31. Applications of D-modules to representation theory

31.1. Classification of irreducible equivariant D-modules for
actions with finitely many orbits.

Theorem 31.1. Let X be a smooth variety and K a connected algebraic
group acting on X with finitely many orbits. Then there are finitely
many rreducible K -equivariant D-modules on X. Namely, they are
parametrized by pairs (O,V') where O is an orbit of K on X and V
is an irreducible representation of the component group H/Hy of the
stabilizer H := K, forxz € O, (O,V)— M(O,V).

Proof. Let M be an irreducible K-equivariant D-module on X. Then
by Proposition 30.2, the support Z of M is irreducible. Thus Z = O
for a single orbit O of K. Let Zy = O\ O, and U = X\ Z;. Then U is a
K-stable open subset of X and O is closed in U. Also M|y is a simple
Dy-module supported on O. Let 7 : O < X be the closed embedding.
By Kashiwara’s theorem (Theorem 30.4) i M is a simple K-equivariant
D-module on O. Thus by Example 30.12 i'M = L(O,V) for some
irreducible representation V' of the component group of the stabilizer
K., © € O. Also it is clear that L(O,V) gives rise to a simple K-
equivariant D-module on X, namely, M (O, V) := j.i, M (O, V'), where
j : U — X is the open embedding. This proves the theorem. 0

Remark 31.2. Theorem 31.1 can be extended in a straightforward
way to weakly equivariant D-modules. In this case, recall that the
weakly equivariant structure on an irreducible D-module M defines a
character p : £ — C, where £ = LieK. Theorem 31.1 then holds with
the only change: rather than being a representation of H/Hy, V now
needs to be a representation of H in which Lie(H) acts by the character
p. The proof is analogous to the case p = 0.

In particular, this applies to the case of twisted D-modules. In this
case we have a principal T-bundle p : X — X and a character \ € t*,
t = Lie(T). Suppose K acts on X preserving this bundle; i.e., it acts
on X and commutes with 7. So we have a K x T-action on X and
a K-equivariant A-twisted D-module on X is just a weakly K x T-
equivariant D-module on X with p(k,t) := A(¢t). Now, for every K-
orbit O on X, we have the stabilizer K, x € O, and a homomorphism
& : K, — T defined by the condition that (g,&,(g)) acts trivially on
p~!(z) for g € K,. This defines a character \, = )\ o d&, of Lie(K,),
and the simple K-equivariant Dy-modules on X are M (O, V) where
V' is an irreducible representation of K, with Lie(X,) acting by the

character \,.
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31.2. Classification of irreducible Harish-Chandra modules. Let
GRr be a connected real semisimple algebraic group, Kg C Gr a max-
imal compact subgroup, G, K C G their complexifications. By Corol-
lary 30.20, if A is antidominant then the Beilinson-Bernstein equiva-
lence restricts to an equivalence between the category of (g, K')-modules
with infinitesimal character x,—, and the category of K-equivariant

Dy-modules on F = G/B.
Proposition 31.3. The group K acts on F with finitely many orbits.

We will not give a proof of this proposition. For the proof and
description of the set of orbits, see [RS].

Proposition 31.3 along with Theorem 31.1 allows us to classify ir-
reducible (g, K')-modules (i.e., Harish-Chandra modules) for a regular
infinitesimal character (the general case can be handled similarly).

Namely, let H C B C G be a maximal torus and Borel subgroup of
G; so H = B/[B, B]. Note that K x H acts on F = G/[B, B]. So
for a K-orbit O on F = G/B and x € O, we have a homomorphism
&+ K, — H such that (g,&,(g)) acts trivially on the fiber over x in F
for g € K,.

Let x be a regular infinitesimal character for g and A be an antidom-
inant weight with x = x,_, (note that it always exists).

Theorem 31.4. Irreducible (g, K)-modules with (pure) infinitesimal
character x are (O, V) where O is a K-orbit on F and V an irre-
ducible representation of K,, v € O such that Lie(K,) acts via the
character \,. Namely, m(O,V) corresponds to M(O,V') under the
Beilinson-Bernstein equivalence.

Example 31.5. Let Gg = SLy(R). Let A € C, A ¢ Z-o and set
X = Xa_1 (80 X # Xo). In this case F = CP! is the Riemann sphere,
and K = C* acts by koz := k?z. Thus we have three orbits: 0, co, and
C*. For the orbit C* we have K, = Z/2, so we have two irreducible
representations V' = C., which generically correspond to principal se-
ries representations w(C*, Vi) = Py(1 — \) (see Section 9). The other
two orbits have a connected stabilizer, and A\, = +A. Thus for such
orbits representations exist only for A € Z<y. It is easy to see that
these are exactly the discrete series representations My ,, M~ 49 Also
for such points one of the principal series representations is reducible
(P4 (1 —=X) for even A and P_(1—\) for odd \) and 7(C*, V), respec-
tively m(C*, V_) is actually the finite-dimensional representation L_,.

Thus we have four irreducible representations in this case.
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Note that this agrees with our classification of irreducible representa-
tions of SL,(R) for regular infinitesimal characters discussed in Section
9.

Example 31.6. Let G be a simply connected complex semisimple
group regarded as a real group. Then its maximal compact subgroup
is G, so its complexification is G, and G¢ = G X G, so that the in-
clusion (G.)c = G — G¢ = G x G is the diagonal embedding. The
flag variety is F x F = G/B x G/B. Thus Harish-Chandra bimod-
ules with infinitesimal character (x,—,, xa—,) for antidominant A, ;¢ are
(0, V) where O runs over orbits of G on G/B x G/B and V over
appropriate representations of isotropy groups. Note that orbits of G
on G/B x G/B are in a natural bijection with orbits of B on G/B,
which are the Schubert cells C, labeled by w € W. One can check
that the condition for existence of V' on the orbit C,, is that A\ — wpu is
integral, and then V' is unique (as the isotropy groups are connected in
this case). Thus we find that the irreducible Harish-Chandra bimod-
ules with such infinitesimal character are labeled by elements w such
that A — wp € P, which agrees with the classification we obtained in
Subsection 25.2.

Exercise 31.7. Classify irreducible Harish-Chandra modules for S L3(R)
with a regular infinitesimal character.

Hint. Classify orbits of SO3(C) on SL3(C)/B. This is equivalent to
classification of flags in a 3-dimensional complex inner product space
E under the action of SO(FE). Then classify possible representations
V' of the isotropy group for each orbit.

Remark 31.8. The K-orbits on G/B can be classified in explicit com-
binatorial terms. Together with Theorem 31.4, this leads to an alterna-
tive proof, using the localization theorem, of the Langlands classifi-
cation of irreducible Harish-Chandra modules (obtained by Langlands
in 1973 by a different method, 8 years before the localization theorem
was proved, [La]). This classification requires a serious separate dis-
cussion which is beyond the scope of these notes.

31.3. Applications to category O. Let us now see how this ap-
proach allows us to study category O for a semisimple Lie algebra g.

Consider the category C of weakly B x B-equivariant finitely gener-
ated D-modules on G which are equivariant under [B, B] x [B, B] (it
is easy to see that such modules have finite length). Thus for M € C,
we have a homomorphism p : h & h — End(M), so M = &, M (i, \)
where M (u, \) is the generalized eigenspace for h @ b with eigenvalue
(i, A) € b* x b*. Thus we have a decomposition C = @, \Cpx.
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Let Cpyx, Cuyn, Cppy be the full subcategories of C, » consisting of
objects on which the eigenvalues in square brackets are pure (without
Jordan blocks). Thus we have

C,u,/\ D) C[p,],)u CMP\] - C[IJ‘H)‘}

and all simple objects of C, ) are contained in Cj,)y. These objects
are labeled by Bruhat cells BwB C G, w € W and representations V'
of the isotropy group satisfying an appropriate condition. As before,
the condition for V' to exist is that A —wp € P, thus C, » = 0 unless
A —wp € P for some w € W.

We also see that Cy, = Cyyp,4~ for 3,7 € P, and the same applies
to its subcategories.

Let us now try to describe these categories representation-theoretically.
To this end, note that we may interpret Cy,) [y as the category of weakly
B-equivariant Dy-modules on G/B with (pure) equivariance character
p. So if A is antidominant, we get that Cj, [y is equivalent to the full
subcategory Oy, y of the category Oy, , of objects with pure infini-
tesimal character x»—, and weights in g+ P. Similarly, C,, x, Cjux, Cuy
are equivalent to O, x, Oy x, O, 5], Where the corresponding (infinites-
imal) character is pure if square brackets are present and generalized
if not.

Now note that flipping left and right, we get equivalences Cy , = C, »,
Cove = Cuy Coyg = Crgx Oy = Cppgy - I A, e are both antidomi-
nant, this yields equivalences of representation categories Oy, = Oz,
OP\],M = OMP\] O/\,[M] = O[M]v\ OP\HM] = O[NH)\]‘ While the first equiva-
lence is easy to see representation theoretically using translation func-
tors, the others are not. They are clear from geometry but somewhat
mysterious from the viewpoint of representation theory (although they
can be understood using the Bernstein-Gelfand equivalence between
category O and the category of Harish-Chandra bimodules, Theorem
25.8).

Example 31.9. If A\, € P, these categories are independent of \, u.
Namely, let Oy be the category O for the trivial generalized infinites-
imal character, and Qg be its Serre closure (the category of modules
admitting a finite filtration whose successive quotients are in Oy; i.e.
the action of b is not necessarily diagonalizable but is only assumed
locally finite). We may also define the category Of of modules in Oq
which have pure infinitesimal character, and Oy C O, of modules with
both pure infinitesimal character and diagonalizable action of h. Then

the above four categories are exactly (50, O, (’)3,60. In particular, we
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obtain an equivalence Oy = Of which is not obvious representation-
theoretically.

Finally, we note that Exercise 30.14 applied to X = G/B and H = B
gives a transparent geometric proof of Theorem 25.8.
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