
27. Geometry of complex semisimple Lie groups

27.1. The Borel-Weil theorem. LetG be a simply connected semisim-
ple complex Lie group with Lie algebra g and a Borel subgroup B
generated by a maximal torus T ⊂ G and the 1-parameter subgroups
exp(tei), i ∈ Π. Given an integral weight λ ∈ P , we can define the cor-
responding algebraic (in particular, holomorphic) line bundle Lλ on the
flag variety G/B. Namely, the total space T (Lλ) of Lλ is (G× C)/B,
where B acts by

(g, z)b = (gb, λ(b)−1z),

and the line bundle Lλ is defined by the projection π : T (Lλ)→ G/B
to the first component. So this bundle is G-equivariant, i.e., G acts on
T (Lλ) by left multiplication preserving the projection map π. We also
see that smooth sections of Lλ are smooth functions F : G → C such
that

(g, F (g))b = (gb, F (gb)),

which yields
F (gb) = λ(b)−1F (g).

It follows that the space of smooth sections ΓC∞(G/B,Lλ) coincides
with the admissible G-module C∞−λ,0(G/B), realizing the principal se-
ries module M(−λ+ 1, 1) = Homfin(M−λ,M

∨
0 ).

Remark 27.1. Recall that H2(G/B,Z) = P . It is easy to check that
the first Chern class c1(Lλ) equals λ. This motivates the minus sign in
the definition of Lλ.

Example 27.2. Let G = SL2(C), so that B is the subgroup of upper
triangular matrices with determinant 1 and G/B = CP1. Then sections
of Lm are functions F : G → C such that F (gb) = t(b)−mF (g), where
t(b) = b11. Thus Lm ∼= O(−m).

Let us now consider holomorphic sections of Lλ. The space Vλ of
such sections is a proper subrepresentation of C∞−λ,0(G/B), namely the
subspace where the left copy of g (acting by antiholomorphic vector
fields) acts trivially. Thus V fin

λ = Homfin(M−λ,C) ⊂ Homfin(M−λ,M
∨
0 ),

and Vλ = V fin
λ since V fin

λ is finite dimensional. It follows that V fin
λ = 0

unless λ ∈ −P+, and in the latter case Vλ = L∗−λ = L−λ = Lw0λ, the
finite dimensional representation of G with lowest weight λ. Thus we
obtain

Theorem 27.3. (Borel-Weil) Let λ ∈ P . If λ ∈ P+ then we have an
isomorphism of G-modules

Γ(G/B,L−λ) ∼= L∗λ.
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If λ /∈ P+ then Γ(G/B,L−λ) = 0.

Example 27.4. Let G = SL2(C). Then Theorem 27.3 says that

Γ(CP1,O(m)) ∼= Lm = Cm+1

as representations of G.

More generally, suppose λ ∈ P and (λ, α∨i ) = 0 for a subset S ⊂ Π
of the set of simple roots. Then we have a parabolic subgroup PS ⊂ G
generated by B and also exp(tfi) for i ∈ S, and λ extends to a 1-
dimensional representation of PS. Thus we can define the line bundle
Lλ,S on the partial flag variety G/PS in the same way as Lλ, and we
have Lλ = p∗SLλ,S, where pS : G/B → G/PS is the natural projection.

Note that any holomorphic section of Lλ is just a function when
restricted to a fiber F ∼= PS/B of the fibration pS (a compact complex
manifold), so by the maximum principle it must be constant. It follows
that Γ(G/B,Lλ) = Γ(G/PS,Lλ,S). Thus we get

Corollary 27.5. Let λ ∈ P with (λ, α∨i ) = 0, i ∈ S. Then

Γ(G/PS,L−λ,S) ∼= L∗λ.

if λ ∈ P+, otherwise Γ(G/PS,L−λ,S) = 0.

Example 27.6. Let G = SLn(C) = SL(V ), V = Cn, and PS ⊂ G be
the subgroup of matrices b such that br1 = 0 for r > 1 (this corresponds
to S = {2, ..., n − 1}). Then G/PS = CPn−1 = P(V ). The condition
(λ, α∨i ) = 0, i ∈ S means that λ = mω1, and in this case Lm,S =
O(−m). So Corollary 27.5 says that

Γ(P(V ),O(m)) = Lmωn−1 = SmV ∗

for m ≥ 0, and zero for m < 0. This is also clear from elementary
considerations, as by definition Γ(P(V ),O(m)) is the space of homoge-
neous polynomials on V of degree m.

In fact, for λ ∈ P+ we can construct an isomorphism L∗λ
∼= Γ(G/B,L−λ)

explicitly as follows. Let vλ be a highest weight vector of Lλ, ` ∈ L∗λ,
and F`(g) := (`, gvλ). Then

F`(gb) = λ(b)F`(g).

Thus the assignment ` → F` defines a linear map L∗λ → Γ(G/B,L−λ)
which is easily seen to be an isomorphism.

This shows that the bundle L−λ is globally generated, i.e., for
every x ∈ G/B there exists s ∈ Γ(G/B,L−λ) such that s(x) 6= 0. In
other words, we have a regular map iλ : G/B → PLλ defined as follows.
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For x ∈ G/B, choose a basis vector u of the fiber of L−λ at x and define
iλ(x) ∈ Lλ by the equality

s(x) = iλ(x)(s)u

for s ∈ Γ(G/B,L−λ) ∼= L∗λ. Then iλ(x) is well defined (does not depend
on the choice of u) up to scaling and is nonzero, so gives rise to a well
defined element of the projective space PLλ. Another definition of this
map is

iλ(x) = x(Cvλ).
This shows that iλ is an embedding when λ is regular, i.e., in this
case the line bundle Lλ is very ample. On the other hand, if λ is
not necessarily regular and S is the set of j such that (λ, α∨j ) = 0 then
iλ : G/PS → PLλ is an embedding, so the bundle L−λ,S over the partial
flag variety G/PS is very ample.

Example 27.7. LetG = SLn(C) and λ = ωk. Then S = [1, n−1]\k, so
PS ⊂ G is the subgroup of matrices with gij = 0, i > k, j ≤ k and G/PS
is the Grassmannian Gr(k, n) of k-dimensional subspaces in Cn. In this
case Lλ = ∧kCn, so iλ is the Plücker embedding Gr(k, n) ↪→ P(∧kCn).

27.2. The Springer resolution. Recall that a resolution of singu-
larities of an irreducible algebraic variety X is a morphism p : Y → X
from a smooth variety Y that is proper (for example, projective21) and
birational. Hironaka proved in 1960s that any variety over a field of
characteristic zero has a resolution of singularities. However, it is not
unique and this theorem does not provide a nice explicit construction
of a resolution.

A basic example of a singular variety arising in Lie theory is the
nilpotent cone N of a semisimple Lie algebra g. This variety turns out
to admit a very explicit resolution called the Springer resolution,
which plays an important role in representation theory.

To define the Springer resolution, consider the cotangent bundle T ∗F
of the flag variety F of G. Recall that F is the variety of Borel subal-
gebras b ⊂ g. For b ∈ F , we have an isomorphism g/b ∼= TbF defined
by the action of G. Thus T ∗F can be viewed as the set of pairs (b, x),
where x ∈ (g/b)∗. Note that (g/b)∗ ∼= b⊥ under the Killing form, and
b⊥ = [b, b] is the maximal nilpotent subalgebra of b. Thus T ∗F is the
variety of pairs (b, x) where b ∈ F is a Borel subnalgebra of g and
x ∈ b a nilpotent element.

21Recall that a morphism f : X → Y is projective if f = π ◦ f̃ where f̃ : X →
Z × Y is a closed embedding for some projective variety Z and π : Z × Y → Y is
the projection to the second component.
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Now we can define the Springer map p : T ∗F → N given by
p(b, x) = x. Note that this map is G-invariant, so its fibers over con-
jugate elements of N are isomorphic.

Theorem 27.8. The Springer map p is birational and projective, so it
is a resolution of singularities.

Proof. To show that p is birational, it suffices to prove that if e ∈ N
is regular, the Borel subalgebra b containing e is unique. To this end,
note that dimT ∗F = 2 dimF = dimN and the map p is surjective (as
any nilpotent element is contained in a Borel subalgebra). Thus p is
generically finite, i.e., p−1(e) is a finite set, and our job is to show that
it consists of one element.

We may fix a decomposition g = n+ ⊕ h ⊕ n− and assume that
e =

∑r
i=1 ei. Then we have [ρ∨, e] = e, so the group {tρ∨ , t 6= 0} ∼= C∗

acts on p−1(e) (as any Borel subalgebra containing e also contains te).
Since p−1(e) is finite, this action must be trivial. Thus ρ∨ normalizes
every b ∈ p−1(e), hence is contained in every such b. But ρ∨ is regular,
so is contained in a unique Cartan subalgebra, namely h. Since every
semisimple element in a Borel subalgebra b ⊂ g is contained in a Cartan
subalgebra sitting inside b, it follows that h ⊂ b for all b ∈ p−1(e).
Thus [ω∨i , e] = ei ∈ b for all i. It follows that b = b+ := h ⊕ n+, i.e.,
|p−1(e)| = 1, as claimed.

Now let us show that p is projective. Let p̃ : T ∗F → F ×N be the
map defined by p̃(b, x) = (b, x). This is clearly a closed embedding
(the image is defined by the equation x ∈ b). But p = π ◦ p̃ where
π : F ×N → N is the projection to the second component. Thus p is
projective, as claimed. �

Remark 27.9. The preimage p−1(e) for e ∈ N is called the Springer
fiber. If e is not regular, p−1(e) has positive dimension. It is a projec-
tive variety, which is in general singular, reducible and has complicated
structure, but it plays an important role in representation theory.

Example 27.10. Let g = sl2. Then N is the usual quadratic cone
yz + x2 = 0 in C3, and T ∗F = T ∗CP 1 is the blow-up of the vertex in
this cone.

27.3. The symplectic structure on coadjoint orbits. Recall that
a smooth real manifold, complex manifold or algebraic variety X is
symplectic if it is equipped with a nondegenerate closed 2-form ω. It
is clear that in this case X has even dimension.

Theorem 27.11. (Kirillov-Kostant) Let G be a connected real or com-
plex Lie group or complex algebraic group. Then every G-orbit in g∗

has a natural symplectic structure.
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Proof. Let O be a G-orbit in g∗ and f ∈ O. Then TfO = g/gf where gf
is the set of x ∈ g such that f([x, y]) = 0 for all y ∈ g. Define a skew-
symmetric bilinear form ωf : g × g → C given by ωf (y, z) = f([y, z]).
It is clear that Kerωf = gf , so ωf defines a nondegenerate form on
g/gf = TfO. This defines a nondegenerate G-invariant differential
2-form ω on O.

It remains to show that ω is closed. Let Lx be the vector field on
O defined by the action of x ∈ g; thus L[x,y] = [Lx, Ly]. It suffices to
show that for any x, y, z ∈ g we have dω(Lx, Ly, Lz) = 0. By Cartan’s
differentiation formula we have

dω(Lx, Ly, Lz) = Alt(Lxω(Ly, Lz)− ω([Lx, Ly], Lz)),

where Alt denotes the sum over cyclic permutations of x, y, z. Since ω
is G-invariant, this yields

dω(Lx, Ly, Lz)(f) = Alt(ω(Ly, L[x,z]))(f) = f(Alt([y, [x, z]])),

which vanishes by the Jacobi identity. �

Corollary 27.12. The singular locus of the nilpotent cone N has codi-
mension ≥ 2.

Proof. This follows since N has finitely many orbits (Exercise 17.8)
and by Theorem 27.11 they all have even dimension. �

Corollary 27.13. N is normal (i.e., the algebra O(N ) is integrally
closed in its quotient field).

Proof. This follows from Corollary 27.12 since N is a complete inter-
section and any complete intersection whose singular locus has codi-
mension ≥ 2 is necessarily normal ([H], Chapter II, Prop. 8.23). �

27.4. The algebra of functions on T ∗F . We will first recall some
facts about normal algebraic varieties.

Proposition 27.14. Let Y be an irreducible normal algebraic variety.
Then

(i) ([Eis], Proposition 11.5) The singular locus of Y has codimension
≥ 2.

(ii) ([Eis], Proposition 11.4) If U ⊂ Y is an open subset and Y \U has
codimension ≥ 2 then any regular function f on U extends to a regular
function on Y . In particular, any regular function on the smooth locus
of Y extends to a regular function on Y .

(iii) Zariski main theorem ([H], Corollary III.11.4). If X is irre-
ducible and p : X → Y is a proper birational morphism then fibers of
p are connected.
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Proposition 27.15. Let Y be an irreducible normal affine algebraic
variety and p : X → Y be a resolution of singularities. Then the
homomorphism p∗ : O(Y )→ O(X) is an isomorphism.

Proof. It is clear that p∗ is injective, so we only need to show it is
surjective. Let f ∈ O(X). Since every fiber of p is proper, and also
connected due to normality of Y by Proposition 27.14(iii), f is constant
along this fiber. So f = h ◦ p for h : Y → C a rational function. It
remains to show that h is regular. We know that h is regular on the
smooth locus of Y (as it is defined at all points of Y ). Thus the result
follows from the normality of Y and Proposition 27.14(i),(ii). �

Theorem 27.16. Let p : T ∗F → N be the Springer resolution. Then
the map p∗ : O(N )→ O(T ∗F) is an isomorphism of graded algebras.

Proof. This follows from Proposition 27.15 and the normality of N
(Corollary 27.13). �
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