27. Geometry of complex semisimple Lie groups

27.1. The Borel-Weil theorem. Let G be a simply connected semisimple complex Lie group with Lie algebra \mathfrak{g} and a Borel subgroup B generated by a maximal torus $T \subset G$ and the 1-parameter subgroups $\exp(te_i), i \in \Pi$. Given an integral weight $\lambda \in P$, we can define the corresponding algebraic (in particular, holomorphic) line bundle \mathcal{L}_{λ} on the flag variety G/B. Namely, the total space $T(\mathcal{L}_{\lambda})$ of \mathcal{L}_{λ} is $(G \times \mathbb{C})/B$, where B acts by

$$(g,z)b = (gb,\lambda(b)^{-1}z),$$

and the line bundle \mathcal{L}_{λ} is defined by the projection $\pi : T(\mathcal{L}_{\lambda}) \to G/B$ to the first component. So this bundle is *G*-equivariant, i.e., *G* acts on $T(\mathcal{L}_{\lambda})$ by left multiplication preserving the projection map π . We also see that smooth sections of \mathcal{L}_{λ} are smooth functions $F : G \to \mathbb{C}$ such that

$$(g, F(g))b = (gb, F(gb)),$$

which yields

$$F(gb) = \lambda(b)^{-1}F(g).$$

It follows that the space of smooth sections $\Gamma_{C^{\infty}}(G/B, \mathcal{L}_{\lambda})$ coincides with the admissible *G*-module $C^{\infty}_{-\lambda,0}(G/B)$, realizing the principal series module $\mathbf{M}(-\lambda+1,1) = \operatorname{Hom}_{\operatorname{fin}}(M_{-\lambda}, M_0^{\vee})$.

Remark 27.1. Recall that $H^2(G/B, \mathbb{Z}) = P$. It is easy to check that the first Chern class $c_1(\mathcal{L}_{\lambda})$ equals λ . This motivates the minus sign in the definition of \mathcal{L}_{λ} .

Example 27.2. Let $G = SL_2(\mathbb{C})$, so that B is the subgroup of upper triangular matrices with determinant 1 and $G/B = \mathbb{CP}^1$. Then sections of \mathcal{L}_m are functions $F: G \to \mathbb{C}$ such that $F(gb) = t(b)^{-m}F(g)$, where $t(b) = b_{11}$. Thus $\mathcal{L}_m \cong \mathcal{O}(-m)$.

Let us now consider holomorphic sections of \mathcal{L}_{λ} . The space V_{λ} of such sections is a proper subrepresentation of $C^{\infty}_{-\lambda,0}(G/B)$, namely the subspace where the left copy of \mathfrak{g} (acting by antiholomorphic vector fields) acts trivially. Thus $V_{\lambda}^{\text{fin}} = \text{Hom}_{\text{fin}}(M_{-\lambda}, \mathbb{C}) \subset \text{Hom}_{\text{fin}}(M_{-\lambda}, M_0^{\vee})$, and $V_{\lambda} = V_{\lambda}^{\text{fin}}$ since V_{λ}^{fin} is finite dimensional. It follows that $V_{\lambda}^{\text{fin}} = 0$ unless $\lambda \in -P_+$, and in the latter case $V_{\lambda} = L^*_{-\lambda} = L^-_{\lambda} = L_{w_0\lambda}$, the finite dimensional representation of G with lowest weight λ . Thus we obtain

Theorem 27.3. (Borel-Weil) Let $\lambda \in P$. If $\lambda \in P_+$ then we have an isomorphism of G-modules

$$\Gamma(G/B, \mathcal{L}_{-\lambda}) \cong L^*_{\lambda}.$$
¹³²

If $\lambda \notin P_+$ then $\Gamma(G/B, \mathcal{L}_{-\lambda}) = 0$.

Example 27.4. Let $G = SL_2(\mathbb{C})$. Then Theorem 27.3 says that

$$\Gamma(\mathbb{CP}^1, \mathcal{O}(m)) \cong L_m = \mathbb{C}^{m+1}$$

as representations of G.

More generally, suppose $\lambda \in P$ and $(\lambda, \alpha_i^{\vee}) = 0$ for a subset $S \subset \Pi$ of the set of simple roots. Then we have a parabolic subgroup $P_S \subset G$ generated by B and also $\exp(tf_i)$ for $i \in S$, and λ extends to a 1dimensional representation of P_S . Thus we can define the line bundle $\mathcal{L}_{\lambda,S}$ on the partial flag variety G/P_S in the same way as \mathcal{L}_{λ} , and we have $\mathcal{L}_{\lambda} = p_S^* \mathcal{L}_{\lambda,S}$, where $p_S : G/B \to G/P_S$ is the natural projection.

Note that any holomorphic section of \mathcal{L}_{λ} is just a function when restricted to a fiber $F \cong P_S/B$ of the fibration p_S (a compact complex manifold), so by the maximum principle it must be constant. It follows that $\Gamma(G/B, \mathcal{L}_{\lambda}) = \Gamma(G/P_S, \mathcal{L}_{\lambda,S})$. Thus we get

Corollary 27.5. Let $\lambda \in P$ with $(\lambda, \alpha_i^{\vee}) = 0, i \in S$. Then

 $\Gamma(G/P_S, \mathcal{L}_{-\lambda,S}) \cong L^*_{\lambda}.$

if $\lambda \in P_+$, otherwise $\Gamma(G/P_S, \mathcal{L}_{-\lambda,S}) = 0$.

Example 27.6. Let $G = SL_n(\mathbb{C}) = SL(V)$, $V = \mathbb{C}^n$, and $P_S \subset G$ be the subgroup of matrices b such that $b_{r1} = 0$ for r > 1 (this corresponds to $S = \{2, ..., n - 1\}$). Then $G/P_S = \mathbb{CP}^{n-1} = \mathbb{P}(V)$. The condition $(\lambda, \alpha_i^{\vee}) = 0, i \in S$ means that $\lambda = m\omega_1$, and in this case $\mathcal{L}_{m,S} = \mathcal{O}(-m)$. So Corollary 27.5 says that

$$\Gamma(\mathbb{P}(V), \mathcal{O}(m)) = L_{m\omega_{n-1}} = S^m V^*$$

for $m \geq 0$, and zero for m < 0. This is also clear from elementary considerations, as by definition $\Gamma(\mathbb{P}(V), \mathcal{O}(m))$ is the space of homogeneous polynomials on V of degree m.

In fact, for $\lambda \in P_+$ we can construct an isomorphism $L^*_{\lambda} \cong \Gamma(G/B, \mathcal{L}_{-\lambda})$ explicitly as follows. Let v_{λ} be a highest weight vector of L_{λ} , $\ell \in L^*_{\lambda}$, and $F_{\ell}(g) := (\ell, gv_{\lambda})$. Then

$$F_{\ell}(gb) = \lambda(b)F_{\ell}(g).$$

Thus the assignment $\ell \to F_{\ell}$ defines a linear map $L^*_{\lambda} \to \Gamma(G/B, \mathcal{L}_{-\lambda})$ which is easily seen to be an isomorphism.

This shows that the bundle $\mathcal{L}_{-\lambda}$ is **globally generated**, i.e., for every $x \in G/B$ there exists $s \in \Gamma(G/B, \mathcal{L}_{-\lambda})$ such that $s(x) \neq 0$. In other words, we have a regular map $i_{\lambda} : G/B \to \mathbb{P}L_{\lambda}$ defined as follows. For $x \in G/B$, choose a basis vector u of the fiber of $\mathcal{L}_{-\lambda}$ at x and define $i_{\lambda}(x) \in L_{\lambda}$ by the equality

$$s(x) = i_{\lambda}(x)(s)u$$

for $s \in \Gamma(G/B, \mathcal{L}_{-\lambda}) \cong L_{\lambda}^*$. Then $i_{\lambda}(x)$ is well defined (does not depend on the choice of u) up to scaling and is nonzero, so gives rise to a well defined element of the projective space $\mathbb{P}L_{\lambda}$. Another definition of this map is

$$i_{\lambda}(x) = x(\mathbb{C}v_{\lambda}).$$

This shows that i_{λ} is an embedding when λ is regular, i.e., in this case the line bundle \mathcal{L}_{λ} is **very ample**. On the other hand, if λ is not necessarily regular and S is the set of j such that $(\lambda, \alpha_j^{\vee}) = 0$ then $i_{\lambda}: G/P_S \to \mathbb{P}L_{\lambda}$ is an embedding, so the bundle $\mathcal{L}_{-\lambda,S}$ over the partial flag variety G/P_S is very ample.

Example 27.7. Let $G = SL_n(\mathbb{C})$ and $\lambda = \omega_k$. Then $S = [1, n-1] \setminus k$, so $P_S \subset G$ is the subgroup of matrices with $g_{ij} = 0$, $i > k, j \leq k$ and G/P_S is the Grassmannian Gr(k, n) of k-dimensional subspaces in \mathbb{C}^n . In this case $L_{\lambda} = \wedge^k \mathbb{C}^n$, so i_{λ} is the Plücker embedding $Gr(k, n) \hookrightarrow \mathbb{P}(\wedge^k \mathbb{C}^n)$.

27.2. The Springer resolution. Recall that a resolution of singularities of an irreducible algebraic variety X is a morphism $p: Y \to X$ from a smooth variety Y that is proper (for example, projective²¹) and birational. Hironaka proved in 1960s that any variety over a field of characteristic zero has a resolution of singularities. However, it is not unique and this theorem does not provide a nice explicit construction of a resolution.

A basic example of a singular variety arising in Lie theory is the nilpotent cone \mathcal{N} of a semisimple Lie algebra \mathfrak{g} . This variety turns out to admit a very explicit resolution called the **Springer resolution**, which plays an important role in representation theory.

To define the Springer resolution, consider the cotangent bundle $T^*\mathcal{F}$ of the flag variety \mathcal{F} of G. Recall that \mathcal{F} is the variety of Borel subalgebras $\mathfrak{b} \subset \mathfrak{g}$. For $\mathfrak{b} \in \mathcal{F}$, we have an isomorphism $\mathfrak{g}/\mathfrak{b} \cong T_\mathfrak{b}\mathcal{F}$ defined by the action of G. Thus $T^*\mathcal{F}$ can be viewed as the set of pairs (\mathfrak{b}, x) , where $x \in (\mathfrak{g}/\mathfrak{b})^*$. Note that $(\mathfrak{g}/\mathfrak{b})^* \cong \mathfrak{b}^{\perp}$ under the Killing form, and $\mathfrak{b}^{\perp} = [\mathfrak{b}, \mathfrak{b}]$ is the maximal nilpotent subalgebra of \mathfrak{b} . Thus $T^*\mathcal{F}$ is the variety of pairs (\mathfrak{b}, x) where $\mathfrak{b} \in \mathcal{F}$ is a Borel subnalgebra of \mathfrak{g} and $x \in \mathfrak{b}$ a nilpotent element.

²¹Recall that a morphism $f: X \to Y$ is **projective** if $f = \pi \circ \tilde{f}$ where $\tilde{f}: X \to Z \times Y$ is a closed embedding for some projective variety Z and $\pi: Z \times Y \to Y$ is the projection to the second component.

Now we can define the **Springer map** $p: T^*\mathcal{F} \to \mathcal{N}$ given by $p(\mathfrak{b}, x) = x$. Note that this map is *G*-invariant, so its fibers over conjugate elements of \mathcal{N} are isomorphic.

Theorem 27.8. The Springer map p is birational and projective, so it is a resolution of singularities.

Proof. To show that p is birational, it suffices to prove that if $e \in \mathcal{N}$ is regular, the Borel subalgebra \mathfrak{b} containing e is unique. To this end, note that $\dim T^*\mathcal{F} = 2\dim \mathcal{F} = \dim \mathcal{N}$ and the map p is surjective (as any nilpotent element is contained in a Borel subalgebra). Thus p is generically finite, i.e., $p^{-1}(e)$ is a finite set, and our job is to show that it consists of one element.

We may fix a decomposition $\mathfrak{g} = \mathfrak{n}_+ \oplus \mathfrak{h} \oplus \mathfrak{n}_-$ and assume that $e = \sum_{i=1}^r e_i$. Then we have $[\rho^{\vee}, e] = e$, so the group $\{t^{\rho^{\vee}}, t \neq 0\} \cong \mathbb{C}^*$ acts on $p^{-1}(e)$ (as any Borel subalgebra containing e also contains te). Since $p^{-1}(e)$ is finite, this action must be trivial. Thus ρ^{\vee} normalizes every $\mathfrak{b} \in p^{-1}(e)$, hence is contained in every such \mathfrak{b} . But ρ^{\vee} is regular, so is contained in a unique Cartan subalgebra, namely \mathfrak{h} . Since every semisimple element in a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ is contained in a Cartan subalgebra sitting inside \mathfrak{b} , it follows that $\mathfrak{h} \subset \mathfrak{b}$ for all $\mathfrak{b} \in p^{-1}(e)$. Thus $[\omega_i^{\vee}, e] = e_i \in \mathfrak{b}$ for all i. It follows that $\mathfrak{b} = \mathfrak{b}_+ := \mathfrak{h} \oplus \mathfrak{n}_+$, i.e., $|p^{-1}(e)| = 1$, as claimed.

Now let us show that p is projective. Let $\tilde{p}: T^*\mathcal{F} \to \mathcal{F} \times \mathcal{N}$ be the map defined by $\tilde{p}(\mathfrak{b}, x) = (\mathfrak{b}, x)$. This is clearly a closed embedding (the image is defined by the equation $x \in \mathfrak{b}$). But $p = \pi \circ \tilde{p}$ where $\pi: \mathcal{F} \times \mathcal{N} \to \mathcal{N}$ is the projection to the second component. Thus p is projective, as claimed.

Remark 27.9. The preimage $p^{-1}(e)$ for $e \in \mathcal{N}$ is called the **Springer fiber**. If e is not regular, $p^{-1}(e)$ has positive dimension. It is a projective variety, which is in general singular, reducible and has complicated structure, but it plays an important role in representation theory.

Example 27.10. Let $\mathfrak{g} = \mathfrak{sl}_2$. Then \mathcal{N} is the usual quadratic cone $yz + x^2 = 0$ in \mathbb{C}^3 , and $T^*\mathcal{F} = T^*\mathbb{C}P^1$ is the blow-up of the vertex in this cone.

27.3. The symplectic structure on coadjoint orbits. Recall that a smooth real manifold, complex manifold or algebraic variety X is symplectic if it is equipped with a nondegenerate closed 2-form ω . It is clear that in this case X has even dimension.

Theorem 27.11. (Kirillov-Kostant) Let G be a connected real or complex Lie group or complex algebraic group. Then every G-orbit in \mathfrak{g}^* has a natural symplectic structure. Proof. Let O be a G-orbit in \mathfrak{g}^* and $f \in O$. Then $T_f O = \mathfrak{g}/\mathfrak{g}_f$ where \mathfrak{g}_f is the set of $x \in \mathfrak{g}$ such that f([x, y]) = 0 for all $y \in \mathfrak{g}$. Define a skewsymmetric bilinear form $\omega_f : \mathfrak{g} \times \mathfrak{g} \to \mathbb{C}$ given by $\omega_f(y, z) = f([y, z])$. It is clear that $\operatorname{Ker}\omega_f = \mathfrak{g}_f$, so ω_f defines a nondegenerate form on $\mathfrak{g}/\mathfrak{g}_f = T_f O$. This defines a nondegenerate G-invariant differential 2-form ω on O.

It remains to show that ω is closed. Let L_x be the vector field on O defined by the action of $x \in \mathfrak{g}$; thus $L_{[x,y]} = [L_x, L_y]$. It suffices to show that for any $x, y, z \in \mathfrak{g}$ we have $d\omega(L_x, L_y, L_z) = 0$. By Cartan's differentiation formula we have

$$d\omega(L_x, L_y, L_z) = \operatorname{Alt}(L_x \omega(L_y, L_z) - \omega([L_x, L_y], L_z)),$$

where Alt denotes the sum over cyclic permutations of x, y, z. Since ω is *G*-invariant, this yields

$$d\omega(L_x, L_y, L_z)(f) = \operatorname{Alt}(\omega(L_y, L_{[x,z]}))(f) = f(\operatorname{Alt}([y, [x, z]])),$$

which vanishes by the Jacobi identity.

Corollary 27.12. The singular locus of the nilpotent cone \mathcal{N} has codimension ≥ 2 .

Proof. This follows since \mathcal{N} has finitely many orbits (Exercise 17.8) and by Theorem 27.11 they all have even dimension.

Corollary 27.13. \mathcal{N} is normal (i.e., the algebra $\mathcal{O}(\mathcal{N})$ is integrally closed in its quotient field).

Proof. This follows from Corollary 27.12 since \mathcal{N} is a complete intersection and any complete intersection whose singular locus has codimension ≥ 2 is necessarily normal ([H], Chapter II, Prop. 8.23).

27.4. The algebra of functions on $T^*\mathcal{F}$. We will first recall some facts about normal algebraic varieties.

Proposition 27.14. Let Y be an irreducible normal algebraic variety. Then

(i) ([Eis], Proposition 11.5) The singular locus of Y has codimension ≥ 2 .

(ii) ([Eis], Proposition 11.4) If $U \subset Y$ is an open subset and $Y \setminus U$ has codimension ≥ 2 then any regular function f on U extends to a regular function on Y. In particular, any regular function on the smooth locus of Y extends to a regular function on Y.

(iii) Zariski main theorem ([H], Corollary III.11.4). If X is irreducible and $p: X \to Y$ is a proper birational morphism then fibers of p are connected. **Proposition 27.15.** Let Y be an irreducible normal affine algebraic variety and $p : X \to Y$ be a resolution of singularities. Then the homomorphism $p^* : \mathcal{O}(Y) \to \mathcal{O}(X)$ is an isomorphism.

Proof. It is clear that p^* is injective, so we only need to show it is surjective. Let $f \in \mathcal{O}(X)$. Since every fiber of p is proper, and also connected due to normality of Y by Proposition 27.14(iii), f is constant along this fiber. So $f = h \circ p$ for $h : Y \to \mathbb{C}$ a rational function. It remains to show that h is regular. We know that h is regular on the smooth locus of Y (as it is defined at all points of Y). Thus the result follows from the normality of Y and Proposition 27.14(i),(ii). \Box

Theorem 27.16. Let $p: T^*\mathcal{F} \to \mathcal{N}$ be the Springer resolution. Then the map $p^*: \mathcal{O}(\mathcal{N}) \to \mathcal{O}(T^*\mathcal{F})$ is an isomorphism of graded algebras.

Proof. This follows from Proposition 27.15 and the normality of \mathcal{N} (Corollary 27.13).

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.