28. D-modules - I

We would now like to formulate the Beilinson-Bernstein localization theorems. We first review generalities about differential operators and D-modules.

28.1. **Differential operators.** Let \mathbf{k} be an algebraically closed field of characteristic zero. Let X be a smooth affine algebraic variety over \mathbf{k} . Let $\mathcal{O}(X)$ be the algebra of regular functions on X. Following Grothendieck, we define inductively the notion of a *differential operator* of order (at most) N on X. Namely, a differential operator of order -1 is zero, and a k-linear operator $L : \mathcal{O}(X) \to \mathcal{O}(X)$ is a differential operator of order $N \ge 0$ if for all $f \in \mathcal{O}(X)$, the operator [L, f] is a differential operator of order N - 1.

Let $D_N(X)$ denote the space of differential operators of order N. We have

$$0 = D_{-1}(X) \subset \mathcal{O}(X) = D_0(X) \subset D_1(X) \subset \dots \subset D_N(X) \subset \dots$$

and $D_i(X)D_j(X) \subset D_{i+j}(X)$, which implies that the nested union $D(X) := \bigcup_{i \ge 0} D_i(X)$ is a filtered algebra.

Definition 28.1. D(X) is called the algebra of differential operators on X.

Exercise 28.2. Prove the following statements.

1. $[D_i(X), D_j(X)] \subset D_{i+j-1}(X)$ for $i, j \ge 0$. In particular, [,] makes $D_1(X)$ a Lie algebra naturally isomorphic to $\operatorname{Vect}(X) \ltimes \mathcal{O}(X)$, where $\operatorname{Vect}(X)$ is the Lie algebra of vector fields on X.

2. Suppose $x_1, ..., x_n \in \mathcal{O}(X)$ are regular functions such that $dx_1, ..., dx_n$ form a basis in each cotangent space to X. Let $\partial_1, ..., \partial_n$ be the corresponding vector fields. For $\mathbf{m} = (m_1, ..., m_n) \in \mathbb{Z}_{\geq 0}^n$, let $|\mathbf{m}| := \sum_{i=1}^n m_i$ and $\partial^{\mathbf{m}} := \partial_1^{m_1} ... \partial_n^{m_n}$. Then $D_N(X)$ is a free finite rank $\mathcal{O}(X)$ -module (under left multiplication) with basis $\{\partial^{\mathbf{m}}\}$ with $|\mathbf{m}| \leq N$, and D(X) is a free $\mathcal{O}(X)$ -module with basis $\{\partial^{\mathbf{m}}\}$ for all \mathbf{m} .

3. One has gr $D(X) = \bigoplus_{i \ge 0} \Gamma(X, S^i T X) = \mathcal{O}(T^* X)$. In particular, D(X) is left and right Noetherian.

4. D(X) is generated by $\mathcal{O}(X)$ and elements $L_v, v \in \operatorname{Vect}(X)$ (depending linearly on v), with defining relations

(20)
$$[f,g] = 0, \ [L_v,f] = v(f), \ L_{fv} = fL_v, \ [L_v,L_w] = L_{[v,w]},$$

where $f, g \in \mathcal{O}(X), v, w \in \operatorname{Vect}(X)$.

5. If $U \subset X$ is an affine open set then the multiplication map $\mathcal{O}(U) \otimes_{\mathcal{O}(X)} D(X) \to D(U)$ is a filtered isomorphism.

28.2. *D*-modules.

Definition 28.3. A left (respectively, right) *D*-module on X is a left (respectively, right) D(X)-module.

Example 28.4. 1. $\mathcal{O}(X)$ is an obvious example of a left *D*-module on *X*. Also, $\Omega(X)$ (the space of top differential forms on *X*) is naturally a right *D*-module on *X*, via $\rho(L) = L^*$ (the adjoint differential operator to *L* with respect to the "integration pairing" between functions and top forms). More precisely, $f^* = f$ for $f \in \mathcal{O}(X)$, and L_v^* is the action of the vector field -v on top forms (by Lie derivative). Finally, D(X) is both a left and a right *D*-module on *X*.

2. Suppose $\mathbf{k} = \mathbb{C}$, and f is a holomorphic function defined on some open set in X (in the usual topology). Then M(f) := D(X)f is a left D-module. We have a natural surjection $D(X) \to M(f)$ whose kernel is the left ideal generated by the linear differential equations satisfied by f. E.g. $M(1) = \mathcal{O}(X) = D(X)/D(X)\operatorname{Vect}(X), M(x^s) =$ $D(\mathbb{C})/D(\mathbb{C})(x\partial - s)$ if $s \notin \mathbb{Z}_{\geq 0}, M(e^x) = D(\mathbb{C})/D(\mathbb{C})(\partial - 1)$. Similarly, if ξ is a distribution (e.g., a measure) then $\xi \cdot D(X)$ is a right D-module. For instance, $\delta \cdot D(\mathbb{C}) = D(\mathbb{C})/xD(\mathbb{C})$, where δ is the delta-measure on the line.

Exercise 28.5. Show that $\mathcal{O}(X)$ is a simple D(X)-module. Deduce that for any nonzero regular function f on X, $M(f) = \mathcal{O}(X)$.

28.3. *D*-modules on non-affine varieties. Now assume that X is a smooth variety which is not necessarily affine. Recall that a quasicoherent sheaf on X is a sheaf M of \mathcal{O}_X -modules (in Zariski topology) such that for any affine open sets $U \subset V \subset X$ the restriction map induces an isomorphism of $\mathcal{O}(U)$ -modules $\mathcal{O}(U) \otimes_{\mathcal{O}(V)} M(V) \cong M(U)$. Exercise 28.2(5) implies that there exists a canonical quasicoherent sheaf of algebras D_X on X such that $\Gamma(U, D_X) = D(U)$ for any affine open set $U \subset X$. This sheaf is called the **sheaf of differential operators on** X.

Definition 28.6. A left (respectively, right) *D*-module on X is a quasicoherent sheaf of left (respectively, right) D_X -modules. The categories of left (respectively, right) *D*-modules on X (with obviously defined morphisms) are denoted by $\mathcal{M}_l(X)$ and $\mathcal{M}_r(X)$.

It is clear that these are abelian categories. We will mostly use the category $\mathcal{M}_l(X)$ and denote it shortly by $\mathcal{M}(X)$.

Note that if X is affine, this definition is equivalent to the previous one (by taking global sections).

As before, the basic examples are \mathcal{O}_X (a left *D*-module), Ω_X (a right *D*-module), D_X (both a left and a right *D*-module).

We see that the notion of a D-module on X is local. For this reason, many questions about D-modules are local and reduce to the case of affine varieties.

28.4. **Connections.** The definition of a D_X -module can be reformulated in terms of connections on an \mathcal{O}_X -module. Namely, in differential geometry we have a theory of connections on vector bundles. An algebraic vector bundle on X is the same thing as a coherent, locally free \mathcal{O}_X -module. It turns out that the usual definition of a connection, when written algebraically, makes sense for any \mathcal{O}_X -module (i.e., quasicoherent sheaf), not necessarily coherent or locally free.

Namely, let X be a smooth variety and Ω_X^i be the \mathcal{O}_X -module of differential *i*-forms on X.

Definition 28.7. A connection on an \mathcal{O}_X -module M is a k-linear morphism of sheaves $\nabla : M \to M \otimes_{\mathcal{O}_X} \Omega^1_X$ such that

$$\nabla(fm) = f\nabla(m) + m \otimes df$$

for local sections f of \mathcal{O}_X and m of M.

Thus for each $v \in \operatorname{Vect}(X)$ we have the operator of covariant derivative $\nabla_v : M \to M$ given on local sections by $\nabla_v(m) := \nabla(m)(v)$.

Exercise 28.8. Let X be an affine variety. Show that the operator $m \mapsto ([\nabla_v, \nabla_w] - \nabla_{[v,w]})m$ is $\mathcal{O}(X)$ -linear in v, w, m.

Given a connection ∇ on M, define the \mathcal{O}_X -linear map

$$\nabla^2: M \to M \otimes_{\mathcal{O}_X} \Omega^2_X$$

given on local sections by

$$\nabla^2(m)(v,w) := ([\nabla_v, \nabla_w] - \nabla_{[v,w]})m$$

This map is called the **curvature** of ∇ . We say that ∇ is **flat** if its curvature vanishes: $\nabla^2 = 0$.

Proposition 28.9. A left D_X -module is the same thing as an \mathcal{O}_X -module with a flat connection.

Proof. Given an \mathcal{O}_X -module M with a flat connection ∇ , we extend the \mathcal{O}_X -action to a D_X -action by $\rho(L_v) = \nabla_v$. The first three relations of (20) then hold for any connection, while the last relation holds due to flatness of ∇ . Conversely, the same formula can be used to define a flat connection ∇ on any D_X -module M.

Exercise 28.10. Show that if a left *D*-module M on X is \mathcal{O} -coherent (i.e. a coherent sheaf on X) then it is locally free, i.e., is a vector bundle with a flat connection, and vice versa.

28.5. Direct and inverse images. Let $\pi : X \to Y$ be a morphism of smooth affine varieties. This morphism gives rise to a homomorphism $\pi^* : \mathcal{O}(Y) \to \mathcal{O}(X)$, making $\mathcal{O}(X)$ an $\mathcal{O}(Y)$ -module, and a morphism of vector bundles $\pi_* : TX \to \pi^*TY$. This induces a map on global sections $\pi_* : \operatorname{Vect}(X) \to \mathcal{O}(X) \otimes_{\mathcal{O}(Y)} \operatorname{Vect}(Y)$.

Define

$$D_{X \to Y} = \mathcal{O}(X) \otimes_{\mathcal{O}(Y)} D(Y).$$

This is clearly a right D(Y)-module. Let us show that it also has a commuting left D(X)-action. The left action of $\mathcal{O}(X)$ is obvious, so it remains to construct a flat connection. Given a vector field v on X, let

(21)
$$\nabla_v(f \otimes L) = v(f) \otimes L + f\pi_*(v)L, \ f \in \mathcal{O}(X), \ L \in D(Y),$$

where we view $\pi_*(v)$ as an element of $D_{X\to Y}$. This is well defined since for $a \in \mathcal{O}(Y)$ one has $[\pi_*(v), a] = v(a) \otimes 1$.

Exercise 28.11. Show that this defines a flat connection on $D_{X \to Y}$.

Now we define the **inverse image functor** $\pi^* : \mathcal{M}_l(Y) \to \mathcal{M}_l(X)$ by

$$\pi^!(N) = D_{X \to Y} \otimes_{D(Y)} N$$

and the direct image functor $\pi_* : \mathcal{M}_r(X) \to \mathcal{M}_r(Y)$ by

$$\pi_*(M) = M \otimes_{D(X)} D_{X \to Y}.$$

Note that at the level of quasicoherent sheaves, π^* is the usual inverse image.

These functors are right exact are compatible with compositions. Also by definition, $D_{X\to Y} = \pi^! (D(Y))$.

Note that $\pi^!(N) = \mathcal{O}(X) \otimes_{\mathcal{O}(Y)} N$ as an $\mathcal{O}(X)$ -module (i.e., the usual pullback of \mathcal{O} -modules), with the connection defined by the formula similar to (21):

$$\nabla_v(f \otimes m) = v(f) \otimes m + f \nabla_{\pi_*(v)}(m), \ f \in \mathcal{O}(X), \ m \in M.$$

This means that the definition of $\pi^{!}$ is local both on X and on Y. On the contrary, the definition of π_{*} is local only on Y but not on X. For example, if Y is a point and dim X = d then $\pi_{*}\Omega_{X} = H^{d}(X, \mathbf{k})$, the algebraic de Rham cohomology of X of degree d.

Thus we can use the same definition locally to define $\pi^{!}$ for any morphism of smooth varieties, and π_{*} for an affine morphism (i.e. such that $\pi^{-1}(U)$ is affine for any affine open set $U \subset Y$), for example, a closed embedding. On the other hand, due to the non-local nature of direct image with respect to X the correct functor π_{*} for a non-affine morphism is not the derived functor of anything and can be defined only in the derived category.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.