27. Geometry of complex semisimple Lie groups

27.1. The Borel-Weil theorem. Let G be a simply connected semisim-
ple complex Lie group with Lie algebra g and a Borel subgroup B
generated by a maximal torus 7' C G and the 1-parameter subgroups
exp(te;), ¢ € TI. Given an integral weight A € P, we can define the cor-
responding algebraic (in particular, holomorphic) line bundle £, on the
flag variety G/B. Namely, the total space T'(L,) of L, is (G x C)/B,
where B acts by
(9,2)b = (gb, A(b)~"2),
and the line bundle £, is defined by the projection 7 : T'(L)) — G/B
to the first component. So this bundle is G-equivariant, i.e., G acts on
T(Ly) by left multiplication preserving the projection map 7. We also
see that smooth sections of £, are smooth functions F' : G — C such
that
(9, F(9))b = (gb, F(gb)),
which yields
F(gb) = A(b)~" F(g).
It follows that the space of smooth sections I'c= (G /B, L)) coincides
with the admissible G-module C' ((G/B), realizing the principal se-
ries module M (=X + 1,1) = Homg, (M_,, MY).

Remark 27.1. Recall that H*(G/B,Z) = P. 1t is easy to check that
the first Chern class ¢;(£,) equals A. This motivates the minus sign in
the definition of L£,.

Example 27.2. Let G = SLy(C), so that B is the subgroup of upper
triangular matrices with determinant 1 and G/B = CP'. Then sections
of L, are functions F' : G — C such that F'(gb) = t(b)""F(g), where
t(b) = by1. Thus L, =2 O(—m).

Let us now consider holomorphic sections of £,. The space V) of
such sections is a proper subrepresentation of C ,(G/B), namely the
subspace where the left copy of g (acting by antiholomorphic vector
fields) acts trivially. Thus Vi = Homg,(M_y, C) C Homg,(M_,, M),
and Vy = V" since V" is finite dimensional. It follows that Vii" = 0
unless A € —Py, and in the latter case V) = L*, = L, = Ly, the
finite dimensional representation of G with lowest weight A\. Thus we
obtain

Theorem 27.3. (Borel-Weil) Let A\ € P. If A € P, then we have an
isomorphism of G-modules

T(G/B,L_)) = L.
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If \¢ Py then T'(G/B,L_)) = 0.

Example 27.4. Let G = SLy(C). Then Theorem 27.3 says that
[(CP',O(m)) = L,, = C™*!

as representations of G.

More generally, suppose A € P and (A, o) = 0 for a subset S C II
of the set of simple roots. Then we have a parabolic subgroup Ps C G
generated by B and also exp(tf;) for i € S, and A extends to a 1-
dimensional representation of Pg. Thus we can define the line bundle
Ly s on the partial flag variety G/Ps in the same way as £, and we
have £y = ptLy s, where ps : G/B — G/ Ps is the natural projection.

Note that any holomorphic section of L, is just a function when
restricted to a fiber F' = Pg/B of the fibration pg (a compact complex
manifold), so by the maximum principle it must be constant. It follows
that I'(G/B, L)) =I'(G/Ps, Ly.s). Thus we get

Corollary 27.5. Let A € P with (\,«/) =0, i€ S. Then
I'(G/Ps,L_\s) = L.
if X € Py, otherwise I'(G/Ps,L_, ) = 0.

Example 27.6. Let G = SL,(C) = SL(V), V =C", and Ps C G be
the subgroup of matrices b such that b,y = 0 for > 1 (this corresponds
to S ={2,..,n —1}). Then G/Ps = CP"' = P(V). The condition
(A, a) = 0, @ € S means that A = mwy, and in this case L, s =
O(—m). So Corollary 27.5 says that

T(P(V), O(m)) = Ly, , = S™V*

for m > 0, and zero for m < 0. This is also clear from elementary
considerations, as by definition I'(P(V'), O(m)) is the space of homoge-
neous polynomials on V' of degree m.

In fact, for A € P, we can construct an isomorphism L} = I'(G/B, L_,)
explicitly as follows. Let vy be a highest weight vector of Ly, ¢ € L3,
and Fy(g) := (¢, gvy). Then

Fy(gb) = A(b)Fi(g).

Thus the assignment ¢ — Fj defines a linear map Ly — I'(G/B, L_))
which is easily seen to be an isomorphism.

This shows that the bundle £_, is globally generated, i.e., for
every ¢ € G/B there exists s € I'(G/B, L_,) such that s(z) # 0. In

other words, we have a regular map iy : G/B — PL, defined as follows.
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For x € G/ B, choose a basis vector u of the fiber of £_, at x and define
ir(x) € Ly by the equality

s(z) = ix(z)(s)u
fors e I'(G/B, L_)) = L. Then iy(z) is well defined (does not depend
on the choice of u) up to scaling and is nonzero, so gives rise to a well
defined element of the projective space PL),. Another definition of this
map is

ir(x) = z(Cuy).
This shows that i) is an embedding when A is regular, i.e., in this
case the line bundle £, is very ample. On the other hand, if A is
not necessarily regular and S is the set of j such that (A, 04}/) = 0 then
ir: G/Ps — PL, is an embedding, so the bundle £_, g over the partial
flag variety G/ Ps is very ample.

Example 27.7. Let G = SL,(C) and A = wy. Then S = [1,n—1]\k, so
Ps C G is the subgroup of matrices with g;; = 0,4 > k,j < k and G/Ps
is the Grassmannian Gr(k,n) of k-dimensional subspaces in C". In this
case Ly = APC", so i, is the Pliicker embedding Gr(k,n) < P(AFC™).

27.2. The Springer resolution. Recall that a resolution of singu-
larities of an irreducible algebraic variety X is a morphism p: Y — X
from a smooth variety Y that is proper (for example, projective®!) and
birational. Hironaka proved in 1960s that any variety over a field of
characteristic zero has a resolution of singularities. However, it is not
unique and this theorem does not provide a nice explicit construction
of a resolution.

A basic example of a singular variety arising in Lie theory is the
nilpotent cone N of a semisimple Lie algebra g. This variety turns out
to admit a very explicit resolution called the Springer resolution,
which plays an important role in representation theory.

To define the Springer resolution, consider the cotangent bundle 7™ F
of the flag variety F of G. Recall that F is the variety of Borel subal-
gebras b C g. For b € F, we have an isomorphism g/b = T, F defined
by the action of G. Thus T*F can be viewed as the set of pairs (b, ),
where z € (g/b)*. Note that (g/b)* = bt under the Killing form, and
b = [b, b] is the maximal nilpotent subalgebra of b. Thus T*F is the
variety of pairs (b,z) where b € F is a Borel subnalgebra of g and
x € b a nilpotent element.

21Recall that a morphism f : X — Y is projective if f = 7o fwhere f: X —
Z x 'Y is a closed embedding for some projective variety Z and 7: Z xY — Y is
the projection to the second component.
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Now we can define the Springer map p : T*F — N given by
p(b,z) = x. Note that this map is G-invariant, so its fibers over con-
jugate elements of N are isomorphic.

Theorem 27.8. The Springer map p s birational and projective, so it
15 a resolution of singularities.

Proof. To show that p is birational, it suffices to prove that if e € N
is regular, the Borel subalgebra b containing e is unique. To this end,
note that dim 7*F = 2dim F = dim N and the map p is surjective (as
any nilpotent element is contained in a Borel subalgebra). Thus p is
generically finite, i.e., p~!(e) is a finite set, and our job is to show that
it consists of one element.

We may fix a decomposition g = n,. & bh & n_ and assume that
e =" . Then we have [p",e] = e, so the group {t*" ¢ # 0} = C*
acts on p~!(e) (as any Borel subalgebra containing e also contains te).
Since p~!(e) is finite, this action must be trivial. Thus p" normalizes
every b € p~!(e), hence is contained in every such b. But p" is regular,
so is contained in a unique Cartan subalgebra, namely . Since every
semisimple element in a Borel subalgebra b C g is contained in a Cartan
subalgebra sitting inside b, it follows that h C b for all b € p~'(e).
Thus [w,),e] = e; € b for all 7. It follows that b = by := h ® ny, ie.,
lp~t(e)| = 1, as claimed.

Now let us show that p is projective. Let p: T*F — F x N be the
map defined by p(b,x) = (b,z). This is clearly a closed embedding
(the image is defined by the equation z € b). But p = 7 o p where
m: F x N — N is the projection to the second component. Thus p is
projective, as claimed. O

Remark 27.9. The preimage p~!(e) for e € N is called the Springer
fiber. If e is not regular, p~'(e) has positive dimension. It is a projec-
tive variety, which is in general singular, reducible and has complicated
structure, but it plays an important role in representation theory.

Example 27.10. Let g = slp. Then N is the usual quadratic cone
yz + 22 = 01in C3, and T*F = T*CP! is the blow-up of the vertex in
this cone.

27.3. The symplectic structure on coadjoint orbits. Recall that
a smooth real manifold, complex manifold or algebraic variety X is
symplectic if it is equipped with a nondegenerate closed 2-form w. It
is clear that in this case X has even dimension.

Theorem 27.11. (Kirillov-Kostant) Let G be a connected real or com-
plex Lie group or complex algebraic group. Then every G-orbit in g*

has a natural symplectic structure.
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Proof. Let O be a G-orbit in g* and f € O. Then 77O = g/g; where gy
is the set of x € g such that f([x,y]) = 0 for all y € g. Define a skew-
symmetric bilinear form wy : g x g — C given by wy(y, 2) = f([y, 2]).
It is clear that Kerw; = gf, so wy defines a nondegenerate form on
g/gs = T7yO. This defines a nondegenerate G-invariant differential
2-form w on O.

It remains to show that w is closed. Let L, be the vector field on
O defined by the action of & € g; thus L, = [Ls, L,]. It suffices to
show that for any z,y, 2 € g we have dw(L,, L, L,) = 0. By Cartan’s
differentiation formula we have

dw(Ly, Ly, L) = Alt(Lyw(L,, L.) — w([Ls, L), L)),

where Alt denotes the sum over cyclic permutations of x,y, z. Since w
is G-invariant, this yields

dw(La, Ly, L:)(f) = Alt(w(Ly, L)) (f) = [(Alt([y, [z, 2]])),
which vanishes by the Jacobi identity. U

Corollary 27.12. The singular locus of the nilpotent cone N has codi-
mension > 2.

Proof. This follows since N has finitely many orbits (Exercise 17.8)
and by Theorem 27.11 they all have even dimension. O

Corollary 27.13. N is normal (i.e., the algebra O(N') is integrally
closed in its quotient field).

Proof. This follows from Corollary 27.12 since N is a complete inter-
section and any complete intersection whose singular locus has codi-
mension > 2 is necessarily normal ([H], Chapter II, Prop. 8.23). O

27.4. The algebra of functions on 7*F. We will first recall some
facts about normal algebraic varieties.

Proposition 27.14. Let Y be an irreducible normal algebraic variety.
Then

(1) ([Eis|, Proposition 11.5) The singular locus of Y has codimension
> 2.

(i) ([Eis|, Proposition 11.4) IfU C 'Y is an open subset and Y \U has
codimension > 2 then any reqular function f on U extends to a reqular
function on Y. In particular, any reqular function on the smooth locus
of Y extends to a reqular function on'Y .

(111) Zariski main theorem ([H], Corollary II1.11.4). If X is irre-
ducible and p : X — Y 1s a proper birational morphism then fibers of

p are connected.
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Proposition 27.15. Let Y be an irreducible normal affine algebraic
variety and p : X — Y be a resolution of singularities. Then the
homomorphism p* : O(Y) — O(X) is an isomorphism.

Proof. Tt is clear that p* is injective, so we only need to show it is
surjective. Let f € O(X). Since every fiber of p is proper, and also
connected due to normality of Y by Proposition 27.14(iii), f is constant
along this fiber. So f = hop for h : Y — C a rational function. It
remains to show that h is regular. We know that A is regular on the
smooth locus of Y (as it is defined at all points of Y'). Thus the result
follows from the normality of Y and Proposition 27.14(i),(ii). O

Theorem 27.16. Let p : T*F — N be the Springer resolution. Then
the map p* : O(N) — O(T*F) is an isomorphism of graded algebras.

Proof. This follows from Proposition 27.15 and the normality of N
(Corollary 27.13). O
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