
31. Applications of D-modules to representation theory

31.1. Classification of irreducible equivariant D-modules for
actions with finitely many orbits.

Theorem 31.1. Let X be a smooth variety and K a connected algebraic
group acting on X with finitely many orbits. Then there are finitely
many irreducible K-equivariant D-modules on X. Namely, they are
parametrized by pairs (O, V ) where O is an orbit of K on X and V
is an irreducible representation of the component group H/H0 of the
stabilizer H := Kx for x ∈ O, (O, V ) 7→M(O, V ).

Proof. Let M be an irreducible K-equivariant D-module on X. Then
by Proposition 30.2, the support Z of M is irreducible. Thus Z = O
for a single orbit O of K. Let Z0 = O\O, and U = X \Z0. Then U is a
K-stable open subset of X and O is closed in U . Also M |U is a simple
DU -module supported on O. Let i : O ↪→ X be the closed embedding.
By Kashiwara’s theorem (Theorem 30.4) i†M is a simple K-equivariant
D-module on O. Thus by Example 30.12 i†M = L(O, V ) for some
irreducible representation V of the component group of the stabilizer
Kx, x ∈ O. Also it is clear that L(O, V ) gives rise to a simple K-
equivariant D-module on X, namely, M(O, V ) := j!∗i∗M(O, V ), where
j : U ↪→ X is the open embedding. This proves the theorem. �

Remark 31.2. Theorem 31.1 can be extended in a straightforward
way to weakly equivariant D-modules. In this case, recall that the
weakly equivariant structure on an irreducible D-module M defines a
character ρ : k → C, where k = LieK. Theorem 31.1 then holds with
the only change: rather than being a representation of H/H0, V now
needs to be a representation of H in which Lie(H) acts by the character
ρ. The proof is analogous to the case ρ = 0.

In particular, this applies to the case of twisted D-modules. In this

case we have a principal T -bundle p : X̃ → X and a character λ ∈ t∗,
t = Lie(T ). Suppose K acts on X preserving this bundle; i.e., it acts

on X̃ and commutes with T . So we have a K × T -action on X̃ and
a K-equivariant λ-twisted D-module on X is just a weakly K × T -

equivariant D-module on X̃ with ρ(k, t) := λ(t). Now, for every K-
orbit O on X, we have the stabilizer Kx, x ∈ O, and a homomorphism
ξx : Kx → T defined by the condition that (g, ξx(g)) acts trivially on
p−1(x) for g ∈ Kx. This defines a character λx = λ ◦ dξx of Lie(Kx),
and the simple K-equivariant Dλ-modules on X are M(O, V ) where
V is an irreducible representation of Kx with Lie(Kx) acting by the
character λx.
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31.2. Classification of irreducible Harish-Chandra modules. Let
GR be a connected real semisimple algebraic group, KR ⊂ GR a max-
imal compact subgroup, G,K ⊂ G their complexifications. By Corol-
lary 30.20, if λ is antidominant then the Beilinson-Bernstein equiva-
lence restricts to an equivalence between the category of (g, K)-modules
with infinitesimal character χλ−ρ and the category of K-equivariant
Dλ-modules on F = G/B.

Proposition 31.3. The group K acts on F with finitely many orbits.

We will not give a proof of this proposition. For the proof and
description of the set of orbits, see [RS].

Proposition 31.3 along with Theorem 31.1 allows us to classify ir-
reducible (g, K)-modules (i.e., Harish-Chandra modules) for a regular
infinitesimal character (the general case can be handled similarly).

Namely, let H ⊂ B ⊂ G be a maximal torus and Borel subgroup of

G; so H ∼= B/[B,B]. Note that K × H acts on F̃ = G/[B,B]. So
for a K-orbit O on F = G/B and x ∈ O, we have a homomorphism

ξx : Kx → H such that (g, ξx(g)) acts trivially on the fiber over x in F̃
for g ∈ Kx.

Let χ be a regular infinitesimal character for g and λ be an antidom-
inant weight with χ = χλ−ρ (note that it always exists).

Theorem 31.4. Irreducible (g, K)-modules with (pure) infinitesimal
character χ are π(O, V ) where O is a K-orbit on F and V an irre-
ducible representation of Kx, x ∈ O such that Lie(Kx) acts via the
character λx. Namely, π(O, V ) corresponds to M(O, V ) under the
Beilinson-Bernstein equivalence.

Example 31.5. Let GR = SL2(R). Let λ ∈ C, λ /∈ Z>0 and set
χ = χλ−1 (so χ 6= χ0). In this case F = CP1 is the Riemann sphere,
and K = C× acts by k◦z := k2z. Thus we have three orbits: 0,∞, and
C×. For the orbit C× we have Kx = Z/2, so we have two irreducible
representations V = C±, which generically correspond to principal se-
ries representations π(C×, V±) = P±(1− λ) (see Section 9). The other
two orbits have a connected stabilizer, and λx = ±λ. Thus for such
orbits representations exist only for λ ∈ Z≤0. It is easy to see that
these are exactly the discrete series representations M+

λ−2,M
−
−λ+2. Also

for such points one of the principal series representations is reducible
(P+(1−λ) for even λ and P−(1−λ) for odd λ) and π(C×, V+), respec-
tively π(C×, V−) is actually the finite-dimensional representation L−λ.
Thus we have four irreducible representations in this case.
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Note that this agrees with our classification of irreducible representa-
tions of SL2(R) for regular infinitesimal characters discussed in Section
9.

Example 31.6. Let G be a simply connected complex semisimple
group regarded as a real group. Then its maximal compact subgroup
is Gc, so its complexification is G, and GC = G × G, so that the in-
clusion (Gc)C = G ↪→ GC = G × G is the diagonal embedding. The
flag variety is F × F = G/B × G/B. Thus Harish-Chandra bimod-
ules with infinitesimal character (χµ−ρ, χλ−ρ) for antidominant λ, µ are
π(O, V ) where O runs over orbits of G on G/B × G/B and V over
appropriate representations of isotropy groups. Note that orbits of G
on G/B × G/B are in a natural bijection with orbits of B on G/B,
which are the Schubert cells Cw labeled by w ∈ W . One can check
that the condition for existence of V on the orbit Cw is that λ−wµ is
integral, and then V is unique (as the isotropy groups are connected in
this case). Thus we find that the irreducible Harish-Chandra bimod-
ules with such infinitesimal character are labeled by elements w such
that λ − wµ ∈ P , which agrees with the classification we obtained in
Subsection 25.2.

Exercise 31.7. Classify irreducible Harish-Chandra modules for SL3(R)
with a regular infinitesimal character.

Hint. Classify orbits of SO3(C) on SL3(C)/B. This is equivalent to
classification of flags in a 3-dimensional complex inner product space
E under the action of SO(E). Then classify possible representations
V of the isotropy group for each orbit.

Remark 31.8. The K-orbits on G/B can be classified in explicit com-
binatorial terms. Together with Theorem 31.4, this leads to an alterna-
tive proof, using the localization theorem, of the Langlands classifi-
cation of irreducible Harish-Chandra modules (obtained by Langlands
in 1973 by a different method, 8 years before the localization theorem
was proved, [La]). This classification requires a serious separate dis-
cussion which is beyond the scope of these notes.

31.3. Applications to category O. Let us now see how this ap-
proach allows us to study category O for a semisimple Lie algebra g.

Consider the category C of weakly B ×B-equivariant finitely gener-
ated D-modules on G which are equivariant under [B,B] × [B,B] (it
is easy to see that such modules have finite length). Thus for M ∈ C,
we have a homomorphism ρ : h ⊕ h → End(M), so M = ⊕µ,λM(µ, λ)
where M(µ, λ) is the generalized eigenspace for h ⊕ h with eigenvalue
(µ, λ) ∈ h∗ × h∗. Thus we have a decomposition C = ⊕µ,λCµ,λ.
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Let C[µ],λ, Cµ,[λ], C[µ],[λ] be the full subcategories of Cµ,λ consisting of
objects on which the eigenvalues in square brackets are pure (without
Jordan blocks). Thus we have

Cµ,λ ⊃ C[µ],λ, Cµ,[λ] ⊃ C[µ],[λ]

and all simple objects of Cµ,λ are contained in C[µ],[λ]. These objects
are labeled by Bruhat cells BwB ⊂ G, w ∈ W and representations V
of the isotropy group satisfying an appropriate condition. As before,
the condition for V to exist is that λ − wµ ∈ P , thus Cµ,λ = 0 unless
λ− wµ ∈ P for some w ∈ W .

We also see that Cλ,µ ∼= Cλ+β,µ+γ for β, γ ∈ P , and the same applies
to its subcategories.

Let us now try to describe these categories representation-theoretically.
To this end, note that we may interpret C[µ],[λ] as the category of weakly
B-equivariant Dλ-modules on G/B with (pure) equivariance character
µ. So if λ is antidominant, we get that C[µ],[λ] is equivalent to the full
subcategory O[µ],[λ] of the category Oχλ−ρ of objects with pure infini-
tesimal character χλ−ρ and weights in µ+P . Similarly, Cµ,λ, C[µ],λ, Cµ,[λ]

are equivalent to Oµ,λ,O[µ],λ,Oµ,[λ], where the corresponding (infinites-
imal) character is pure if square brackets are present and generalized
if not.

Now note that flipping left and right, we get equivalences Cλ,µ ∼= Cµ,λ,
C[λ],µ

∼= Cµ,[λ] Cλ,[µ]
∼= C[µ],λ C[λ],[µ]

∼= C[µ],[λ]. If λ, µ are both antidomi-
nant, this yields equivalences of representation categories Oλ,µ ∼= Oµ,λ,
O[λ],µ

∼= Oµ,[λ] Oλ,[µ]
∼= O[µ],λ O[λ],[µ]

∼= O[µ],[λ]. While the first equiva-
lence is easy to see representation theoretically using translation func-
tors, the others are not. They are clear from geometry but somewhat
mysterious from the viewpoint of representation theory (although they
can be understood using the Bernstein-Gelfand equivalence between
category O and the category of Harish-Chandra bimodules, Theorem
25.8).

Example 31.9. If λ, µ ∈ P , these categories are independent of λ, µ.
Namely, let O0 be the category O for the trivial generalized infinites-

imal character, and Õ0 be its Serre closure (the category of modules
admitting a finite filtration whose successive quotients are in O0; i.e.
the action of h is not necessarily diagonalizable but is only assumed

locally finite). We may also define the category O∗0 of modules in Õ0

which have pure infinitesimal character, and O0 ⊂ O0 of modules with
both pure infinitesimal character and diagonalizable action of h. Then

the above four categories are exactly Õ0,O0,O∗0,O0. In particular, we
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obtain an equivalence O0
∼= O∗0 which is not obvious representation-

theoretically.

Finally, we note that Exercise 30.14 applied to X = G/B and H = B
gives a transparent geometric proof of Theorem 25.8.
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