
30. D-modules - II

We would now like to explain how the Beilinson-Bernstein localiza-
tion theorem can be used to classify various kinds of irreducible repre-
sentations of g. For this we will need to build up a bit more background
on D-modules.

30.1. Support of a quasicoherent sheaf. Let M be a quasicoherent
sheaf on a variety X, and Z ⊂ X a closed subvariety. We will say that
M is supported on Z if for any affine open set U ⊂ X, regular function
f ∈ O(U) vanishing on Z, and v ∈ M(U), there exists N ∈ Z≥0

such that fNv = 0. The support Supp(M) is then defined as the
intersection of all closed subvarietes Z ⊂ X such that M is supported
on Z. So M is supported on Z iff the support of M is contained in Z.

In particular, we can talk about support of a (left or right, possibly
twisted) D-module on a smooth variety X. The category of D-modules
on X supported on Z will be denoted by MZ(X).

Example 30.1. It is easy to see that C[x, x−1] is a left D-module on
A1, and C[x] is its submodule. These modules have full support A1.
On the other hand, consider the quotient δ0 := C[x, x−1]/C[x].22 It is
clear that δ0 has a basis vi = x−i, i ≥ 1, with xvi = vi−1, xv1 = 0,
∂vi = −ivi+1. Thus the support of δ0 is {0}.

30.2. Restriction to an open subset. Recall that if A is an abelian
category and B ⊂ A a Serre subcategory (i.e., a full subcategory
closed under taking subquotients and extensions) then one can form
the quotient category A/B with the same objects as A, but with
HomA/B(X, Y ) being the direct limit of HomA(X ′, Y/Y ′) over X ′ ⊂ X
and Y ′ ⊂ Y such that X ′, Y ′ ∈ B. One can show that A/B is an
abelian category. The natural functor F : A → A/B is then called
the Serre quotient functor. This functor is essentially surjective, its
kernel is B, and it maps simple objects to simple objects or zero. Thus
F defines a bijection between simple objects of A not contained in B
and simple objects of A/B.

For example, if X is a variety, Z ⊂ X a closed subvariety, Qcoh(X)
the category of quasicoherent sheaves on X and QcohZ(X) the full
subcategory of sheaves supported on Z then Qcoh(X)/QcohZ(X) ∼=
Qcoh(X \ Z). The corresponding Serre quotient functor is the restric-
tion M 7→M |X\Z .

22In analysis δ0 arises as the D-module generated by the δ-function at zero,
which motivates the notation.
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Now assume that X is smooth. Let j : X \ Z ↪→ X be the open
embedding. Then we have a restriction functor on D-modules

j! :M(X)→M(X \ Z)

which is the usual restriction functor at the level of sheaves; it is also
called the inverse image or pull-back functor, since it is a special
case of the inverse image functor defined above. Thus j!(M) = 0 if
and only if M is supported on Z and the functor j! is a Serre quotient
functor which induces an equivalence M(X)/MZ(X) ∼=M(X \ Z).

The functor j! has a right adjoint direct image (or push-forward)
functor

j∗ :M(X \ Z)→M(X),

which is just the sheaf-theoretic direct image (=push-forward). Namely,
for an affine open U ⊂ X, j∗M(U) := M(U \Z) regarded as a module
over D(U) ⊂ D(U \ Z). While the functor j! is exact, the functor
j∗ is only left exact, in general (as so is the push-forward functor for
sheaves). In particular, j∗ is not the (right exact) direct image defined
above since the morphism j is not affine, in general; rather it is the ze-
roth cohomology of the full direct image functor defined on the derived
category of D-modules, which we will not discuss here. They do agree,
however, when j is affine (e.g., when Z is a hypersurface).

In particular, j! defines a bijection between isomorphism classes of
simple DX-modules which are not supported on Z and simple DX\Z-
modules, given by M 7→ j!M .

The inverse map is defined as follows. Given L ∈M(X\Z), consider
the D-module j∗L. Since j∗ is right adjoint to j!, the module j∗L does
not contain nonzero submodules supported on Z. Now define j!∗L to
be the intersection of all submodules N of j∗L such that j∗L/N is
supported on Z. This gives rise to a functor j!∗ :M(X \ Z)→M(X)
(not left or right exact in general). Then if L is irreducible, so is j!∗L,
and j!j!∗L ∼= L, while for M ∈ M(X) irreducible and not supported
on Z we have j!∗j

!M ∼= M . The functor j!∗ is called the Goresky-
MacPherson extension or minimal (or intermediate) extension
functor.

Proposition 30.2. The support of an irreducible D-module is irre-
ducible.

Proof. Let M be a DX-module with support Z. Assume that Z is
reducible: Z = Z1 ∪ Z2 where Z1 is an irreducible component of Z
and Z2 the union of all the other components. Let Y = Z1 ∩ Z2,
a proper subset in Z1 and Z2. Let Z◦ = Z \ Y , Z◦i = Zi \ Y and
X◦ = X \ Y . Then Z◦ = Z◦1 ∪ Z◦2 is disconnected: Z◦1 , Z

◦
2 are closed
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nonempty subsets of Z◦ and Z◦1 ∩ Z◦2 = ∅. Let M1,M2 be the sums of
all subsheaves of M |X◦ which are killed by localization away from Z◦1 ,
respectively Z◦2 . It is easy to show that Mi are nonzero submodules of
M |X◦ and M |X◦ ∼= M1 ⊕M2. Thus M |X◦ is reducible and hence so if
M . �

30.3. Kashiwara’s theorem. Let X be a smooth variety and Z ⊂ X
a smooth closed subvariety with closed embedding i : Z ↪→ X. For M ∈
M(X) define MZ to be the sheaf X whose sections on an affine open
set U ⊂ X are the vectors in M(U) annihilated by regular functions on
U vanishing on Z. Thus the O(U)-action on MZ(U) factors through
O(Z ∩ U). Also it is easy to see that MZ(U) depends only on Z ∩ U ,
i.e., it gives rise to a quasicoherent sheaf i†M on Z with sections

i†M(V ) := MZ(U)

for affine open U ⊂ X such that V = Z ∩ U . Moreover, if v is a
vector field on U tangent to V then v preserves the ideal of V , hence
acts naturally on i†M(V ). Furthermore, the action of v on this space
depends only on the vector field on V induced by v. Thus i†M(V )
carries an action of the Lie algebra Vect(V ). Together with the action
of O(V ), this defines an action of D(V ) on i†M(V ). We conclude
that i†M is naturally a DZ-module. Thus we have defined a left exact
functor

i† :M(X)→M(Z).

It is called the shifted inverse image functor. This terminology is
motivated by the following exercise.

Exercise 30.3. Show that i† = Ldi! and i! = Rdi†, where Ld, Rd are the
d-th left, respectively right derived functors and d = dimX − dimZ.

Theorem 30.4. (Kashiwara) The functor i† is an equivalence of cat-
egories MZ(X)→M(Z).

The proof is not difficult, but we will skip it.
The inverse of the functor i† is called the direct image functor and

denoted i∗ : M(Z) → MZ(X), as it is a special case of the direct
image functor defined above for affine morphisms. If we view i∗ as a
functorM(Z)→M(X) then it has both left and right adjoint, where
are i! and i†, respectively.

Let us give a prototypical example.

Example 30.5. Let X = A1, Z = {0}. Then M(Z) = Vect and
i∗(V ) = V ⊗ δ0. So in this case Kashiwara’s theorem reduces to the
claim that Ext1(δ0, δ0) = 0.
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Remark 30.6. We note that the above formalism and results extend
in a straightforward manner to the case of twisted D-modules.

30.4. Equivariant D-modules. Let X be an algebraic variety with
an action of an affine algebraic group G. Let us review the notion of a
G-equivariant quasicoherent sheaf on X. Roughly speaking, this is
a quasicoherent sheaf E on X equipped with a system of isomorphisms
φg : g(E) ∼= E , g ∈ G such that φgh = φg ◦ g(φh) and φg depends on g
algebraically. To give a formal definition, note that the group structure
gives us a multiplication map m : G × G � G, and the action of G
gives us a map ρ : G×X � X. We have a commutative diagram

G×G×X

m×idww id×ρ ''

G×X
ρ

''

G×X
ρ

ww
X .

Definition 30.7. A G-equivariant quasicoherent sheaf on X is a
quasicoherent sheaf E on X equipped with an isomorphism

φ : ρ∗E ∼= OG � E
making the following diagram commutative:

(id×ρ)∗ρ∗E
(id×ρ)∗φ

// (id×ρ)∗(OG � E) // OG � ρ∗E

OG�φ
��

(m× id)∗ρ∗E
(m×id)∗φ

// (m× id)∗(OG � E) // OG �OG � E

Thus φ comprises all the isomorphisms φg, which therefore satisfy
the equality φgh = φg ◦ g(φh) and depend on g algebraically.

We now wish to define the notion of a G-equivariant DX-module.
To this end, recall that for any DX-module E , the quasicoherent sheaf
ρ∗E carries a natural structure of a DG×X-module (the D-module in-
verse image). We now make the following definition.

Definition 30.8. A weakly G-equivariant D-module onX is aDX-
module E with a G-equivariant quasicoherent sheaf structure, where φ
is DX-linear.

Note that if E is a weakly equivariant DX-module then we have two
(in general, different) actions of g = Lie(G) on E . First of all, the
G-action on X gives us maps g → Vect(X) → D(X), and so the D-
module structure on E gives us a g-action x 7→ b0(x) on E . Note that
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this action does not depend on the choice of the weakly equivariant
structure φ.

On the other hand, we have a g-action on OG � E coming from the
G-action on G×X given by g · (h, x) = (gh, x). Translating this along
φ, we get a g-action on ρ∗E . Restricting to 1×X, this gives us another
g-action x 7→ bφ(x) on E .

Definition 30.9. A (strongly)G-equivariant DX-module is a weakly
G-equivariant DX-module where these two g-actions agree: bφ = b0 (or,
equivalently, where φ is DG×X-linear.)

In general, since [b0(x), L] = [bφ(x), L] for L ∈ DX , the operator
ρφ(x) := bφ(x)− b0(x) is a D-module endomorphism of E . Moreover, it
is easy to see that ρφ is a Lie algebra homomorphism g→ End(E). In
particular, if E is irreducible then by Dixmier’s lemma, End(E) = C,
so ρφ is just a character of g. Thus if g = [g, g] is perfect (for example,
semisimple) then every weakly G-equivariant irreducible DX-module is
actually (strongly) G-equivariant.

Remark 30.10. A givenDX-module may have many weaklyG-equivariant
structures, but ifG is connected, then it can only have oneG-equivariant
structure. This is because the g-action on E is determined by the
map g → D(X) and this action can be integrated to a G-equivariant
structure in an unique way (recall that we always work over a field of
characteristic 0.)

Furthermore, any DX-linear map of G-equivariant DX-modules is
automatically compatible with the G-action. This is because such a
map is necessarily g-linear, which implies that it is in fact G-linear.
These two facts combined show that the category of G-equivariant DX-
modules is a full subcategory of the category of DX-modules. Stated
another way, G-equivariance of a DX-module is a property, not a struc-
ture.

Example 30.11. Consider the case where X is a point. Then DX
∼= C

and so a DX-module is a just a vector space. A weakly G-equivariant
DX-module is then simply a locally algebraic representation of G. This
representation gives a G-equivariant structure if and only if g acts by
0, i.e., the connected component of the identity G0 ⊂ G acts trivially.
Thus a G-equivariant DX-module is just a representation of the com-
ponent group G/G0. Conversely, any locally algebraic representation
V of G gives rise to a weakly G-equivariant D-module on X which is
equivariant iff G0 acts trivially on V , so that V is a representation of
G/G0.

150



Example 30.12. Let X = G/H, where G is an algebraic group and
H a closed subgroup of G. Then we claim that a G-equivariant DX-
module is the same thing as an H-equivariant D-module on a point,
i.e., a representation of the component group H/H0. Indeed, given an
H/H0-module V , we can define a G-equivariant vector bundle

(G× V )/H → X = G/H,

where H acts on G × V via (g, v)h = (gh, h−1v). Note that this can

be written as (G/H0)×V
H/H0

(as H0 acts on V trivially). This shows that

this vector bundle has a natural flat connection, i.e. is a DX-module
L(X, V ), which is clearly G-equivariant. The assignment V 7→ L(X, V )
is the desired equivalence. In the case H = G, this reduces to Example
30.11.

Exercise 30.13. (i) Define the algebraic group L := G ×G/G0 H/H0

of pairs (g, h), g ∈ G, h ∈ H/H0 which map to the same element of
G/G0; thus we have a short exact sequence

1→ G0 → L→ H/H0 → 1.

Show that the category of weakly G-equivariant D-modules on G/H is
naturally equivalent to the category of representations of L, such that
the subcategory of strongly G-equivariant D-modules is identified with
the subcategory of representations of L pulled back from the second
factor H/H0 (i.e., those with trivial action of G0), and the subcategory
of modules of the form O(G/H)⊗V where V is a G-module is identified
with the category of representations of L pulled back from the first
factor G.

(ii) Let ∆ : H → L be the map defined by ∆(h) = (h, h). Show
that the forgetful functor from weakly G-equivariant D-modules on
G/H to G-equivariant quasicoherent sheaves on G/H corresponds to
the pullback functor ∆∗.

Exercise 30.14. Let X be a smooth variety with an action of an affine
algebraic group G and H ⊂ G be a closed subgroup. Show that the
category of H-equivariant D-modules on X is naturally equivalent to
the category of G-equivariant D-modules on X × G/H with diagonal
action of G (note that when X is a point, this reduces to Example
30.12).

Exercise 30.15. Let X be a principal G-bundle over a smooth vari-
ety Y . Show that the category of G-equivariant DX-modules is nat-
urally equivalent to the category of DY -modules. Namely, given a G-

equivariant DX-module M , for an affine open set U ⊂ Y let Ũ be the
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preimage of U in X and let M(U) := M(Ũ)G. Then M is a DY -module,
and the assignment M 7→M is a desired equivalence.

The notion of a weakly equivariant D-module often arises in the

following setting. Let T be an algebraic torus and let X̃ be a principal
T -bundle over X.

Definition 30.16. A monodromic DX-module (with respect to the

bundle X̃ � X) is a weakly T -equivariant DX̃-module.

Example 30.17. A monodromic DX-module with ρφ = λ ∈ Lie(T )∗

is the same thing as a λ-twisted D-module on X, i.e., a Dλ,X-module.

Proposition 30.18. Assume that X is a D-affine variety and that
K is an affine algebraic group acting on X. Let D(X) be the ring of
global sections of DX . Then the category of K-equivariant DX-modules
is equivalent to the category of D(X)-modules M endowed with a locally
finite K-action whose differential coincides with the action of Lie(K)
on M coming from the map Lie(K)→ D(X).

Exercise 30.19. Prove Proposition 30.18.

In particular, by the Beilinson-Bernstein localization theorem, Propo-
sition 30.18 applies to X = F ∼= G/B and K a closed subgroup of G,
and moreover it extends to the case of λ-twisted differential operators
on F for antidominant λ ∈ h∗. Thus we get

Corollary 30.20. If λ ∈ h∗ is antidominant then the functors Γ,Loc
restrict to mutually inverse equivalences between the category of (g, K)-
modules with central character χλ−ρ and the category of K-equivariant
Dλ-modules on F .
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