27. Geometry of complex semisimple Lie groups

27.1. The Borel-Weil theorem. Let G be a simply connected semisimple complex Lie group with Lie algebra \mathfrak{g} and a Borel subgroup B generated by a maximal torus $T \subset G$ and the 1-parameter subgroups $\exp \left(t e_{i}\right), i \in \Pi$. Given an integral weight $\lambda \in P$, we can define the corresponding algebraic (in particular, holomorphic) line bundle \mathcal{L}_{λ} on the flag variety G / B. Namely, the total space $T\left(\mathcal{L}_{\lambda}\right)$ of \mathcal{L}_{λ} is $(G \times \mathbb{C}) / B$, where B acts by

$$
(g, z) b=\left(g b, \lambda(b)^{-1} z\right)
$$

and the line bundle \mathcal{L}_{λ} is defined by the projection $\pi: T\left(\mathcal{L}_{\lambda}\right) \rightarrow G / B$ to the first component. So this bundle is G-equivariant, i.e., G acts on $T\left(\mathcal{L}_{\lambda}\right)$ by left multiplication preserving the projection map π. We also see that smooth sections of \mathcal{L}_{λ} are smooth functions $F: G \rightarrow \mathbb{C}$ such that

$$
(g, F(g)) b=(g b, F(g b)),
$$

which yields

$$
F(g b)=\lambda(b)^{-1} F(g)
$$

It follows that the space of smooth sections $\Gamma_{C^{\infty}}\left(G / B, \mathcal{L}_{\lambda}\right)$ coincides with the admissible G-module $C_{-\lambda, 0}^{\infty}(G / B)$, realizing the principal series module $\mathbf{M}(-\lambda+1,1)=\operatorname{Hom}_{\mathrm{fin}}\left(M_{-\lambda}, M_{0}^{\vee}\right)$.
Remark 27.1. Recall that $H^{2}(G / B, \mathbb{Z})=P$. It is easy to check that the first Chern class $c_{1}\left(\mathcal{L}_{\lambda}\right)$ equals λ. This motivates the minus sign in the definition of \mathcal{L}_{λ}.

Example 27.2. Let $G=S L_{2}(\mathbb{C})$, so that B is the subgroup of upper triangular matrices with determinant 1 and $G / B=\mathbb{C} \mathbb{P}^{1}$. Then sections of \mathcal{L}_{m} are functions $F: G \rightarrow \mathbb{C}$ such that $F(g b)=t(b)^{-m} F(g)$, where $t(b)=b_{11}$. Thus $\mathcal{L}_{m} \cong \mathcal{O}(-m)$.

Let us now consider holomorphic sections of \mathcal{L}_{λ}. The space V_{λ} of such sections is a proper subrepresentation of $C_{-\lambda, 0}^{\infty}(G / B)$, namely the subspace where the left copy of \mathfrak{g} (acting by antiholomorphic vector fields) acts trivially. Thus $V_{\lambda}^{\text {fin }}=\operatorname{Hom}_{\text {fin }}\left(M_{-\lambda}, \mathbb{C}\right) \subset \operatorname{Hom}_{\text {fin }}\left(M_{-\lambda}, M_{0}^{\vee}\right)$, and $V_{\lambda}=V_{\lambda}^{\mathrm{fin}}$ since $V_{\lambda}^{\mathrm{fin}}$ is finite dimensional. It follows that $V_{\lambda}^{\mathrm{fin}}=0$ unless $\lambda \in-P_{+}$, and in the latter case $V_{\lambda}=L_{-\lambda}^{*}=L_{\lambda}^{-}=L_{w_{0} \lambda}$, the finite dimensional representation of G with lowest weight λ. Thus we obtain

Theorem 27.3. (Borel-Weil) Let $\lambda \in P$. If $\lambda \in P_{+}$then we have an isomorphism of G-modules

$$
\Gamma\left(G / B, \underset{132}{\mathcal{L}_{-\lambda}}\right) \cong L_{\lambda}^{*}
$$

If $\lambda \notin P_{+}$then $\Gamma\left(G / B, \mathcal{L}_{-\lambda}\right)=0$.
Example 27.4. Let $G=S L_{2}(\mathbb{C})$. Then Theorem 27.3 says that

$$
\Gamma\left(\mathbb{C P}^{1}, \mathcal{O}(m)\right) \cong L_{m}=\mathbb{C}^{m+1}
$$

as representations of G.
More generally, suppose $\lambda \in P$ and $\left(\lambda, \alpha_{i}^{\vee}\right)=0$ for a subset $S \subset \Pi$ of the set of simple roots. Then we have a parabolic subgroup $P_{S} \subset G$ generated by B and also $\exp \left(t f_{i}\right)$ for $i \in S$, and λ extends to a 1dimensional representation of P_{S}. Thus we can define the line bundle $\mathcal{L}_{\lambda, S}$ on the partial flag variety G / P_{S} in the same way as \mathcal{L}_{λ}, and we have $\mathcal{L}_{\lambda}=p_{S}^{*} \mathcal{L}_{\lambda, S}$, where $p_{S}: G / B \rightarrow G / P_{S}$ is the natural projection.

Note that any holomorphic section of \mathcal{L}_{λ} is just a function when restricted to a fiber $F \cong P_{S} / B$ of the fibration p_{S} (a compact complex manifold), so by the maximum principle it must be constant. It follows that $\Gamma\left(G / B, \mathcal{L}_{\lambda}\right)=\Gamma\left(G / P_{S}, \mathcal{L}_{\lambda, S}\right)$. Thus we get

Corollary 27.5. Let $\lambda \in P$ with $\left(\lambda, \alpha_{i}^{\vee}\right)=0, i \in S$. Then

$$
\Gamma\left(G / P_{S}, \mathcal{L}_{-\lambda, S}\right) \cong L_{\lambda}^{*}
$$

if $\lambda \in P_{+}$, otherwise $\Gamma\left(G / P_{S}, \mathcal{L}_{-\lambda, S}\right)=0$.
Example 27.6. Let $G=S L_{n}(\mathbb{C})=S L(V), V=\mathbb{C}^{n}$, and $P_{S} \subset G$ be the subgroup of matrices b such that $b_{r 1}=0$ for $r>1$ (this corresponds to $S=\{2, \ldots, n-1\})$. Then $G / P_{S}=\mathbb{C P}^{n-1}=\mathbb{P}(V)$. The condition $\left(\lambda, \alpha_{i}^{\vee}\right)=0, i \in S$ means that $\lambda=m \omega_{1}$, and in this case $\mathcal{L}_{m, S}=$ $\mathcal{O}(-m)$. So Corollary 27.5 says that

$$
\Gamma(\mathbb{P}(V), \mathcal{O}(m))=L_{m \omega_{n-1}}=S^{m} V^{*}
$$

for $m \geq 0$, and zero for $m<0$. This is also clear from elementary considerations, as by definition $\Gamma(\mathbb{P}(V), \mathcal{O}(m))$ is the space of homogeneous polynomials on V of degree m.

In fact, for $\lambda \in P_{+}$we can construct an isomorphism $L_{\lambda}^{*} \cong \Gamma\left(G / B, \mathcal{L}_{-\lambda}\right)$ explicitly as follows. Let v_{λ} be a highest weight vector of $L_{\lambda}, \ell \in L_{\lambda}^{*}$, and $F_{\ell}(g):=\left(\ell, g v_{\lambda}\right)$. Then

$$
F_{\ell}(g b)=\lambda(b) F_{\ell}(g) .
$$

Thus the assignment $\ell \rightarrow F_{\ell}$ defines a linear map $L_{\lambda}^{*} \rightarrow \Gamma\left(G / B, \mathcal{L}_{-\lambda}\right)$ which is easily seen to be an isomorphism.

This shows that the bundle $\mathcal{L}_{-\lambda}$ is globally generated, i.e., for every $x \in G / B$ there exists $s \in \Gamma\left(G / B, \mathcal{L}_{-\lambda}\right)$ such that $s(x) \neq 0$. In other words, we have a regular map $i_{\lambda}: G / B \rightarrow \mathbb{P} L_{\lambda}$ defined as follows.

For $x \in G / B$, choose a basis vector u of the fiber of $\mathcal{L}_{-\lambda}$ at x and define $i_{\lambda}(x) \in L_{\lambda}$ by the equality

$$
s(x)=i_{\lambda}(x)(s) u
$$

for $s \in \Gamma\left(G / B, \mathcal{L}_{-\lambda}\right) \cong L_{\lambda}^{*}$. Then $i_{\lambda}(x)$ is well defined (does not depend on the choice of u) up to scaling and is nonzero, so gives rise to a well defined element of the projective space $\mathbb{P} L_{\lambda}$. Another definition of this map is

$$
i_{\lambda}(x)=x\left(\mathbb{C} v_{\lambda}\right)
$$

This shows that i_{λ} is an embedding when λ is regular, i.e., in this case the line bundle \mathcal{L}_{λ} is very ample. On the other hand, if λ is not necessarily regular and S is the set of j such that $\left(\lambda, \alpha_{j}^{\vee}\right)=0$ then $i_{\lambda}: G / P_{S} \rightarrow \mathbb{P} L_{\lambda}$ is an embedding, so the bundle $\mathcal{L}_{-\lambda, S}$ over the partial flag variety G / P_{S} is very ample.

Example 27.7. Let $G=S L_{n}(\mathbb{C})$ and $\lambda=\omega_{k}$. Then $S=[1, n-1] \backslash k$, so $P_{S} \subset G$ is the subgroup of matrices with $g_{i j}=0, i>k, j \leq k$ and G / P_{S} is the Grassmannian $\operatorname{Gr}(k, n)$ of k-dimensional subspaces in \mathbb{C}^{n}. In this case $L_{\lambda}=\wedge^{k} \mathbb{C}^{n}$, so i_{λ} is the Plücker embedding $\operatorname{Gr}(k, n) \hookrightarrow \mathbb{P}\left(\wedge^{k} \mathbb{C}^{n}\right)$.
27.2. The Springer resolution. Recall that a resolution of singularities of an irreducible algebraic variety X is a morphism $p: Y \rightarrow X$ from a smooth variety Y that is proper (for example, projective ${ }^{21}$) and birational. Hironaka proved in 1960s that any variety over a field of characteristic zero has a resolution of singularities. However, it is not unique and this theorem does not provide a nice explicit construction of a resolution.

A basic example of a singular variety arising in Lie theory is the nilpotent cone \mathcal{N} of a semisimple Lie algebra \mathfrak{g}. This variety turns out to admit a very explicit resolution called the Springer resolution, which plays an important role in representation theory.

To define the Springer resolution, consider the cotangent bundle $T^{*} \mathcal{F}$ of the flag variety \mathcal{F} of G. Recall that \mathcal{F} is the variety of Borel subalgebras $\mathfrak{b} \subset \mathfrak{g}$. For $\mathfrak{b} \in \mathcal{F}$, we have an isomorphism $\mathfrak{g} / \mathfrak{b} \cong T_{\mathfrak{b}} \mathcal{F}$ defined by the action of G. Thus $T^{*} \mathcal{F}$ can be viewed as the set of pairs (\mathfrak{b}, x), where $x \in(\mathfrak{g} / \mathfrak{b})^{*}$. Note that $(\mathfrak{g} / \mathfrak{b})^{*} \cong \mathfrak{b}^{\perp}$ under the Killing form, and $\mathfrak{b}^{\perp}=[\mathfrak{b}, \mathfrak{b}]$ is the maximal nilpotent subalgebra of \mathfrak{b}. Thus $T^{*} \mathcal{F}$ is the variety of pairs (\mathfrak{b}, x) where $\mathfrak{b} \in \mathcal{F}$ is a Borel subnalgebra of \mathfrak{g} and $x \in \mathfrak{b}$ a nilpotent element.

[^0]Now we can define the Springer map $p: T^{*} \mathcal{F} \rightarrow \mathcal{N}$ given by $p(\mathfrak{b}, x)=x$. Note that this map is G-invariant, so its fibers over conjugate elements of \mathcal{N} are isomorphic.
Theorem 27.8. The Springer map p is birational and projective, so it is a resolution of singularities.
Proof. To show that p is birational, it suffices to prove that if $e \in \mathcal{N}$ is regular, the Borel subalgebra \mathfrak{b} containing e is unique. To this end, note that $\operatorname{dim} T^{*} \mathcal{F}=2 \operatorname{dim} \mathcal{F}=\operatorname{dim} \mathcal{N}$ and the map p is surjective (as any nilpotent element is contained in a Borel subalgebra). Thus p is generically finite, i.e., $p^{-1}(e)$ is a finite set, and our job is to show that it consists of one element.

We may fix a decomposition $\mathfrak{g}=\mathfrak{n}_{+} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}$and assume that $e=\sum_{i=1}^{r} e_{i}$. Then we have $\left[\rho^{\vee}, e\right]=e$, so the group $\left\{t^{\rho^{\vee}}, t \neq 0\right\} \cong \mathbb{C}^{*}$ acts on $p^{-1}(e)$ (as any Borel subalgebra containing e also contains te). Since $p^{-1}(e)$ is finite, this action must be trivial. Thus ρ^{\vee} normalizes every $\mathfrak{b} \in p^{-1}(e)$, hence is contained in every such \mathfrak{b}. But ρ^{\vee} is regular, so is contained in a unique Cartan subalgebra, namely \mathfrak{h}. Since every semisimple element in a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ is contained in a Cartan subalgebra sitting inside \mathfrak{b}, it follows that $\mathfrak{h} \subset \mathfrak{b}$ for all $\mathfrak{b} \in p^{-1}(e)$. Thus $\left[\omega_{i}^{\vee}, e\right]=e_{i} \in \mathfrak{b}$ for all i. It follows that $\mathfrak{b}=\mathfrak{b}_{+}:=\mathfrak{h} \oplus \mathfrak{n}_{+}$, i.e., $\left|p^{-1}(e)\right|=1$, as claimed.

Now let us show that p is projective. Let $\widetilde{p}: T^{*} \mathcal{F} \rightarrow \mathcal{F} \times \mathcal{N}$ be the map defined by $\widetilde{p}(\mathfrak{b}, x)=(\mathfrak{b}, x)$. This is clearly a closed embedding (the image is defined by the equation $x \in \mathfrak{b}$). But $p=\pi \circ \widetilde{p}$ where $\pi: \mathcal{F} \times \mathcal{N} \rightarrow \mathcal{N}$ is the projection to the second component. Thus p is projective, as claimed.

Remark 27.9. The preimage $p^{-1}(e)$ for $e \in \mathcal{N}$ is called the Springer fiber. If e is not regular, $p^{-1}(e)$ has positive dimension. It is a projective variety, which is in general singular, reducible and has complicated structure, but it plays an important role in representation theory.
Example 27.10. Let $\mathfrak{g}=\mathfrak{s l}_{2}$. Then \mathcal{N} is the usual quadratic cone $y z+x^{2}=0$ in \mathbb{C}^{3}, and $T^{*} \mathcal{F}=T^{*} \mathbb{C} P^{1}$ is the blow-up of the vertex in this cone.
27.3. The symplectic structure on coadjoint orbits. Recall that a smooth real manifold, complex manifold or algebraic variety X is symplectic if it is equipped with a nondegenerate closed 2-form ω. It is clear that in this case X has even dimension.
Theorem 27.11. (Kirillov-Kostant) Let G be a connected real or complex Lie group or complex algebraic group. Then every G-orbit in \mathfrak{g}^{*} has a natural symplectic structure.

Proof. Let O be a G-orbit in \mathfrak{g}^{*} and $f \in O$. Then $T_{f} O=\mathfrak{g} / \mathfrak{g}_{f}$ where \mathfrak{g}_{f} is the set of $x \in \mathfrak{g}$ such that $f([x, y])=0$ for all $y \in \mathfrak{g}$. Define a skewsymmetric bilinear form $\omega_{f}: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{C}$ given by $\omega_{f}(y, z)=f([y, z])$. It is clear that $\operatorname{Ker} \omega_{f}=\mathfrak{g}_{f}$, so ω_{f} defines a nondegenerate form on $\mathfrak{g} / \mathfrak{g}_{f}=T_{f} O$. This defines a nondegenerate G-invariant differential 2-form ω on O.

It remains to show that ω is closed. Let L_{x} be the vector field on O defined by the action of $x \in \mathfrak{g}$; thus $L_{[x, y]}=\left[L_{x}, L_{y}\right]$. It suffices to show that for any $x, y, z \in \mathfrak{g}$ we have $d \omega\left(L_{x}, L_{y}, L_{z}\right)=0$. By Cartan's differentiation formula we have

$$
d \omega\left(L_{x}, L_{y}, L_{z}\right)=\operatorname{Alt}\left(L_{x} \omega\left(L_{y}, L_{z}\right)-\omega\left(\left[L_{x}, L_{y}\right], L_{z}\right)\right)
$$

where Alt denotes the sum over cyclic permutations of x, y, z. Since ω is G-invariant, this yields

$$
d \omega\left(L_{x}, L_{y}, L_{z}\right)(f)=\operatorname{Alt}\left(\omega\left(L_{y}, L_{[x, z]}\right)\right)(f)=f(\operatorname{Alt}([y,[x, z]]))
$$

which vanishes by the Jacobi identity.
Corollary 27.12. The singular locus of the nilpotent cone \mathcal{N} has codimension ≥ 2.

Proof. This follows since \mathcal{N} has finitely many orbits (Exercise 17.8) and by Theorem 27.11 they all have even dimension.

Corollary 27.13. \mathcal{N} is normal (i.e., the algebra $\mathcal{O}(\mathcal{N})$ is integrally closed in its quotient field).

Proof. This follows from Corollary 27.12 since \mathcal{N} is a complete intersection and any complete intersection whose singular locus has codimension ≥ 2 is necessarily normal ($[\mathrm{H}]$, Chapter II, Prop. 8.23).
27.4. The algebra of functions on $T^{*} \mathcal{F}$. We will first recall some facts about normal algebraic varieties.

Proposition 27.14. Let Y be an irreducible normal algebraic variety. Then
(i) ([Eis], Proposition 11.5) The singular locus of Y has codimension ≥ 2.
(ii) ([Eis], Proposition 11.4) If $U \subset Y$ is an open subset and $Y \backslash U$ has codimension ≥ 2 then any regular function f on U extends to a regular function on Y. In particular, any regular function on the smooth locus of Y extends to a regular function on Y.
(iii) Zariski main theorem ([H], Corollary III.11.4). If X is irreducible and $p: X \rightarrow Y$ is a proper birational morphism then fibers of p are connected.

Proposition 27.15. Let Y be an irreducible normal affine algebraic variety and $p: X \rightarrow Y$ be a resolution of singularities. Then the homomorphism $p^{*}: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$ is an isomorphism.
Proof. It is clear that p^{*} is injective, so we only need to show it is surjective. Let $f \in \mathcal{O}(X)$. Since every fiber of p is proper, and also connected due to normality of Y by Proposition 27.14(iii), f is constant along this fiber. So $f=h \circ p$ for $h: Y \rightarrow \mathbb{C}$ a rational function. It remains to show that h is regular. We know that h is regular on the smooth locus of Y (as it is defined at all points of Y). Thus the result follows from the normality of Y and Proposition 27.14(i),(ii).
Theorem 27.16. Let $p: T^{*} \mathcal{F} \rightarrow \mathcal{N}$ be the Springer resolution. Then the map $p^{*}: \mathcal{O}(\mathcal{N}) \rightarrow \mathcal{O}\left(T^{*} \mathcal{F}\right)$ is an isomorphism of graded algebras.
Proof. This follows from Proposition 27.15 and the normality of \mathcal{N} (Corollary 27.13).

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{21}$ Recall that a morphism $f: X \rightarrow Y$ is projective if $f=\pi \circ \tilde{f}$ where $\tilde{f}: X \rightarrow$ $Z \times Y$ is a closed embedding for some projective variety Z and $\pi: Z \times Y \rightarrow Y$ is the projection to the second component.

