31. Applications of D-modules to representation theory

31.1. Classification of irreducible equivariant D-modules for
actions with finitely many orbits.

Theorem 31.1. Let X be a smooth variety and K a connected algebraic
group acting on X with finitely many orbits. Then there are finitely
many rreducible K -equivariant D-modules on X. Namely, they are
parametrized by pairs (O,V') where O is an orbit of K on X and V
is an irreducible representation of the component group H/Hy of the
stabilizer H := K, forxz € O, (O,V)— M(O,V).

Proof. Let M be an irreducible K-equivariant D-module on X. Then
by Proposition 30.2, the support Z of M is irreducible. Thus Z = O
for a single orbit O of K. Let Zy = O\ O, and U = X\ Z;. Then U is a
K-stable open subset of X and O is closed in U. Also M|y is a simple
Dy-module supported on O. Let 7 : O < X be the closed embedding.
By Kashiwara’s theorem (Theorem 30.4) i M is a simple K-equivariant
D-module on O. Thus by Example 30.12 i'M = L(O,V) for some
irreducible representation V' of the component group of the stabilizer
K., © € O. Also it is clear that L(O,V) gives rise to a simple K-
equivariant D-module on X, namely, M (O, V) := j.i, M (O, V'), where
j : U — X is the open embedding. This proves the theorem. 0

Remark 31.2. Theorem B1.1] can be extended in a straightforward
way to weakly equivariant D-modules. In this case, recall that the
weakly equivariant structure on an irreducible D-module M defines a
character p : £ — C, where ¢ = LieK. Theorem then holds with
the only change: rather than being a representation of H/Hy, V now
needs to be a representation of H in which Lie(H) acts by the character
p. The proof is analogous to the case p = 0.

In particular, this applies to the case of twisted D-modules. In this
case we have a principal T-bundle p : X — X and a character \ € t*,
t = Lie(T). Suppose K acts on X preserving this bundle; i.e., it acts
on X and commutes with 7. So we have a K x T-action on X and
a K-equivariant A-twisted D-module on X is just a weakly K x T-
equivariant D-module on X with p(k,t) := A(¢t). Now, for every K-
orbit O on X, we have the stabilizer K, x € O, and a homomorphism
& : K, — T defined by the condition that (g,&,(g)) acts trivially on
p~!(z) for g € K,. This defines a character \, = )\ o d&, of Lie(K,),
and the simple K-equivariant Dy-modules on X are M (O, V) where
V' is an irreducible representation of K, with Lie(X,) acting by the

character \,.
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31.2. Classification of irreducible Harish-Chandra modules. Let
GRr be a connected real semisimple algebraic group, Kg C Gr a max-
imal compact subgroup, G, K C G their complexifications. By Corol-
lary 30.20, if A is antidominant then the Beilinson-Bernstein equiva-
lence restricts to an equivalence between the category of (g, K')-modules

with central character x,_, and the category of K-equivariant D,-
modules on F = G/B.

Proposition 31.3. The group K acts on F with finitely many orbits.

We will not give a proof of this proposition.

Proposition [31.3] along with Theorem [31.1] allows us to classify ir-
reducible (g, K)-modules (i.e., Harish-Chandra modules) for a regular
central character (the general case can be handled similarly).

Namely, let H C B C G be a maximal torus and Borel subgroup of
G; so H = B/[B, B]. Note that K x H acts on F = G/[B, B]. So
for a K-orbit O on F = G/B and x € O, we have a homomorphism
& K, — H such that (g,£,(g)) acts trivially on the fiber over x in F
for g € K,.

Let x be a regular central character for g and A be an antidominant
weight with x = x,_, (note that it always exists).

Theorem 31.4. [rreducible (g, K)-modules with (pure) central char-
acter x are w(O,V') where O is a K-orbit on F and V an irreducible
representation of K., x € O such that Lie(K,) acts via the character
Ao Namely, m(O,V) corresponds to M(O,V) under the Beilinson-
Bernstein equivalence.

Example 31.5. Let Gg = SLy(R). Let A € C, A ¢ Z-( and set
X = Xa_1 (50 X # X0). In this case F = CP! is the Riemann sphere,
and K = C* acts by ko z := k?z. Thus we have three orbits: 0, oo, and
C*. For the orbit C* we have K, = Z/2, so we have two irreducible
representations V' = C., which generically correspond to principal se-
ries representations w(C*, V. ) = PL(1 — A) (see Section 9). The other
two orbits have a connected stabilizer, and A\, = +A. Thus for such
orbits representations exist only for A € Z<y. It is easy to see that
these are exactly the discrete series representations My ,, M~ 4o Also
for such points one of the principal series representations is reducible
(Py(1—=A\) for even A and P_(1— A) for odd \) and 7(C*, V), respec-
tively 7(C*, V_) is actually the finite dimensional representation L_.
Thus we have four irreducible representations in this case.

Note that this agrees with our classification of irreducible represen-
tations of SLs(R) for regular central characters discussed in Section

9.
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Example 31.6. Let G be a simply connected complex semisimple
group regarded as a real group. Then its maximal compact subgroup is
G, so its complexification is G, and G¢ = G x (G, so that the inclusion
(G.)c = G — G¢ = G x G is the diagonal embedding. The flag variety
is F x F = G/B x G/B. Thus Harish-Chandra bimodules with central
character (x,—p, Xa—p) for antidominant A, pu are 7(O, V') where O runs
over orbits of G on G/B x G/B and V over appropriate representa-
tions of isotropy groups. Note that orbits of G on G/B x G/B are in a
natural bijection with orbits of B on GG/B, which are the Schubert cells
Cy labeled by w € W. One can check that the condition for existence
of V' on the orbit C,, is that A — wp is integral, and then V' is unique
(as the isotropy groups are connected in this case). Thus we find that
the irreducible Harish-Chandra bimodules with such central character
are labeled by elements w such that A — wu € P, which agrees with
the classification we obtained in Subsection 25.2.

Exercise 31.7. Classify irreducible Harish-Chandra modules for S L3(R)
with a regular central character.

Hint. Classify orbits of SO3(C) on SL3(C)/B. This is equivalent to
classification of flags in a 3-dimensional complex inner product space
E under the action of SO(FE). Then classify possible representations
V' of the isotropy group for each orbit.

Remark 31.8. The K-orbits on G/B can be classified in explicit com-
binatorial terms. Together with Theorem [31.4] this leads to the Lang-
lands classification of irreducible Harish-Chandra modules. This
classification requires a serious separate discussion which is beyond
the scope of these notes.

31.3. Applications to category O. Let us now see how this ap-
proach allows us to study category O for a semisimple Lie algebra g.

Consider the category C of weakly B x B-equivariant finitely gener-
ated D-modules on G which are equivariant under [B, B] x [B, B] (it
is easy to see that such modules have finite length). Thus for M € C,
we have a homomorphism p : h @ h — End(M), so M = &, M (i, \)
where M (u, A) is the generalized eigenspace for h @ b with eigenvalue
(i, A) € b* x b*. Thus we have a decomposition C = @, \Cp x.

Let Ciyn, Cun), Cpu, i be the full subcategories of C, 5 consisting of
objects on which the eigenvalues in square brackets are pure (without
Jordan blocks). Thus we have

Cur D Crgns Cuny D Cppa

and all simple objects of C, x are contained in Cj,y). These objects

are labeled by Bruhat cells BwB C G, w € W and representations V'
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of the isotropy group satisfying an appropriate condition. As before,
the condition for V' to exist is that A —wpu € P, thus C, » = 0 unless
A —wp € P for some w € W.

We also see that Cy, = Cyyp,44 for 8,7 € P, and the same applies
to its subcategories.

Let us now try to describe these categories representation-theoretically.
To this end, note that we may interpret Cp,) » as the category of weakly
B-equivariant Dy-modules on G/B with (pure) equivariance character
p. So if A is antidominant, we get that Cj,)y is equivalent to the full
subcategory Oy of the category O,,_, of objects with pure cen-
tral character y,—, and weights in p + P. Similarly, C, x, Cpyx, Cuy
are equivalent to Oz, Opa, Oy, Where the corresponding (central)
character is pure if square brackets are present and generalized if not.

Now note that flipping left and right, we get equivalences C, , = C,, »,
Cove = Cupy O = Crgx Cpypg = Cppgng- I A, i are both antidomi-
nant, this yields equivalences of representation categories Oy, = O, ,
OP\LM = Ou,[)\] O/\»[M] = O[N]M\ OP\HM] = O[M]:[)\]‘ While the first equiva-
lence is easy to see representation theoretically using translation func-
tors, the others are not. They are clear from geometry but somewhat
mysterious from the viewpoint of representation theory (although they
can be understood using the Bernstein-Gelfand equivalence between
category O and the category of Harish-Chandra bimodules, Theorem
25.8).

Example 31.9. If A, u € P, these categories are independent of \, u.
Namely, let Oy be category O for the trivial generalized central char-
acter, and Oy be its Serre closure (the category of modules admitting a
finite filtration whose successive quotients are in Oy; i.e. the action of
b is not necessarily diagonalizable but is only assumed locally finite).
We may also define the category Of of modules in Op which have pure
central character, and Oy C O, of modules with both pure central char-
acter and diagonalizable action of h. Then the above four categories
are exactly Og, Oy, 0%, Op. In particular, we obtain an equivalence
Oy = Of which is not obvious representation-theoretically.

Finally, we note that Exercise 30.14 applied to X = G/B and H = B
gives a transparent geometric proof of Theorem 25.8.
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