30. D-modules - II

We would now like to explain how the Beilinson-Bernstein localization theorem can be used to classify various kinds of irreducible representations of \mathfrak{g} . For this we will need to build up a bit more background on *D*-modules.

30.1. Support of a quasicoherent sheaf. Let M be a quasicoherent sheaf on a variety X, and $Z \subset X$ a closed subvariety. We will say that M is supported on Z if for any affine open set $U \subset X$, regular function $f \in \mathcal{O}(U)$ vanishing on Z, and $v \in M(U)$, there exists $N \in \mathbb{Z}_{\geq 0}$ such that $f^N v = 0$. The support Supp(M) is then defined as the intersection of all closed subvarietes $Z \subset X$ such that M is supported on Z. So M is supported on Z iff the support of M is contained in Z.

In particular, we can talk about support of a (left or right, possibly twisted) *D*-module on a smooth variety *X*. The category of *D*-modules on *X* supported on *Z* will be denoted by $\mathcal{M}_Z(X)$.

Example 30.1. It is easy to see that $\mathbb{C}[x, x^{-1}]$ is a left *D*-module on \mathbb{A}^1 , and $\mathbb{C}[x]$ is its submodule. These modules have full support \mathbb{A}^1 . On the other hand, consider the quotient $\delta_0 := \mathbb{C}[x, x^{-1}]/\mathbb{C}[x].^{21}$ It is clear that δ_0 has a basis $v_i = x^{-i}$, $i \geq 1$, with $xv_i = v_{i-1}$, $xv_1 = 0$, $\partial v_i = -iv_{i+1}$. Thus the support of δ_0 is $\{0\}$.

30.2. Restriction to an open subset. Recall that if \mathcal{A} is an abelian category and $\mathcal{B} \subset \mathcal{A}$ a Serre subcategory (i.e., a full subcategory closed under taking subquotients and extensions) then one can form the quotient category \mathcal{A}/\mathcal{B} with the same objects as \mathcal{A} , but with $\operatorname{Hom}_{\mathcal{A}/\mathcal{B}}(X,Y)$ being the direct limit of $\operatorname{Hom}_{\mathcal{A}}(X',Y/Y')$ over $X' \subset X$ and $Y' \subset Y$ such that $X', Y' \in \mathcal{B}$. One can show that \mathcal{A}/\mathcal{B} is an abelian category. The natural functor $F : \mathcal{A} \to \mathcal{A}/\mathcal{B}$ is then called the Serre quotient functor. This functor is essentially surjective, its kernel is \mathcal{B} , and it maps simple objects to simple objects or zero. Thus F defines a bijection between simple objects of \mathcal{A} not contained in \mathcal{B} and simple objects of \mathcal{A}/\mathcal{B} .

For example, if X is a variety, $Z \subset X$ a closed subvariety, $\operatorname{Qcoh}(X)$ the category of quasicoherent sheaves on X and $\operatorname{Qcoh}_Z(X)$ the full subcategory of sheaves supported on Z then $\operatorname{Qcoh}(X)/\operatorname{Qcoh}_Z(X) \cong$ $\operatorname{Qcoh}(X \setminus Z)$. The corresponding Serre quotient functor is the restriction $M \mapsto M|_{X \setminus Z}$.

²¹In analysis δ_0 arises as the *D*-module generated by the δ -function at zero, which motivates the notation.

Now assume that X is smooth. Let $j : X \setminus Z \hookrightarrow X$ be the open embedding. Then we have a **restriction functor** on D-modules

$$j': \mathcal{M}(X) \to \mathcal{M}(X \setminus Z)$$

which is the usual restriction functor at the level of sheaves; it is also called the **inverse image** or **pull-back** functor, since it is a special case of the inverse image functor defined above. Thus $j^!(M) = 0$ if and only if M is supported on Z and the functor $j^!$ is a Serre quotient functor which induces an equivalence $\mathcal{M}(X)/\mathcal{M}_Z(X) \cong \mathcal{M}(X \setminus Z)$.

The functor $j^{!}$ has a right adjoint **direct image (or push-forward)** functor

$$j_*: \mathcal{M}(X \setminus Z) \to \mathcal{M}(X),$$

which is just the sheaf-theoretic direct image (=push-forward). Namely, for an affine open $U \subset X$, $j_*M(U) := M(U \setminus Z)$ regarded as a module over $D(U) \subset D(U \setminus Z)$. While the functor $j^!$ is exact, the functor j_* is only left exact, in general (as so is the push-forward functor for sheaves). In particular, j_* is **not** the (right exact) direct image defined above since the morphism j is not affine, in general; rather it is the zeroth cohomology of the full direct image functor defined on the derived category of D-modules, which we will not discuss here. They do agree, however, when j is affine (e.g., when Z is a hypersurface).

In particular, $j^!$ defines a bijection between isomorphism classes of simple D_X -modules which are not supported on Z and simple $D_{X\setminus Z^-}$ modules, given by $M \mapsto j^! M$.

The inverse map is defined as follows. Given $L \in \mathcal{M}(X \setminus Z)$, consider the *D*-module j_*L . Since j_* is right adjoint to $j^!$, the module j_*L does not contain nonzero submodules supported on *Z*. Now define $j_{!*}L$ to be the intersection of all submodules *N* of j_*L such that j_*L/N is supported on *Z*. This gives rise to a functor $j_{!*} : \mathcal{M}(X \setminus Z) \to \mathcal{M}(X)$ (not left or right exact in general). Then if *L* is irreducible, so is $j_{!*}L$, and $j!j_{!*}L \cong L$, while for $M \in \mathcal{M}(X)$ irreducible and not supported on *Z* we have $j_{!*}j!M \cong M$. The functor $j_{!*}$ is called the **Goresky-MacPherson extension** or **minimal (or intermediate) extension** functor.

Proposition 30.2. The support of an irreducible *D*-module is irreducible.

Proof. Let M be a D_X -module with support Z. Assume that Z is reducible: $Z = Z_1 \cup Z_2$ where Z_1 is an irreducible component of Zand Z_2 the union of all the other components. Let $Y = Z_1 \cap Z_2$, a proper subset in Z_1 and Z_2 . Let $Z^\circ = Z \setminus Y$, $Z_i^\circ = Z_i \setminus Y$ and $X^\circ = X \setminus Y$. Then $Z^\circ = Z_1^\circ \cup Z_2^\circ$ is disconnected: Z_1°, Z_2° are closed nonempty subsets of Z° and $Z_1^{\circ} \cap Z_2^{\circ} = \emptyset$. Let M_1, M_2 be the sums of all subsheaves of $M|_{X^{\circ}}$ which are killed by localization away from Z_1° , respectively Z_2° . It is easy to show that M_i are nonzero submodules of $M|_{X^{\circ}}$ and $M|_{X^{\circ}} \cong M_1 \oplus M_2$. Thus $M|_{X^{\circ}}$ is reducible and hence so is M. \Box

30.3. Kashiwara's theorem. Let X be a smooth variety and $Z \subset X$ a smooth closed subvariety with closed embedding $i : Z \hookrightarrow X$. For $M \in \mathcal{M}(X)$ define M_Z to be the sheaf on X whose sections on an affine open set $U \subset X$ are the vectors in M(U) annihilated by regular functions on U vanishing on Z. Thus the $\mathcal{O}(U)$ -action on $M_Z(U)$ factors through $\mathcal{O}(Z \cap U)$. Also it is easy to see that $M_Z(U)$ depends only on $Z \cap U$, i.e., it gives rise to a quasicoherent sheaf $i^{\dagger}M$ on Z with sections

$$i^{\dagger}M(V) := M_Z(U)$$

for affine open $U \subset X$ such that $V = Z \cap U$. Moreover, if v is a vector field on U tangent to V then v preserves the ideal of V, hence acts naturally on $i^{\dagger}M(V)$. Furthermore, the action of v on this space depends only on the vector field on V induced by v. Thus $i^{\dagger}M(V)$ carries an action of the Lie algebra $\operatorname{Vect}(V)$. Together with the action of $\mathcal{O}(V)$, this defines an action of D(V) on $i^{\dagger}M(V)$. We conclude that $i^{\dagger}M$ is naturally a D_Z -module. Thus we have defined a left exact functor

$$i^{\dagger}: \mathcal{M}(X) \to \mathcal{M}(Z).$$

It is called the **shifted inverse image** functor. This terminology is motivated by the following exercise.

Exercise 30.3. Show that $i^{\dagger} = L^{d}i^{!}$ and $i^{!} = R^{d}i^{\dagger}$, where L^{d} , R^{d} are the d-th left, respectively right derived functors and $d = \dim X - \dim Z$.

Theorem 30.4. (Kashiwara) The functor i^{\dagger} is an equivalence of categories $\mathcal{M}_Z(X) \to \mathcal{M}(Z)$.

The proof is not difficult, but we will skip it (see [HTT]).

The inverse of the functor i^{\dagger} is called the **direct image** functor and denoted $i_* : \mathcal{M}(Z) \to \mathcal{M}_Z(X)$, as it is a special case of the direct image functor defined above for affine morphisms. If we view i_* as a functor $\mathcal{M}(Z) \to \mathcal{M}(X)$ then it has both left and right adjoint, where are $i^!$ and i^{\dagger} , respectively.

Let us give a prototypical example.

Example 30.5. Let $X = \mathbb{A}^1$, $Z = \{0\}$. Then $\mathcal{M}(Z)$ = Vect and $i_*(V) = V \otimes \delta_0$. So in this case Kashiwara's theorem reduces to the claim that $\operatorname{Ext}^1(\delta_0, \delta_0) = 0$.

Remark 30.6. We note that the above formalism and results extend in a straightforward manner to the case of twisted *D*-modules.

30.4. Equivariant *D*-modules. Let *X* be an algebraic variety with an action of an affine algebraic group *G*. Let us review the notion of a *G*-equivariant quasicoherent sheaf on *X*. Roughly speaking, this is a quasicoherent sheaf \mathcal{E} on *X* equipped with a system of isomorphisms $\phi_g : g(\mathcal{E}) \cong \mathcal{E}, g \in G$ such that $\phi_{gh} = \phi_g \circ g(\phi_h)$ and ϕ_g depends on *g* algebraically. To give a formal definition, note that the group structure gives us a multiplication map $m : G \times G \twoheadrightarrow G$, and the action of *G* gives us a map $\rho : G \times X \twoheadrightarrow X$. We have a commutative diagram

Definition 30.7. A *G*-equivariant quasicoherent sheaf on X is a quasicoherent sheaf \mathcal{E} on X equipped with an isomorphism

$$\phi:\rho^*\mathcal{E}\cong\mathcal{O}_G\boxtimes\mathcal{E}$$

making the following diagram commutative:

Thus ϕ comprises all the isomorphisms ϕ_g , which therefore satisfy the equality $\phi_{gh} = \phi_g \circ g(\phi_h)$ and depend on g algebraically.

We now wish to define the notion of a *G*-equivariant D_X -module. To this end, recall that for any D_X -module \mathcal{E} , the quasicoherent sheaf $\rho^* \mathcal{E}$ carries a natural structure of a $D_{G \times X}$ -module (the *D*-module inverse image). We now make the following definition.

Definition 30.8. A weakly *G*-equivariant *D*-module on *X* is a D_X -module \mathcal{E} with a *G*-equivariant quasicoherent sheaf structure, where ϕ is D_X -linear.

Note that if \mathcal{E} is a weakly equivariant D_X -module then we have two (in general, different) actions of $\mathfrak{g} = \text{Lie}(G)$ on \mathcal{E} . First of all, the *G*-action on *X* gives us maps $\mathfrak{g} \to \text{Vect}(X) \to D(X)$, and so the *D*module structure on \mathcal{E} gives us a \mathfrak{g} -action $x \mapsto b_0(x)$ on \mathcal{E} . Note that this action does not depend on the choice of the weakly equivariant structure ϕ .

On the other hand, we have a \mathfrak{g} -action on $\mathcal{O}_G \boxtimes \mathcal{E}$ coming from the *G*-action on $G \times X$ given by $g \cdot (h, x) = (gh, x)$. Translating this along ϕ , we get a \mathfrak{g} -action on $\rho^* \mathcal{E}$. Restricting to $1 \times X$, this gives us another \mathfrak{g} -action $x \mapsto b_{\phi}(x)$ on \mathcal{E} .

Definition 30.9. A (strongly) *G*-equivariant D_X -module is a weakly *G*-equivariant D_X -module where these two g-actions agree: $b_{\phi} = b_0$ (or, equivalently, where ϕ is $D_{G \times X}$ -linear.)

In general, since $[b_0(x), L] = [b_{\phi}(x), L]$ for $L \in D_X$, the operator $\rho_{\phi}(x) := b_{\phi}(x) - b_0(x)$ is a *D*-module endomorphism of \mathcal{E} . Moreover, it is easy to see that ρ_{ϕ} is a Lie algebra homomorphism $\mathfrak{g} \to \text{End}(\mathcal{E})$. In particular, if \mathcal{E} is irreducible then by Dixmier's lemma (Lemma 7.2), $\text{End}(\mathcal{E}) = \mathbb{C}$, so ρ_{ϕ} is just a character of \mathfrak{g} . Thus if $\mathfrak{g} = [\mathfrak{g}, \mathfrak{g}]$ is perfect (for example, semisimple) then every weakly *G*-equivariant irreducible D_X -module is actually (strongly) *G*-equivariant.

Remark 30.10. A given D_X -module may have many weakly G-equivariant structures, but if G is connected, then it can only have one G-equivariant structure. This is because the \mathfrak{g} -action on \mathcal{E} is determined by the map $\mathfrak{g} \to D(X)$ and this action can be integrated to a G-equivariant structure in an unique way (recall that we always work over a field of characteristic 0.)

Furthermore, any D_X -linear map of G-equivariant D_X -modules is automatically compatible with the G-action. This is because such a map is necessarily \mathfrak{g} -linear, which implies that it is in fact G-linear. These two facts combined show that the category of G-equivariant D_X modules is a full subcategory of the category of D_X -modules. Stated another way, G-equivariance of a D_X -module is a property, not a structure.

Example 30.11. Consider the case where X is a point. Then $D_X \cong \mathbb{C}$ and so a D_X -module is a just a vector space. A weakly G-equivariant D_X -module is then simply a locally algebraic representation of G. This representation gives a G-equivariant structure if and only if \mathfrak{g} acts by 0, i.e., the connected component of the identity $G_0 \subset G$ acts trivially. Thus a G-equivariant D_X -module is just a representation of the component group G/G_0 . Conversely, any locally algebraic representation V of G gives rise to a weakly G-equivariant D-module on X which is equivariant iff G_0 acts trivially on V, so that V is a representation of G/G_0 .

Example 30.12. Let X = G/H, where G is an algebraic group and H a closed subgroup of G. Then we claim that a G-equivariant D_X -module is the same thing as an H-equivariant D-module on a point, i.e., a representation of the component group H/H_0 . Indeed, given an H/H_0 -module V, we can define a G-equivariant vector bundle

$$(G \times V)/H \to X = G/H,$$

where H acts on $G \times V$ via $(g, v)h = (gh, h^{-1}v)$. Note that this can be written as $\frac{(G/H_0) \times V}{H/H_0}$ (as H_0 acts on V trivially). This shows that this vector bundle has a natural flat connection, i.e. is a D_X -module L(X, V), which is clearly G-equivariant. The assignment $V \mapsto L(X, V)$ is the desired equivalence. In the case H = G, this reduces to Example 30.11.

Exercise 30.13. (i) Define the algebraic group $L := G \times_{G/G_0} H/H_0$ of pairs $(g, h), g \in G, h \in H/H_0$ which map to the same element of G/G_0 ; thus we have a short exact sequence

$$1 \to G_0 \to L \to H/H_0 \to 1.$$

Show that the category of weakly G-equivariant D-modules on G/H is naturally equivalent to the category of representations of L, such that the subcategory of strongly G-equivariant D-modules is identified with the subcategory of representations of L pulled back from the second factor H/H_0 (i.e., those with trivial action of G_0), and the subcategory of modules of the form $\mathcal{O}(G/H) \otimes V$ where V is a G-module is identified with the category of representations of L pulled back from the first factor G.

(ii) Let $\Delta : H \to L$ be the map defined by $\Delta(h) = (h, h)$. Show that the forgetful functor from weakly *G*-equivariant *D*-modules on G/H to *G*-equivariant quasicoherent sheaves on G/H corresponds to the pullback functor Δ^* .

Exercise 30.14. Let X be a smooth variety with an action of an affine algebraic group G and $H \subset G$ be a closed subgroup. Show that the category of H-equivariant D-modules on X is naturally equivalent to the category of G-equivariant D-modules on $X \times G/H$ with diagonal action of G (note that when X is a point, this reduces to Example 30.12).

Exercise 30.15. Let X be a principal G-bundle over a smooth variety Y. Show that the category of G-equivariant D_X -modules is naturally equivalent to the category of D_Y -modules. Namely, given a G-equivariant D_X -module M, for an affine open set $U \subset Y$ let \widetilde{U} be the

preimage of U in X and let $\overline{M}(U) := M(\widetilde{U})^G$. Then \overline{M} is a D_Y -module, and the assignment $M \mapsto \overline{M}$ is a desired equivalence.

The notion of a weakly equivariant D-module often arises in the following setting. Let T be an algebraic torus and let \widetilde{X} be a principal T-bundle over X.

Definition 30.16. A monodromic D_X -module (with respect to the bundle $\widetilde{X} \twoheadrightarrow X$) is a weakly *T*-equivariant $D_{\widetilde{X}}$ -module.

Example 30.17. A monodromic D_X -module with $\rho_{\phi} = \lambda \in \text{Lie}(T)^*$ is the same thing as a λ -twisted *D*-module on *X*, i.e., a $D_{\lambda,X}$ -module.

Proposition 30.18. Assume that X is a D-affine variety and that K is an affine algebraic group acting on X. Let D(X) be the ring of global sections of D_X . Then the category of K-equivariant D_X -modules is equivalent to the category of D(X)-modules M endowed with a locally finite K-action whose differential coincides with the action of Lie(K) on M coming from the map $\text{Lie}(K) \to D(X)$.

Exercise 30.19. Prove Proposition 30.18.

In particular, by the Beilinson-Bernstein localization theorem, Proposition 30.18 applies to $X = \mathcal{F} \cong G/B$ and K a closed subgroup of G, and moreover it extends to the case of λ -twisted differential operators on \mathcal{F} for antidominant $\lambda \in \mathfrak{h}^*$. Thus we get

Corollary 30.20. If $\lambda \in \mathfrak{h}^*$ is antidominant then the functors Γ , Loc restrict to mutually inverse equivalences between the category of (\mathfrak{g}, K) -modules with infinitesimal character $\chi_{\lambda-\rho}$ and the category of K-equivariant D_{λ} -modules on \mathcal{F} .

18.757 Representations of Lie Groups Fall 2023

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.