29. The Beilinson-Bernstein Localization Theorem

29.1. The Beilinson-Bernstein localization theorem for the zero
central character. Let g be a complex semisimple Lie algebra and Uy
be the maximal quotient of U(g) corresponding to the central character
Xp = X—p of the trivial representation of g. Recall that gr(Uy) = O(N).
Let G be the corresponding simply connected complex group and F
the flag variety of G; thus F = G/B for a Borel subgroup B C G. Let
D(F) be the algebra of global differential operators on F; it is clear
that grD(F) C O(T*F). Also, we have a natural filtration-preserving
action map a : U(g) — D(F), induced by the Lie algebra homomor-
phism g — Vect(F).

Theorem 29.1. (Beilinson-Bernstein) (i) The homomorphism

a:U(g) = D(F) factors through a homomorphism ag : Uy — D(F).
(i) One has gr(ag) = p* where p is the Springer map T*F — N .
(111) grD(F) = O(T*F) and ag is an isomorphism.

Proof. (i) Let z € Z(g) be an element acting by zero in the trivial
representation of g. Our job is to show that for any rational function
f € C(F) we have a(z)f = 0. Writing F as G/B, we may view f as
a rational function on G such that f(gb) = f(g), b € B. The function
a(z)f on G is the result of action on f of the right-invariant differential
operator L, corresponding to z: a(z)f = L,f. Since z is central,
this operator is also left-invariant: L, = R.. Since z acts by zero
on the trivial representation, using the Harish-Chandra isomorphism,
we may write z as »_.¢;b;, where b, € b := Lie(B) and ¢; € U(g).
Thus R, = ) . R, Ry,. But Ry, f = 0 since f is invariant under right
translations by B. Thus R, f = 0 and we are done.

(ii) It suffices to check the statement in degrees 0 and 1, where it is
straightforward.

(iii) The statement follows from (i), (ii) and the fact that p* is an
isomorphism (Theorem 27.16). O

The isomorphism aq gives rise to two functors: the functor of global
sections I' : M(F) — D(F) — mod = U, — mod and the functor
of localization Loc : Uy — mod = D(F) — mod — M(F) given by
Loc(M)(U) := D(U) ®pry M for an affine open set U C F. Note that
by definition the functor Loc is left adjoint to I'.

The following theorem is a starting point for the geometric represen-
tation theory of semisimple Lie algebras (in particular, for the original
proof of the Kazhdan-Lusztig conjecture).

Theorem 29.2. (Beilinson-Bernstein localization theorem) The func-

tors I' and Loc are mutually inverse equivalences. Thus the category
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Uy —mod is canonically equivalent to the category of D-modules on the
flag variety F.

We will not give a proof of this theorem here.
Theorem 29.2 motivates the following definition.

Definition 29.3. A smooth algebraic variety X 1is said to be
D-affine if the global sections functor I' : M(X) — D(X) — mod
is an equivalence (hence Loc is its inverse).

It is clear that any affine variety is D-affine. Also we have

Corollary 29.4. Partial flag varieties of semisimple groups are D-

affine.

29.2. Twisted differential operators and D-modules. We would
now like to generalize the localization theorem to nonzero central char-
acters. To do so, we have to replace usual differential operators and
D-modules by twisted ones.

Let T be an algebraic torus with character lattice P := Hom(T, C*)
and X be a principal 7T-bundle over a smooth algebraic variety X
(with T" acting on the right). In this case, given A € P, we can define
the line bundle £, on X whose total space is X xp C,, where C, is
the 1-dimensional representation of T corresponding to A, and we can
consider the sheaf D, yx of differential operators acting on local sections
of £, (rather than functions).

Moreover, unlike the bundle £y, the sheaf D) x makes sense not just
for A € P but more generally for A € P®;C. Namely, assuming for now
that A € P, we may think of rational sections of £, as rational functions
F on X such that F(yt) = At)"'F(y) for y € X. A differential
operator D on X may be applied to such a function, and if £ € t :=
Lie(T") then the first order differential operator Re — A(§) acts by zero:
(Re —A(€))F = 0. Thus given an affine open set U C X with preimage

U C X, the space
DA(U) := (D(U)/D(U)(Re = A(6).€ € 1)

is naturally an associative algebra (check it!) which acts on rational
sections of £y. Moreover, it is easy to check that D)(U) = D, x(U).
Now it remains to note that the definition of D,(U) does not use the
integrality of A, thus makes sense for all A € P ®; C.

Thus for any A € P ®; C we obtain a quasicoherent sheaf of alge-
bras Dy x on X which is called the sheaf of A-twisted differential
operators. If A\ = 0, this sheaf coincides with the sheaf Dy of usual

differential operators, and in general it has very similar properties, for
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example gr(Dy x(U)) = O(T*U) for any affine open set U C X. A
quasicoherent sheaf on X with the structure of a (left or right) D) x-
module is called a (left or right) A\-twisted D-module on X. For
example, if A € P then £, is a left D) x-module. The category of such
modules is denoted by M*(X) (of course, it depends on the princi-
pal bundle X but we do not indicate it in the notation). Note that
for 3 € P we have an equivalence M*(X) & M*P(X) defined by
tensoring with Lg.

Example 29.5. Let £ be a line bundle on X and ¢ € k. Let X be the
subset of nonzero vectors in the total space of £. We have a natural
action of T := k* on X by dilations, and ¢ defines a character of Lie(T").
Thus we can define the sheaf D, x of twisted differential operators on
X, and if ¢ € Z then D.;x = Dx(L®) is the sheaf of differential
operators on L%, For example, if Qx is the canonical bundle of X
then Do x = Dx(f2) is naturally isomorphic to the sheaf of usual
differential operators with opposite multiplication, DSF.

Thus tensoring with €2 defines a canonical equivalence
M (X) =2 M, (X)

(i.e., the sheaf Dy is Morita equivalent, although not in general iso-
morphic, to DY). We may therefore not distinguish between these
categories any more, identifying them by this equivalence, and can use
left or right D-modules depending on what is more convenient.

29.3. The localization theorem for non-zero central characters.
We are now ready to generalize the localization theorem to non-zero
central characters. Let Uy be the minimal quotient of U(g) correspond-
ing to the central character y,_,. Recall that gr(U,) = O(N).

Let F := G/[B, B]. We have a right action of T := B/[B, B] on
this variety by y — yt, defining the structure of a principal T-bundle
F — F. Thus for every A € P ®z C = h* we have a sheaf of \-twisted
differential operators Dy r = Dy on F. For example, if A € P then D)
is the sheaf of differential operators acting on sections of the line bundle
L appearing in the Borel-Weil theorem (Theorem 27.3). Let D) (F)
be the algebra of global A-twisted differential operators on JF; it is clear
that grDy(F) C O(T*F). Also, we have a natural filtration-preserving
action map a : U(g) — Dx(F).

Theorem 29.6. (Beilinson-Bernstein) (i) The map
a:U(g) = Di(F)

factors through a map ay : Uy — Dy(F).
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(11) One has gr(ay) = p* where p is the Springer map T*F — N .
(i1i) grD\(F) = O(T*F) and ay is an isomorphism.

Proof. The proof is completely parallel to the proof of Theorem 29.1.
O

As in the untwisted case, the isomorphism a, gives rise to two func-
tors: the functor of global sections

I': MMNF) — Dy(F) — mod = Uy — mod
and the functor of localization
Loc : Uy — mod = D(F) — mod — M, (F)

given by Loc(M)(U) := DA(U) ®p, () M for an affine open set U C F.
Moreover, as before, Loc is left adjoint to I'.

Let us say that A € h* is antidominant if —) is dominant (cf.
Subsection 16.1).

Theorem 29.7. (Beilinson-Bernstein localization theorem) If X is an-
tidominant then the functors I' and Loc are mutually inverse equiva-
lences. Thus the category Uy — mod s canonically equivalent to the
category of Dy-modules on the flag variety F.

Remark 29.8. 1. As explained above, for § € P we have an equiv-
alence MMF) = M P(F) defined by tensoring with L5. On the
other side of the Beilinson-Bernstein equivalence this corresponds to
translation functors defined in Subsection 24.1.

2. The first statement of Theorem 29.7 fails if \ is not assumed
antidominant. Indeed, if A is integral but not antidominant then by
the Borel-Weil theorem (Theorem 27.3) I'(F, L)) = 0, so the functor
I' is not faithful. The second statement of Theorem 29.7 also fails if
A € P and A — p is not regular.

For example, for g = sly and A € Z, the localization theorem holds
for A < 0. For A > 2 the first statement fails but we still have an
equivalence M*F) = Uy — mod (as Uy = U_,,5), albeit not given
by I'. But for A = 1 there is no such equivalence at all; in fact, one
can show that the category Uy — mod, unlike M*(F), has infinite
cohomological dimension.
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