29. The Beilinson-Bernstein Localization Theorem

29.1. The Beilinson-Bernstein localization theorem for the zero central character. Let \mathfrak{g} be a complex semisimple Lie algebra and U_0 be the maximal quotient of $U(\mathfrak{g})$ corresponding to the central character $\chi_{\rho} = \chi_{-\rho}$ of the trivial representation of \mathfrak{g} . Recall that $\operatorname{gr}(U_0) = \mathcal{O}(\mathcal{N})$. Let G be the corresponding simply connected complex group and \mathcal{F} the flag variety of G; thus $\mathcal{F} \cong G/B$ for a Borel subgroup $B \subset G$. Let $D(\mathcal{F})$ be the algebra of global differential operators on \mathcal{F} ; it is clear that $\operatorname{gr} D(\mathcal{F}) \subset \mathcal{O}(T^*\mathcal{F})$. Also, we have a natural filtration-preserving action map $a: U(\mathfrak{g}) \to D(\mathcal{F})$, induced by the Lie algebra homomorphism $\mathfrak{g} \to \operatorname{Vect}(\mathcal{F})$.

Theorem 29.1. (Beilinson-Bernstein) (i) The homomorphism $a: U(\mathfrak{g}) \to D(\mathcal{F})$ factors through a homomorphism $a_0: U_0 \to D(\mathcal{F})$. (ii) One has $gr(a_0) = p^*$ where p is the Springer map $T^*\mathcal{F} \to \mathcal{N}$. (iii) $grD(\mathcal{F}) = \mathcal{O}(T^*\mathcal{F})$ and a_0 is an isomorphism.

- Proof. (i) Let $z \in Z(\mathfrak{g})$ be an element acting by zero in the trivial representation of \mathfrak{g} . Our job is to show that for any rational function $f \in \mathbb{C}(\mathcal{F})$ we have a(z)f = 0. Writing \mathcal{F} as G/B, we may view f as a rational function on G such that f(gb) = f(g), $b \in B$. The function a(z)f on G is the result of action on f of the right-invariant differential operator L_z corresponding to z: $a(z)f = L_z f$. Since z is central, this operator is also left-invariant: $L_z = R_z$. Since z acts by zero on the trivial representation, using the Harish-Chandra isomorphism, we may write z as $\sum_i c_i b_i$, where $b_i \in \mathfrak{b} := \text{Lie}(B)$ and $c_i \in U(\mathfrak{g})$. Thus $R_z = \sum_i R_{c_i} R_{b_i}$. But $R_{b_i} f = 0$ since f is invariant under right translations by B. Thus $R_z f = 0$ and we are done.
- (ii) It suffices to check the statement in degrees 0 and 1, where it is straightforward.
- (iii) The statement follows from (i), (ii) and the fact that p^* is an isomorphism (Theorem 27.16).

The isomorphism a_0 gives rise to two functors: the functor of global sections $\Gamma: \mathcal{M}(\mathcal{F}) \to D(\mathcal{F}) - \text{mod} \cong U_0 - \text{mod}$ and the functor of localization Loc: $U_0 - \text{mod} \cong D(\mathcal{F}) - \text{mod} \to \mathcal{M}(\mathcal{F})$ given by $\text{Loc}(M)(U) := D(U) \otimes_{D(\mathcal{F})} M$ for an affine open set $U \subset \mathcal{F}$. Note that by definition the functor Loc is left adjoint to Γ .

The following theorem is a starting point for the geometric representation theory of semisimple Lie algebras (in particular, for the original proof of the Kazhdan-Lusztig conjecture).

Theorem 29.2. (Beilinson-Bernstein localization theorem) The functors Γ and Loc are mutually inverse equivalences. Thus the category

 U_0 – mod is canonically equivalent to the category of D-modules on the flag variety \mathcal{F} .

We will not give a proof of this theorem here.

Theorem 29.2 motivates the following definition.

Definition 29.3. A smooth algebraic variety X is said to be **D-affine** if the global sections functor $\Gamma: \mathcal{M}(X) \to D(X)$ – mod is an equivalence (hence Loc is its inverse).

It is clear that any affine variety is D-affine. Also we have

Corollary 29.4. Partial flag varieties of semisimple groups are D-affine.

29.2. Twisted differential operators and *D*-modules. We would now like to generalize the localization theorem to nonzero central characters. To do so, we have to replace usual differential operators and *D*-modules by twisted ones.

Let T be an algebraic torus with character lattice $P := \operatorname{Hom}(T, \mathbb{C}^{\times})$ and \widetilde{X} be a principal T-bundle over a smooth algebraic variety X (with T acting on the right). In this case, given $\lambda \in P$, we can define the line bundle \mathcal{L}_{λ} on X whose total space is $\widetilde{X} \times_{T} \mathbb{C}_{\lambda}$, where \mathbb{C}_{λ} is the 1-dimensional representation of T corresponding to λ , and we can consider the sheaf $D_{\lambda,X}$ of differential operators acting on local sections of \mathcal{L}_{λ} (rather than functions).

Moreover, unlike the bundle \mathcal{L}_{λ} , the sheaf $D_{\lambda,X}$ makes sense not just for $\lambda \in P$ but more generally for $\lambda \in P \otimes_{\mathbb{Z}} \mathbb{C}$. Namely, assuming for now that $\lambda \in P$, we may think of rational sections of \mathcal{L}_{λ} as rational functions F on \widetilde{X} such that $F(yt) = \lambda(t)^{-1}F(y)$ for $y \in \widetilde{X}$. A differential operator D on \widetilde{X} may be applied to such a function, and if $\xi \in \mathfrak{t} := \mathrm{Lie}(T)$ then the first order differential operator $R_{\xi} - \lambda(\xi)$ acts by zero: $(R_{\xi} - \lambda(\xi))F = 0$. Thus given an affine open set $U \subset X$ with preimage $\widetilde{U} \subset \widetilde{X}$, the space

$$D_{\lambda}(U) := (D(\widetilde{U})/D(\widetilde{U})(R_{\varepsilon} - \lambda(\xi), \xi \in \mathfrak{t}))^{T}$$

is naturally an associative algebra (check it!) which acts on rational sections of \mathcal{L}_{λ} . Moreover, it is easy to check that $D_{\lambda}(U) = D_{\lambda,X}(U)$. Now it remains to note that the definition of $D_{\lambda}(U)$ does not use the integrality of λ , thus makes sense for all $\lambda \in P \otimes_{\mathbb{Z}} \mathbb{C}$.

Thus for any $\lambda \in P \otimes_{\mathbb{Z}} \mathbb{C}$ we obtain a quasicoherent sheaf of algebras $D_{\lambda,X}$ on X which is called the sheaf of λ -twisted differential operators. If $\lambda = 0$, this sheaf coincides with the sheaf D_X of usual differential operators, and in general it has very similar properties, for

example $\operatorname{gr}(D_{\lambda,X}(U)) = \mathcal{O}(T^*U)$ for any affine open set $U \subset X$. A quasicoherent sheaf on X with the structure of a (left or right) $D_{\lambda,X}$ -module is called a (left or right) λ -twisted D-module on X. For example, if $\lambda \in P$ then \mathcal{L}_{λ} is a left $D_{\lambda,X}$ -module. The category of such modules is denoted by $\mathcal{M}^{\lambda}(X)$ (of course, it depends on the principal bundle \widetilde{X} but we do not indicate it in the notation). Note that for $\beta \in P$ we have an equivalence $\mathcal{M}^{\lambda}(X) \cong \mathcal{M}^{\lambda+\beta}(X)$ defined by tensoring with \mathcal{L}_{β} .

Example 29.5. Let \mathcal{L} be a line bundle on X and $c \in k$. Let \widetilde{X} be the subset of nonzero vectors in the total space of \mathcal{L} . We have a natural action of $T := k^{\times}$ on \widetilde{X} by dilations, and c defines a character of $\mathrm{Lie}(T)$. Thus we can define the sheaf $D_{c,L,X}$ of twisted differential operators on X, and if $c \in \mathbb{Z}$ then $D_{c,L,X} = D_X(L^{\otimes c})$ is the sheaf of differential operators on $L^{\otimes c}$. For example, if Ω_X is the canonical bundle of X then $D_{1,\Omega,X} = D_X(\Omega)$ is naturally isomorphic to the sheaf of usual differential operators with opposite multiplication, D_X^{op} .

Thus tensoring with Ω defines a canonical equivalence

$$\mathcal{M}_l(X) \cong \mathcal{M}_r(X)$$

(i.e., the sheaf D_X is Morita equivalent, although not in general isomorphic, to D_X^{op}). We may therefore not distinguish between these categories any more, identifying them by this equivalence, and can use left or right D-modules depending on what is more convenient.

29.3. The localization theorem for non-zero central characters. We are now ready to generalize the localization theorem to non-zero central characters. Let U_{λ} be the minimal quotient of $U(\mathfrak{g})$ corresponding to the central character $\chi_{\lambda-\rho}$. Recall that $\operatorname{gr}(U_{\lambda}) = \mathcal{O}(\mathcal{N})$.

Let $\widetilde{\mathcal{F}} := G/[B,B]$. We have a right action of T := B/[B,B] on this variety by $y \mapsto yt$, defining the structure of a principal T-bundle $\widetilde{\mathcal{F}} \to \mathcal{F}$. Thus for every $\lambda \in P \otimes_{\mathbb{Z}} \mathbb{C} = \mathfrak{h}^*$ we have a sheaf of λ -twisted differential operators $D_{\lambda,\mathcal{F}} = D_{\lambda}$ on \mathcal{F} . For example, if $\lambda \in P$ then D_{λ} is the sheaf of differential operators acting on sections of the line bundle \mathcal{L}_{λ} appearing in the Borel-Weil theorem (Theorem 27.3). Let $D_{\lambda}(\mathcal{F})$ be the algebra of global λ -twisted differential operators on \mathcal{F} ; it is clear that $\operatorname{gr} D_{\lambda}(\mathcal{F}) \subset \mathcal{O}(T^*\mathcal{F})$. Also, we have a natural filtration-preserving action map $a: U(\mathfrak{g}) \to D_{\lambda}(\mathcal{F})$.

Theorem 29.6. (Beilinson-Bernstein) (i) The map

$$a: U(\mathfrak{g}) \to D_{\lambda}(\mathcal{F})$$

factors through a map $a_{\lambda}: U_{\lambda} \to D_{\lambda}(\mathcal{F}).$

- (ii) One has $gr(a_{\lambda}) = p^*$ where p is the Springer map $T^*\mathcal{F} \to \mathcal{N}$.
- (iii) $\operatorname{gr} D_{\lambda}(\mathcal{F}) = \mathcal{O}(T^*\mathcal{F})$ and a_{λ} is an isomorphism.

Proof. The proof is completely parallel to the proof of Theorem 29.1.

As in the untwisted case, the isomorphism a_{λ} gives rise to two functors: the functor of global sections

$$\Gamma: \mathcal{M}^{\lambda}(\mathcal{F}) \to D_{\lambda}(\mathcal{F}) - \text{mod} \cong U_{\lambda} - \text{mod}$$

and the functor of localization

$$\operatorname{Loc}: U_{\lambda} - \operatorname{mod} \cong D(\mathcal{F}) - \operatorname{mod} \to \mathcal{M}_{\lambda}(\mathcal{F})$$

given by $\operatorname{Loc}(M)(U) := D_{\lambda}(U) \otimes_{D_{\lambda}(\mathcal{F})} M$ for an affine open set $U \subset \mathcal{F}$. Moreover, as before, Loc is left adjoint to Γ .

Let us say that $\lambda \in \mathfrak{h}^*$ is **antidominant** if $-\lambda$ is dominant (cf. Subsection 16.1).

Theorem 29.7. (Beilinson-Bernstein localization theorem) If λ is antidominant then the functors Γ and Loc are mutually inverse equivalences. Thus the category U_{λ} – mod is canonically equivalent to the category of D_{λ} -modules on the flag variety \mathcal{F} .

Remark 29.8. 1. As explained above, for $\beta \in P$ we have an equivalence $\mathcal{M}^{\lambda}(\mathcal{F}) \cong \mathcal{M}^{\lambda+\beta}(\mathcal{F})$ defined by tensoring with \mathcal{L}_{β} . On the other side of the Beilinson-Bernstein equivalence this corresponds to translation functors defined in Subsection 24.1.

2. The first statement of Theorem 29.7 fails if λ is not assumed antidominant. Indeed, if λ is integral but not antidominant then by the Borel-Weil theorem (Theorem 27.3) $\Gamma(\mathcal{F}, \mathcal{L}_{\lambda}) = 0$, so the functor Γ is not faithful. The second statement of Theorem 29.7 also fails if $\lambda \in P$ and $\lambda - \rho$ is not regular.

For example, for $\mathfrak{g} = \mathfrak{sl}_2$ and $\lambda \in \mathbb{Z}$, the localization theorem holds for $\lambda \leq 0$. For $\lambda \geq 2$ the first statement fails but we still have an equivalence $\mathcal{M}^{\lambda}(\mathcal{F}) \cong U_{\lambda} - \text{mod}$ (as $U_{\lambda} \cong U_{-\lambda+2}$), albeit not given by Γ . But for $\lambda = 1$ there is no such equivalence at all; in fact, one can show that the category $U_{\lambda} - \text{mod}$, unlike $\mathcal{M}^{\lambda}(\mathcal{F})$, has infinite cohomological dimension.

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.