
28. D-modules - I

We would now like to formulate the Beilinson-Bernstein localization
theorems. We first review generalities about differential operators and
D-modules.

28.1. Differential operators. Let k be an algebraically closed field
of characteristic zero. Let X be a smooth affine algebraic variety over
k. Let O(X) be the algebra of regular functions on X. Following
Grothendieck, we define inductively the notion of a differential operator
of order (at most) N on X. Namely, a differential operator of order
−1 is zero, and a k-linear operator L : O(X)→ O(X) is a differential
operator of order N ≥ 0 if for all f ∈ O(X), the operator [L, f ] is a
differential operator of order N − 1.

Let DN(X) denote the space of differential operators of order N . We
have

0 = D−1(X) ⊂ O(X) = D0(X) ⊂ D1(X) ⊂ ... ⊂ DN(X) ⊂ ...

and Di(X)Dj(X) ⊂ Di+j(X), which implies that the nested union
D(X) := ∪i≥0Di(X) is a filtered algebra.

Definition 28.1. D(X) is called the algebra of differential oper-
ators on X.

Exercise 28.2. Prove the following statements.
1. [Di(X), Dj(X)] ⊂ Di+j−1(X) for i, j ≥ 0. In particular, [, ] makes

D1(X) a Lie algebra naturally isomorphic to Vect(X) nO(X), where
Vect(X) is the Lie algebra of vector fields on X.

2. Suppose x1, ..., xn ∈ O(X) are regular functions such that dx1, ..., dxn
form a basis in each cotangent space to X. Let ∂1, ..., ∂n be the corre-
sponding vector fields. For m = (m1, ...,mn) ∈ Zn≥0, let |m| :=

∑n
i=1 mi

and ∂m := ∂m1
1 ...∂mnn . Then DN(X) is a free finite rank O(X)-module

(under left multiplication) with basis {∂m} with |m| ≤ N , and D(X)
is a free O(X)-module with basis {∂m} for all m.

3. One has grD(X) = ⊕i≥0Γ(X,SiTX) = O(T ∗X). In particular,
D(X) is left and right Noetherian.

4. D(X) is generated by O(X) and elements Lv, v ∈ Vect(X) (de-
pending linearly on v), with defining relations

(20) [f, g] = 0, [Lv, f ] = v(f), Lfv = fLv, [Lv, Lw] = L[v,w],

where f, g ∈ O(X), v, w ∈ Vect(X).
5. If U ⊂ X is an affine open set then the multiplication map
O(U)⊗O(X) D(X)→ D(U) is a filtered isomorphism.
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28.2. D-modules.

Definition 28.3. A left (respectively, right) D-module on X is a
left (respectively, right) D(X)-module.

Example 28.4. 1. O(X) is an obvious example of a left D-module on
X. Also, Ω(X) (the space of top differential forms on X) is naturally a
right D-module on X, via ρ(L) = L∗ (the adjoint differential operator
to L with respect to the “integration pairing” between functions and
top forms). More precisely, f ∗ = f for f ∈ O(X), and L∗v is the action
of the vector field −v on top forms (by Lie derivative). Finally, D(X)
is both a left and a right D-module on X.

2. Suppose k = C, and f is a holomorphic function defined on some
open set in X (in the usual topology). Then M(f) := D(X)f is a
left D-module. We have a natural surjection D(X) → M(f) whose
kernel is the left ideal generated by the linear differential equations
satisfied by f . E.g. M(1) = O(X) = D(X)/D(X)Vect(X), M(xs) =
D(C)/D(C)(x∂−s) if s /∈ Z≥0, M(ex) = D(C)/D(C)(∂−1). Similarly,
if ξ is a distribution (e.g., a measure) then ξ ·D(X) is a right D-module.
For instance, δ · D(C) = D(C)/xD(C), where δ is the delta-measure
on the line.

Exercise 28.5. Show that O(X) is a simple D(X)-module. Deduce
that for any nonzero regular function f on X, M(f) = O(X).

28.3. D-modules on non-affine varieties. Now assume that X is a
smooth variety which is not necessarily affine. Recall that a quasico-
herent sheaf on X is a sheaf M of OX-modules (in Zariski topology)
such that for any affine open sets U ⊂ V ⊂ X the restriction map
induces an isomorphism of O(U)-modules O(U)⊗O(V )M(V ) ∼= M(U).
Exercise 28.2(5) implies that there exists a canonical quasicoherent
sheaf of algebras DX on X such that Γ(U,DX) = D(U) for any affine
open set U ⊂ X. This sheaf is called the sheaf of differential oper-
ators on X.

Definition 28.6. A left (respectively, right) D-module on X is a
quasicoherent sheaf of left (respectively, right) DX-modules. The cat-
egories of left (respectively, right) D-modules on X (with obviously
defined morphisms) are denoted by Ml(X) and Mr(X).

It is clear that these are abelian categories. We will mostly use the
category Ml(X) and denote it shortly by M(X).

Note that if X is affine, this definition is equivalent to the previous
one (by taking global sections).

As before, the basic examples are OX (a left D-module), ΩX (a right
D-module), DX (both a left and a right D-module).
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We see that the notion of a D-module on X is local. For this reason,
many questions about D-modules are local and reduce to the case of
affine varieties.

28.4. Connections. The definition of a DX-module can be reformu-
lated in terms of connections on an OX-module. Namely, in differential
geometry we have a theory of connections on vector bundles. An al-
gebraic vector bundle on X is the same thing as a coherent, locally
free OX-module. It turns out that the usual definition of a connec-
tion, when written algebraically, makes sense for any OX-module (i.e.,
quasicoherent sheaf), not necessarily coherent or locally free.

Namely, let X be a smooth variety and Ωi
X be the OX-module of

differential i-forms on X.

Definition 28.7. A connection on an OX-module M is a k-linear
morphism of sheaves ∇ : M →M ⊗OX Ω1

X such that

∇(fm) = f∇(m) +m⊗ df
for local sections f of OX and m of M .

Thus for each v ∈ Vect(X) we have the operator of covariant deriv-
ative ∇v : M →M given on local sections by ∇v(m) := ∇(m)(v).

Exercise 28.8. Let X be an affine variety. Show that the operator
m 7→ ([∇v,∇w]−∇[v,w])m is O(X)-linear in v, w,m.

Given a connection ∇ on M , define the OX-linear map

∇2 : M →M ⊗OX Ω2
X

given on local sections by

∇2(m)(v, w) := ([∇v,∇w]−∇[v,w])m.

This map is called the curvature of ∇. We say that ∇ is flat if its
curvature vanishes: ∇2 = 0.

Proposition 28.9. A left DX-module is the same thing as an OX-
module with a flat connection.

Proof. Given an OX-module M with a flat connection ∇, we extend
the OX-action to a DX-action by ρ(Lv) = ∇v. The first three relations
of (20) then hold for any connection, while the last relation holds due
to flatness of ∇. Conversely, the same formula can be used to define a
flat connection ∇ on any DX-module M . �

Exercise 28.10. Show that if a left D-module M on X is O-coherent
(i.e. a coherent sheaf on X) then it is locally free, i.e., is a vector
bundle with a flat connection, and vice versa.
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28.5. Direct and inverse images. Let π : X → Y be a morphism of
smooth affine varieties. This morphism gives rise to a homomorphism
π∗ : O(Y )→ O(X), making O(X) an O(Y )-module, and a morphism
of vector bundles π∗ : TX → π∗TY . This induces a map on global
sections π∗ : Vect(X)→ O(X)⊗O(Y ) Vect(Y ).

Define
DX→Y = O(X)⊗O(Y ) D(Y ).

This is clearly a right D(Y )-module. Let us show that it also has a
commuting left D(X)-action. The left action of O(X) is obvious, so it
remains to construct a flat connection. Given a vector field v on X, let

(21) ∇v(f ⊗ L) = v(f)⊗ L+ fπ∗(v)L, f ∈ O(X), L ∈ D(Y ),

where we view π∗(v) as an element of DX→Y . This is well defined since
for a ∈ O(Y ) one has [π∗(v), a] = v(a)⊗ 1.

Exercise 28.11. Show that this defines a flat connection on DX→Y .

Now we define the inverse image functor π∗ : Ml(Y ) →Ml(X)
by

π!(N) = DX→Y ⊗D(Y ) N

and the direct image functor π∗ :Mr(X)→Mr(Y ) by

π∗(M) = M ⊗D(X) DX→Y .

Note that at the level of quasicoherent sheaves, π∗ is the usual inverse
image.

These functors are right exact are compatible with compositions.
Also by definition, DX→Y = π!(D(Y )).

Note that π!(N) = O(X)⊗O(Y )N as an O(X)-module (i.e., the usual
pullback of O-modules), with the connection defined by the formula
similar to (21):

∇v(f ⊗m) = v(f)⊗m+ f∇π∗(v)(m), f ∈ O(X), m ∈M.

This means that the definition of π! is local both on X and on Y . On
the contrary, the definition of π∗ is local only on Y but not on X. For
example, if Y is a point and dimX = d then π∗ΩX = Hd(X,k), the
algebraic de Rham cohomology of X of degree d.

Thus we can use the same definition locally to define π! for any
morphism of smooth varieties, and π∗ for an affine morphism (i.e. such
that π−1(U) is affine for any affine open set U ⊂ Y ), for example, a
closed embedding. On the other hand, due to the non-local nature of
direct image with respect to X the correct functor π∗ for a non-affine
morphism is not the derived functor of anything and can be defined
only in the derived category.
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