30. D-modules - 11

We would now like to explain how the Beilinson-Bernstein localiza-
tion theorem can be used to classify various kinds of irreducible repre-
sentations of g. For this we will need to build up a bit more background
on D-modules.

30.1. Support of a quasicoherent sheaf. Let M be a quasicoherent
sheaf on a variety X, and Z C X a closed subvariety. We will say that
M is supported on 7 if for any affine open set U C X, regular function
f € O(U) vanishing on Z, and v € M(U), there exists N € Zx
such that fN¥v = 0. The support Supp(M) is then defined as the
intersection of all closed subvarietes Z C X such that M is supported
on Z. So M is supported on Z iff the support of M is contained in Z.

In particular, we can talk about support of a (left or right, possibly
twisted) D-module on a smooth variety X. The category of D-modules
on X supported on Z will be denoted by Mz(X).

Example 30.1. Tt is easy to see that C[z,z7!] is a left D-module on
A' and CJ[z] is its submodule. These modules have full support Al.
On the other hand, consider the quotient &y := C[z,x~!]/C[z].** Tt is
clear that &, has a basis v; = 7%, ¢ > 1, with 2v; = v;_1, 2v; = 0,
Ov; = —iv;y1. Thus the support of dy is {0}.

30.2. Restriction to an open subset. Recall that if A is an abelian
category and B C A a Serre subcategory (i.e., a full subcategory
closed under taking subquotients and extensions) then one can form
the quotient category A/B with the same objects as A, but with
Hom 4,5(X,Y’) being the direct limit of Hom4 (X', Y/Y”") over X’ C X
and Y’ C Y such that X', Y’ € B. One can show that A/B is an
abelian category. The natural functor F' : A — A/B is then called
the Serre quotient functor. This functor is essentially surjective, its
kernel is B, and it maps simple objects to simple objects or zero. Thus
F' defines a bijection between simple objects of A not contained in B
and simple objects of A/B.

For example, if X is a variety, Z C X a closed subvariety, Qcoh(X)
the category of quasicoherent sheaves on X and Qcoh,(X) the full
subcategory of sheaves supported on Z then Qcoh(X)/Qcoh,(X) =
Qcoh(X \ Z). The corresponding Serre quotient functor is the restric-
tion M — M|X\Z-

22In analysis & arises as the D-module generated by the d-function at zero,
which motivates the notation.
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Now assume that X is smooth. Let j : X \ Z < X be the open
embedding. Then we have a restriction functor on D-modules

i M(X) = M(X\ 2)

which is the usual restriction functor at the level of sheaves; it is also
called the inverse image or pull-back functor, since it is a special
case of the inverse image functor defined above. Thus j'(M) = 0 if
and only if M is supported on Z and the functor j' is a Serre quotient
functor which induces an equivalence M(X)/ Mz(X) = M(X \ Z).

The functor j' has a right adjoint direct image (or push-forward)

functor

Ju t M(X\ Z) = M(X),

which is just the sheaf-theoretic direct image (=push-forward). Namely,
for an affine open U C X, j.M(U) := M(U \ Z) regarded as a module
over D(U) c D(U \ Z). While the functor j' is exact, the functor
J« is only left exact, in general (as so is the push-forward functor for
sheaves). In particular, j, is not the (right exact) direct image defined
above since the morphism j is not affine, in general; rather it is the ze-
roth cohomology of the full direct image functor defined on the derived
category of D-modules, which we will not discuss here. They do agree,
however, when j is affine (e.g., when Z is a hypersurface).

In particular, j' defines a bijection between isomorphism classes of
simple D y-modules which are not supported on Z and simple Dx\ -
modules, given by M — j'M.

The inverse map is defined as follows. Given L € M(X\ Z), consider
the D-module j,L. Since j, is right adjoint to j', the module j,L does
not contain nonzero submodules supported on Z. Now define j,L to
be the intersection of all submodules N of j.L such that j.L/N is
supported on Z. This gives rise to a functor ji. : M(X \ Z) - M(X)
(not left or right exact in general). Then if L is irreducible, so is ji. L,
and j'ji,L = L, while for M € M(X) irreducible and not supported
on Z we have ji,j'M = M. The functor ji, is called the Goresky-
MacPherson extension or minimal (or intermediate) extension
functor.

Proposition 30.2. The support of an irreducible D-module is irre-
ducible.

Proof. Let M be a Dx-module with support Z. Assume that Z is

reducible: Z = Z; U Zy where Z; is an irreducible component of Z

and Z, the union of all the other components. Let Y = Z; N Zs,

a proper subset in Z; and Zy. Let Z° = Z\Y, Z? = Z;\'Y and

X°=X\Y. Then Z° = Z; U Z3 is disconnected: Z7,Z3 are closed
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nonempty subsets of Z° and Z7; N Z3 = (). Let My, My be the sums of
all subsheaves of M|x. which are killed by localization away from Z7,
respectively Z3. It is easy to show that M; are nonzero submodules of
M|xo and M|xo = My & Ms. Thus M|y is reducible and hence so if
M. O

30.3. Kashiwara’s theorem. Let X be a smooth variety and Z C X
a smooth closed subvariety with closed embedding i : Z — X. For M €
M(X) define My to be the sheaf X whose sections on an affine open
set U C X are the vectors in M (U) annihilated by regular functions on
U vanishing on Z. Thus the O(U)-action on My (U) factors through
O(ZNU). Also it is easy to see that Mz(U) depends only on Z N U,
i.e., it gives rise to a quasicoherent sheaf i' M on Z with sections

iTM(V) = My (U)

for affine open U C X such that V = Z N U. Moreover, if v is a
vector field on U tangent to V' then v preserves the ideal of V', hence
acts naturally on iTM (V). Furthermore, the action of v on this space
depends only on the vector field on V induced by v. Thus it M(V)
carries an action of the Lie algebra Vect(V'). Together with the action
of O(V), this defines an action of D(V) on i'M (V). We conclude
that i’ M is naturally a Dz-module. Thus we have defined a left exact
functor
it M(X) = M(Z2).

It is called the shifted inverse image functor. This terminology is
motivated by the following exercise.

Exercise 30.3. Show that if = L%' and ' = R%", where L?, R? are the
d-th left, respectively right derived functors and d = dim X — dim Z.

Theorem 30.4. (Kashiwara) The functor i is an equivalence of cat-

egories Mz(X) — M(Z).

The proof is not difficult, but we will skip it.

The inverse of the functor i is called the direct image functor and
denoted i, : M(Z) — Mz(X), as it is a special case of the direct
image functor defined above for affine morphisms. If we view 7, as a
functor M(Z) — M(X) then it has both left and right adjoint, where
are 7' and if, respectively.

Let us give a prototypical example.

Example 30.5. Let X = A', Z = {0}. Then M(Z) = Vect and
i.(V) =V ® dp. So in this case Kashiwara’s theorem reduces to the

claim that Ext'(do,dp) = 0.
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Remark 30.6. We note that the above formalism and results extend
in a straightforward manner to the case of twisted D-modules.

30.4. Equivariant D-modules. Let X be an algebraic variety with
an action of an affine algebraic group G. Let us review the notion of a
G-equivariant quasicoherent sheaf on X. Roughly speaking, this is
a quasicoherent sheaf £ on X equipped with a system of isomorphisms
bg: g(E) = &, 9 € G such that ¢y, = ¢, 0 g(¢r) and ¢, depends on g
algebraically. To give a formal definition, note that the group structure
gives us a multiplication map m : G x G — @, and the action of G
gives us a map p: G x X - X. We have a commutative diagram

GxGxX
GxX GxX
\ /
X :
Definition 30.7. A G-equivariant quasicoherent sheaf on X is a
quasicoherent sheaf £ on X equipped with an isomorphism

b EZORE

making the following diagram commutative:

(id xp)p& —LP8 L Gd x p)* (O R €) Og R €
OcXop
‘ (mxid)*¢ l

(m x id)*p*E (m xid)*(OgRE) —————— O RO X &

Thus ¢ comprises all the isomorphisms ¢,, which therefore satisfy
the equality ¢,, = ¢, 0 g(¢) and depend on g algebraically.

We now wish to define the notion of a GG-equivariant D x-module.
To this end, recall that for any Dx-module &, the quasicoherent sheaf
p*E carries a natural structure of a D¢y x-module (the D-module in-
verse image). We now make the following definition.

Definition 30.8. A weakly G-equivariant D-module on X isa Dx-
module £ with a G-equivariant quasicoherent sheaf structure, where ¢
is Dx-linear.

Note that if £ is a weakly equivariant D x-module then we have two
(in general, different) actions of g = Lie(G) on &. First of all, the
G-action on X gives us maps g — Vect(X) — D(X), and so the D-

module structure on € gives us a g-action x — by(z) on €. Note that
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this action does not depend on the choice of the weakly equivariant
structure ¢.

On the other hand, we have a g-action on Og X £ coming from the
G-action on G x X given by g - (h,x) = (gh, z). Translating this along
¢, we get a g-action on p*&. Restricting to 1 x X, this gives us another
g-action x — by(x) on £.

Definition 30.9. A (strongly) G-equivariant D x-module is a weakly
G-equivariant D x-module where these two g-actions agree: by = by (or,
equivalently, where ¢ is D¢y x-linear.)

In general, since [by(z), L] = [bg(x), L] for L € Dy, the operator
po() = by(x) —bo(x) is a D-module endomorphism of €. Moreover, it
is easy to see that py is a Lie algebra homomorphism g — End(€). In
particular, if £ is irreducible then by Dixmier’s lemma, End(€) = C,
S0 pg is just a character of g. Thus if g = [g, g] is perfect (for example,
semisimple) then every weakly G-equivariant irreducible D x-module is
actually (strongly) G-equivariant.

Remark 30.10. A given D x-module may have many weakly G-equivariant
structures, but if G is connected, then it can only have one G-equivariant
structure. This is because the g-action on & is determined by the
map g — D(X) and this action can be integrated to a G-equivariant
structure in an unique way (recall that we always work over a field of
characteristic 0.)

Furthermore, any Dyx-linear map of G-equivariant D x-modules is
automatically compatible with the G-action. This is because such a
map is necessarily g-linear, which implies that it is in fact G-linear.
These two facts combined show that the category of G-equivariant D x-
modules is a full subcategory of the category of Dx-modules. Stated
another way, G-equivariance of a D y-module is a property, not a struc-
ture.

Example 30.11. Consider the case where X is a point. Then Dy = C
and so a Dx-module is a just a vector space. A weakly G-equivariant
D x-module is then simply a locally algebraic representation of G. This
representation gives a G-equivariant structure if and only if g acts by
0, i.e., the connected component of the identity Go C G acts trivially.
Thus a G-equivariant D x-module is just a representation of the com-
ponent group G/Gy. Conversely, any locally algebraic representation
V of GG gives rise to a weakly G-equivariant D-module on X which is
equivariant iff Gy acts trivially on V| so that V is a representation of

G/Gy.
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Example 30.12. Let X = GG/H, where G is an algebraic group and
H a closed subgroup of G. Then we claim that a G-equivariant D x-
module is the same thing as an H-equivariant D-module on a point,
i.e., a representation of the component group H/Hy. Indeed, given an
H/Hy-module V| we can define a G-equivariant vector bundle

(GxV)/H—X=G/H,

where H acts on G x V via (g,v)h = (gh,h 'v). Note that this can
% (as Hy acts on V trivially). This shows that
this vector bundle has a natural flat connection, i.e. is a Dx-module
L(X,V), which is clearly G-equivariant. The assignment V' +— L(X, V)
is the desired equivalence. In the case H = G, this reduces to Example

30.11.

Exercise 30.13. (i) Define the algebraic group L := G X¢/q, H/Hy
of pairs (g,h), g € G, h € H/H, which map to the same element of
G/Gy; thus we have a short exact sequence

1—-Gy—L— H/Hy— 1.

be written as

Show that the category of weakly G-equivariant D-modules on G/H is
naturally equivalent to the category of representations of L, such that
the subcategory of strongly G-equivariant D-modules is identified with
the subcategory of representations of L pulled back from the second
factor H/H, (i.e., those with trivial action of Gy), and the subcategory
of modules of the form O(G/H)®V where V is a G-module is identified
with the category of representations of L pulled back from the first
factor G.

(i) Let A : H — L be the map defined by A(h) = (h,h). Show
that the forgetful functor from weakly G-equivariant D-modules on
G/H to G-equivariant quasicoherent sheaves on GG/H corresponds to
the pullback functor A*.

Exercise 30.14. Let X be a smooth variety with an action of an affine
algebraic group G and H C G be a closed subgroup. Show that the
category of H-equivariant D-modules on X is naturally equivalent to
the category of G-equivariant D-modules on X x G/H with diagonal
action of G (note that when X is a point, this reduces to Example
30.12).

Exercise 30.15. Let X be a principal G-bundle over a smooth vari-
ety Y. Show that the category of G-equivariant D x-modules is nat-
urally equivalent to the category of Dy-modules. Namely, given a G-

equivariant D y-module M, for an affine open set U C Y let U be the
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preimage of U in X and let_M(U) := M(U). Then M is a Dy-module,
and the assignment M — M is a desired equivalence.

The notion of a weakly equivariant D-module often arises in the
following setting. Let T" be an algebraic torus and let X be a principal
T-bundle over X.

Definition 30.16. A monodromic D x-module (with respect to the
bundle X — X) is a weakly T-equivariant D g-module.

Example 30.17. A monodromic Dx-module with p, = A € Lie(T)*
is the same thing as a A-twisted D-module on X, i.e., a Dy x-module.

Proposition 30.18. Assume that X is a D-affine variety and that
K is an affine algebraic group acting on X. Let D(X) be the ring of
global sections of Dx. Then the category of K -equivariant D x-modules
is equivalent to the category of D(X)-modules M endowed with a locally
finite K-action whose differential coincides with the action of Lie(K)
on M coming from the map Lie(K) — D(X).

Exercise 30.19. Prove Proposition 30.18.

In particular, by the Beilinson-Bernstein localization theorem, Propo-
sition 30.18 applies to X = F = /B and K a closed subgroup of G,
and moreover it extends to the case of A\-twisted differential operators
on F for antidominant A\ € h*. Thus we get

Corollary 30.20. If A € b* is antidominant then the functors I', Loc
restrict to mutually inverse equivalences between the category of (g, K)-
modules with central character xx—, and the category of K -equivariant
D, -modules on F.
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