26. Representations of SL(C)

26.1. Harish-Chandra bimodules for sl;(C). Let us now work out
the simplest example, g = sl5(C). In this case h* = C, P = Z, x\ =
A% So by Theorem 25.6, irreducible Harish-Chandra bimodules L are
parametrized by pairs & = (i, A) of complex numbers such that A — u
is an integer, modulo the map (u, \) — (—p, —\), and we may (and
will) assume that (i, A) is a proper representation of £, i.e., A ¢ Z_
and if A = 0 then p € Z<y. Let us describe these bimodules in terms
of the principal series bimodules M (A, ).

Proposition 26.1. (i) The principal series bimodule M(X, ) is ir-
reducible and isomorphic to M(—\, —u) unless A, 1 are nonzero inte-
gers of the same sign. Otherwise such bimodules are pairwise non-
1somorphic.

(11) If A, i are both nonzero integers of the same sign then M(\, ) is
indecomposable and has a finite-dimensional constituent LT)\|_1®L|M|_1,
which is a submodule if X > 0 and quotient if A\ < 0. The other
composition factor is M(A\, —p) = M(—X\, u), which is irreducible.

(111) If & = (u,\) is a proper representation with A\ ¢ Zs then
Le = M\, ). If € = (1, \) where X € Z>y then L = Ly, ® L,y if
p>1 and Le = M(X\, p) if £ <0.

Proof. (i),(ii) Consider first the case when A and g are both non-
integers. Then the weights +\ are dominant and MY, , are simple, so
by Theorem 25.8 M(, 1) is also simple and isomorphic to M(—X, —pu).

Now suppose A, i are integers. Recall that M(A, 1) decomposes over
the diagonal copy of g as

(18) M\, 1) = >0 Lia—pl+25-

If A\ =0 and g > 0, then the equivalence T\ = Ty maps M(0, £ u)
to MY, ;. Soif y = 0, we have a simple bimodule M(0,0). On the
other hand, if g > 0, we have two bimodules M(0, —u), M(0, 1) and a
natural map

a : M(0, u) = Homgn (M_y, M} ;) — M(0, —p1) = Homg, (M_y, MY, )

induced by the surjection M,/ ; — MY, ;. The kernel of this map is
Kera = Homg,(M_y, L,—1) = 0, which implies that a is an isomorphism
(as the K-type of the bimodules M(0, p), M(0, —p) is the same by
(18)). So we have the simple bimodule M(u,0) = M(—p,0). If p =
0, A # 0, the situation is similar, as A and g play a symmetric role.

It remains to consider the situation when A, u € Z\ 0. So let n, m be

positive integers. By Theorem 25.8, the bimodule M(n, —m) is simple,
129



as it corresponds to the simple module MY, ;. Similarly, M(—n,m)
is simple. Now, we have homomorphisms

a:M(n,m) — M(n,—m),b: M(n,—m) — M(—n,—m).

Since M(n, —m) is simple and a # 0, it is surjective, so in view of (18)
we have a short exact sequence

0— Ly 1 ® Ly — M(n,m) — M(n,—m) — 0.

Similarly, since b # 0, it is injective, so in view of (18) we have a short
exact sequence

0 — M(n,—m) - M(—m,—n) = L, | ® Ly,—1 — 0.

Moreover, these sequences are not split by Theorem 25.8. This proves
(1), (11).

(iii) follows immediately from (i),(ii). The proposition is proved. [

Example 26.2. One may also describe explicitly the projectives Pe.
As an example let us do so for & = (—1,0). Consider the tensor product
L, ® Uy, which is a projective object. We have (L; ® Up) ®u, M_1 =
L1 ® M_y = P_,, the big projective object with composition series
[M_5,C, M_5]. Thus Ly ® Uy = P,. Over the diagonal copy of g we
have

P=Li@Uy=L1 @ (LB Lo ®...) =2L1 ®2L5 &P ...
Thus we have a short exact sequence
(19) 0—Ls:—»P:— L — 0,

where Le = M(0, —1) = M(0, 1), which is not split.

This shows that the functor T = Tj is not exact in this case. Indeed,
To(Le) = My (My € O(0) with presentation P_y — P_y — My — 0
and Ho(My') = M(0, 1)), so the image of (19) under Tj is the sequence

0— My — Py — My =0,

which is not exact in the leftmost nontrivial term (the cohomology is
C). This sequence is, however, exact in the category O(0), which has
just two indecomposable objects M and P_5 (so O(0) is not closed
under taking subquotients and the inclusion O(0) < O is not exact).

26.2. Representations of SLy(C). Let us now consider represen-
tations of G = SLy(C). We have g = shh(C), K = SU(2). We
have already classified the irreducible Harish-Chandra (bi)modules and
shown that the only ones are finite-dimensional modules and princi-

pal series modules. Moreover, we realized the principal series module
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M(A, i) as the space of K-finite vectors in the space of smooth func-
tions F' : G — C such that

F(gb) = F(g)t(0)"|t(b)[*~*, b€ B,

where B C G is the subgroup of upper triangular matrices. Thus,
similarly to the real case, setting u — A\ = m € Z, we may represent
M(, 1) as the space of polynomial tensor fields on CP* = S? of the
form

w = p(u)(du)? |dul' ",
and we have an admissible realization of M(\, i) by the vector space
51 ,-1(G/B) of smooth tensor fields of the same form. The (right)
action of the group GG on this space is given by

BT

We may also upgrade this realization to a Hilbert space realization by
completing it with respect to the inner product

Jol? = [ low)aa

where dA is the rotation-invariant probability measure on S?. However,
this inner product is not G-invariant, in general; it is only G-invariant if
Rep = 3, ie., p = F 45, s € iR. This shows that the (g, K')-modules
M(—% + s,% + s) are unitary and irreducible for any imaginary s,
with the Hilbert space completion being Lz%Jrs_l’%Jrs_l(G/B) — the
unitary principal series.

Also the trivial representation is obviously unitary. Are there any
other unitary irreducible representations? Clearly, they cannot be
finite-dimensional. However, the answer is yes. To find them, let
us first determine which M(A, p) are Hermitian. It is easy to show
that this happens whenever \2 = 712, i.e., A = £1. If A = —7i, we get
2Rep =m, so =3 +s, A= —F+s, s € iR, exactly as above. On the
other hand, if A\ = iz then we get y — 1 = m, which implies that m = 0,
ie., A = p € R. In this case by Theorem 25.6 the module M(p, ) is
irreducible if and only if 1 ¢ Z. Thus we see that for 0 < || < 1, this
module is unitary, as we have a continuous family of simple Hermitian
modules X (c) := M(y/c,/c) for ¢ € (—o0, 1), and these modules are in
the unitary principal series for ¢ < 0. This family of unitary modules
for ¢ > 0 (0 < |pu| < 1) is called the complementary series; it is
analogous to the complementary series in the real case.

It remains to consider the intervals m < |u| < m + 1 for m € Z>o.

If M(p, p) is unitary for at least one point in such interval, then it is
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so for the whole interval, and taking the limit 4 — m + 1, we see that
Ly, 1 ® L1, which is a composition factor of M(m+1,m+1), would
have to be unitary, which it is not. This shows that we have no unitary
modules in these intervals. Thus we obtain the following result.

Theorem 26.3. (Gelfand-Naimark) The irreducible unitary represen-
tations of SLo(C) are Hilbert space completions of the following unitary
Harish-Chandra modules:

e Unitary principal series M(—% +s, 5+ s), mE€Z,s€iR;

e Complementary series M(s,s), —1 < s < 1;

e The trivial representation C.

Here M(—% + 5,5 +5) £ M(%F —s,—% —5), M(s,5) = M(—s,—5)
and there are no other isomorphisms.

Exercise 26.4. Compute the map M +— M"Y from Exercise 5.17 on
the set of irreducible Harish-Chandra modules for SLy(R) and S Ly (C).

Exercise 26.5. The following exercise is the complex analog of Exer-
cise 9.6.
(i) Show that for —1 < s < 0 the formula

(Fa)e= [ @Iy = = dydgdzaz

defines a positive definite inner product on the space Cy(C) of continu-
ous functions f : C — C with compact support (Hint: pass to Fourier
transforms).

(ii) Deduce that if f is a measurable function on C then

0<(f, f)s < o0,

so measurable functions f with (f, f)s < oo modulo those for which
(f, f)s = 0 form a Hilbert space H, with inner product (,)s, which is
the completion of Cy(C) under (, )s.

(iii) Let us view H, as the space of tensor fields f(y)|dy|'~%, where f
is as in (ii). Show that the complementary series unitary representation

—

M(s, s) of SLy(C) may be realized in H, with G acting naturally on
such tensor fields.
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