28. D-modules - I

We would now like to formulate the Beilinson-Bernstein localization theorems. We first review generalities about differential operators and D-modules.
28.1. Differential operators. Let k be an algebraically closed field of characteristic zero. Let X be a smooth affine algebraic variety over k. Let $\mathcal{O}(X)$ be the algebra of regular functions on X. Following Grothendieck, we define inductively the notion of a differential operator of order (at most) N on X. Namely, a differential operator of order -1 is zero, and a k-linear operator $L: \mathcal{O}(X) \rightarrow \mathcal{O}(X)$ is a differential operator of order $N \geq 0$ if for all $f \in \mathcal{O}(X)$, the operator $[L, f]$ is a differential operator of order $N-1$.

Let $D_{N}(X)$ denote the space of differential operators of order N. We have

$$
0=D_{-1}(X) \subset \mathcal{O}(X)=D_{0}(X) \subset D_{1}(X) \subset \ldots \subset D_{N}(X) \subset \ldots
$$

and $D_{i}(X) D_{j}(X) \subset D_{i+j}(X)$, which implies that the nested union $D(X):=\cup_{i \geq 0} D_{i}(X)$ is a filtered algebra.

Definition 28.1. $D(X)$ is called the algebra of differential operators on X.

Exercise 28.2. Prove the following statements.

1. $\left[D_{i}(X), D_{j}(X)\right] \subset D_{i+j-1}(X)$ for $i, j \geq 0$. In particular, [,] makes $D_{1}(X)$ a Lie algebra naturally isomorphic to $\operatorname{Vect}(X) \ltimes \mathcal{O}(X)$, where $\operatorname{Vect}(X)$ is the Lie algebra of vector fields on X.
2. Suppose $x_{1}, \ldots, x_{n} \in \mathcal{O}(X)$ are regular functions such that $d x_{1}, \ldots, d x_{n}$ form a basis in each cotangent space to X. Let $\partial_{1}, \ldots, \partial_{n}$ be the corresponding vector fields. For $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right)$, let $|\mathbf{m}|:=\sum_{i=1}^{n} m_{i}$ and $\partial^{\mathbf{m}}:=\partial_{1}^{m_{1}} \ldots \partial_{n}^{m_{n}}$. Then $D_{N}(X)$ is a free finite $\operatorname{rank} \mathcal{O}(X)$-module (under left multiplication) with basis $\left\{\partial^{\mathbf{m}}\right\}$ with $|\mathbf{m}| \leq N$, and $D(X)$ is a free $\mathcal{O}(X)$-module with basis $\left\{\partial^{\mathbf{m}}\right\}$ for all \mathbf{m}.
3. One has gr $D(X)=\oplus_{i \geq 0} \Gamma\left(X, S^{i} T X\right)=\mathcal{O}\left(T^{*} X\right)$. In particular, $D(X)$ is left and right Noetherian.
4. $D(X)$ is generated by $\mathcal{O}(X)$ and elements $L_{v}, v \in \operatorname{Vect}(X)$ (depending linearly on v), with defining relations

$$
\begin{equation*}
[f, g]=0,\left[L_{v}, f\right]=v(f), L_{f v}=f L_{v},\left[L_{v}, L_{w}\right]=L_{[v, w]}, \tag{20}
\end{equation*}
$$

where $f, g \in \mathcal{O}(X), v, w \in \operatorname{Vect}(X)$.
5. If $U \subset X$ is an affine open set then the multiplication map $\mathcal{O}(U) \otimes_{\mathcal{O}(X)} D(X) \rightarrow D(U)$ is a filtered isomorphism.

28.2. D-modules.

Definition 28.3. A left (respectively, right) D-module on X is a left (respectively, right) $D(X)$-module.
Example 28.4. 1. $\mathcal{O}(X)$ is an obvious example of a left D-module on X. Also, $\Omega(X)$ (the top differential forms on X) is naturally a right D-module on X, via $\rho(L)=L^{*}$ (the adjoint differential operator to L with respect to the "integration pairing" between functions and top forms). More precisely, $f^{*}=f$ for $f \in \mathcal{O}(X)$, and L_{v}^{*} is the action of the vector field $-v$ on top forms (by Lie derivative). Finally, $D(X)$ is both a left and a right D-module on X.
2. Suppose $k=\mathbb{C}$, and f is a holomorphic function defined on some open set in X (in the usual topology). Then $M(f):=D(X) f$ is a left D-module. We have a natural surjection $D(X) \rightarrow M(f)$ whose kernel is the left ideal generated by the linear differential equations satisfied by f. E.g. $M(1)=\mathcal{O}(X)=D(X) / D(X) \operatorname{Vect}(X), M\left(x^{s}\right)=$ $D(\mathbb{C}) / D(\mathbb{C})(x \partial-s)$ if $s \notin \mathbb{Z}_{\geq 0}, M\left(e^{x}\right)=D(\mathbb{C}) / D(\mathbb{C})(\partial-1)$. Similarly, if ξ is a distribution (e.g., a measure) then $\xi \cdot D(X)$ is a right D-module. For instance, $\delta \cdot D(\mathbb{C})=D(\mathbb{C}) / x D(\mathbb{C})$, where δ is the delta-measure on the line.
Exercise 28.5. Show that $\mathcal{O}(X)$ is a simple $D(X)$-module. Deduce that for any nonzero regular function f on $X, M(f)=\mathcal{O}(X)$.
28.3. D-modules on non-affine varieties. Now assume that X is a smooth variety which is not necessarily affine. Recall that a quasicoherent sheaf on X is a sheaf M of \mathcal{O}_{X}-modules (in Zariski topology) such that for any affine open sets $U \subset V \subset X$ the restriction map induces an isomorophism of $\mathcal{O}(U)$-modules $\mathcal{O}(U) \otimes_{\mathcal{O}(V)} M(V) \cong M(U)$. Exercise 28.2(5) implies that there exists a canonical quasicoherent sheaf of algebras D_{X} on X such that $\Gamma\left(U, D_{X}\right)=D(U)$ for any affine open set $U \subset X$. This sheaf is called the sheaf of differential operators on X.
Definition 28.6. A left (respectively, right) D-module on X is a quasicoherent sheaf of left (respectively, right) D_{X}-modules. The categories of left (respectively, right) D-modules on X (with obviously defined morphisms) are denoted by $\mathcal{M}_{l}(X)$ and $\mathcal{M}_{r}(X)$.

It is clear that these are abelian categories. We will mostly use the category $\mathcal{M}_{l}(X)$ and denote it shortly by $\mathcal{M}(X)$.

Note that if X is affine, this definition is equivalent to the previous one (by taking global sections).

As before, the basic examples are \mathcal{O}_{X} (a left D-module), Ω_{X} (a right D-module), D_{X} (both a left and a right D-module).

We see that the notion of a D-module on X is local. For this reason, many questions about D-modules are local and reduce to the case of affine varieties.
28.4. Connections. The definition of a D_{X}-module can be reformulated in terms of connections on an \mathcal{O}_{X}-module. Namely, in differential geometry we have a theory of connections on vector bundles. An algebraic vector bundle on X is the same thing as a coherent, locally free \mathcal{O}_{X}-module. It turns out that the usual definition of a connection, when written algebraically, makes sense for any \mathcal{O}_{X}-module (i.e., quasicoherent sheaf), not necessarily coherent or locally free.

Namely, let X be a smooth variety and Ω_{X}^{i} be the \mathcal{O}_{X}-module of differential i-forms on X.

Definition 28.7. A connection on an \mathcal{O}_{X}-module M is a k-linear morphism of sheaves $\nabla: M \rightarrow M \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}$ such that

$$
\nabla(f m)=f \nabla(m)+m \otimes d f
$$

for local sections f of \mathcal{O}_{X} and m of M.
Thus for each $v \in \operatorname{Vect}(X)$ we have the operator of covariant derivative $\nabla_{v}: M \rightarrow M$ given on local sections by $\nabla_{v}(m):=\nabla(m)(v)$.

Exercise 28.8. Let X be an affine variety. Show that the operator $m \mapsto\left(\left[\nabla_{v}, \nabla_{w}\right]-\nabla_{[v, w]}\right) m$ is $\mathcal{O}(X)$-linear in v, w, m.

Given a connection ∇ on M, define the \mathcal{O}_{X}-linear map

$$
\nabla^{2}: M \rightarrow M \otimes_{\mathcal{O}_{X}} \Omega_{X}^{2}
$$

given on local sections by

$$
\nabla^{2}(m)(v, w):=\left(\left[\nabla_{v}, \nabla_{w}\right]-\nabla_{[v, w]}\right) m .
$$

This map is called the curvature of ∇. We say that ∇ is flat if its curvature vanishes: $\nabla^{2}=0$.

Proposition 28.9. A left D_{X}-module is the same thing as an $\mathcal{O}_{X^{-}}$ module with a flat connection.

Proof. Given an \mathcal{O}_{X}-module M with a flat connection ∇, we extend the \mathcal{O}_{X}-action to a D_{X}-action by $\rho\left(L_{v}\right)=\nabla_{v}$. The first three relations of (20) then hold for any connection, while the last relation holds due to flatness of ∇. Conversely, the same formula can be used to define a flat connection ∇ on any D_{X}-module M.

Exercise 28.10. Show that if a left D-module M on X is \mathcal{O}-coherent (i.e. a coherent sheaf on X) then it is locally free, i.e., is a vector bundle with a flat connection, and vice versa.
28.5. Direct and inverse images. Let $\pi: X \rightarrow Y$ be a morphism of smooth affine varieties. This morphism gives rise to a homomorphism $\pi^{*}: \mathcal{O}(Y) \rightarrow \mathcal{O}(X)$, making $\mathcal{O}(X)$ an $\mathcal{O}(Y)$-module, and a morphism of vector bundles $\pi_{*}: T X \rightarrow \pi^{*} T Y$. This induces a map on global sections $\pi_{*}: \operatorname{Vect}(X) \rightarrow \mathcal{O}(X) \otimes_{\mathcal{O}(Y)} \operatorname{Vect}(Y)$.

Define

$$
D_{X \rightarrow Y}=\mathcal{O}(X) \otimes_{\mathcal{O}(Y)} D(Y)
$$

This is clearly a right $D(Y)$-module. Let us show that it also has a commuting left $D(X)$-action. The left action of $\mathcal{O}(X)$ is obvious, so it remains to construct a flat connection. Given a vector field v on X, let

$$
\begin{equation*}
\nabla_{v}(f \otimes L)=v(f) \otimes L+f \pi_{*}(v) L, f \in \mathcal{O}(X), L \in D(Y) \tag{21}
\end{equation*}
$$

where we view $\pi_{*}(v)$ as an element of $D_{X \rightarrow Y}$. This is well defined since for $a \in \mathcal{O}(Y)$ one has $\left[\pi_{*}(v), a\right]=v(a) \otimes 1$.
Exercise 28.11. Show that this defines a flat connection on $D_{X \rightarrow Y}$.
Now we define the inverse image functor $\pi^{*}: \mathcal{M}_{l}(Y) \rightarrow \mathcal{M}_{l}(X)$ by

$$
\pi^{!}(N)=D_{X \rightarrow Y} \otimes_{D(Y)} N
$$

and the direct image functor $\pi_{*}: \mathcal{M}_{r}(X) \rightarrow \mathcal{M}_{r}(Y)$ by

$$
\pi_{*}(M)=M \otimes_{D(X)} D_{X \rightarrow Y} .
$$

Note that at the level of quasicoherent sheaves, π^{*} is the usual inverse image.

These functors are right exact are compatible with compositions. Also by definition, $D_{X \rightarrow Y}=\pi^{!}(D(Y))$.

Note that $\pi^{!}(N)=\mathcal{O}(X) \otimes_{\mathcal{O}(Y)} N$ as an $\mathcal{O}(X)$-module (i.e., the usual pullback of \mathcal{O}-modules), with the connection defined by the formula similar to (21):

$$
\nabla_{v}(f \otimes m)=v(f) \otimes m+f \nabla_{\pi_{*}(v)}(m), f \in \mathcal{O}(X), m \in M
$$

This means that the definition of $\pi^{!}$is local both on X and on Y. On the contrary, the definition of π_{*} is local only on Y but not on X. For example, if Y is a point and $\operatorname{dim} X=d$ then $\pi_{*} \Omega_{X}=H^{d}(X, k)$, the algebraic de Rham cohomology of X of degree d.

Thus we can use the same definition locally to define $\pi^{!}$for any morphism of smooth varieties, and π_{*} for an affine morphism (i.e. such that $\pi^{-1}(U)$ is affine for any affine open set $U \subset Y$), for example, a closed embedding. On the other hand, due to the non-local nature of direct image with respect to X the correct functor π_{*} for a non-affine morphism is not the derived functor of anything and can be defined only in the derived category.

MIT OpenCourseWare
https://ocw.mit.edu

18.757 Representations of Lie Groups

Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

