exercise 26.4. Compute the map M 7→ M∨ from Exercise 5.17 on
the set of irreducible Harish-Chandra modules for SL2(R) and SL2(C).

Exercise 26.5. The following exercise is the complex analog of Exer-
cise 9.6.

(i) Show that for −1 < s < 0 the formula

(f, g)s :=

∫
C2

f(y)g(z)|y − z|−2s−2dydydzdz

defines a positive definite inner product on the space C0(C) of continu-
ous functions f : C→ C with compact support (Hint: pass to Fourier
transforms).

(ii) Deduce that if f is a measurable function on C then

0 ≤ (f, f)s ≤ ∞,
so measurable functions f with (f, f)s < ∞ modulo those for which
(f, f)s = 0 form a Hilbert space Hs with inner product (, )s, which is
the completion of C0(C) under (, )s.

(iii) Let us view Hs as the space of tensor fields f(y)|dy|1−s, where f
is as in (ii). Show that the complementary series unitary representation

M̂(s, s) of SL2(C) may be realized in Hs with G acting naturally on
such tensor fields.
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