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2.11. Main Theorem. 

Exercise 2.11.1. Show that for any M ∈ M the object Hom(M, M) 
with the multiplication defined above is an algebra (in particular, define 
the unit morphism!). 

Theorem 2.11.2. Let M be a module category over C, and assume 
that M ∈M satisfies two conditions: 
1. The functor Hom(M, ) is right exact (note that it is automatically •

left exact). 
2. For any N ∈M there exists X ∈ C and a surjection X ⊗M N .→
Let A = Hom(M, M). Then the functor F := Hom(M, ) : M → •

ModC (A) is an equivalence of module categories. 

Proof. We will proceed in steps: 
(1) The map F : Hom(N1, N2) HomA(F (N1), F (N2)) is an iso→

morphism for any N2 ∈M and N1 of the form X ⊗ M, X ∈ C. 
Indeed, F (N1) = Hom(M, X ⊗ M) = X ⊗ A and the statement 

follows from the calculation: 

HomA(F (N1), F (N2)) = HomA(X ⊗ A, F (N2)) = Hom(X, F (N2)) = 

= Hom(X, Hom(M, N2)) = Hom(X ⊗ M, N2) = Hom(N1, N2). 

(2) The map F : Hom(N1, N2) HomA(F (N1), F (N2)) is an iso→
morphism for any N1, N2 ∈M. 
By condition 2, there exist objects X, Y ∈ C and an exact sequence 

Y ⊗ M X ⊗ M N1 → 0.→ → 

Since F is exact, the sequence 

F (Y ⊗ M) F (X ⊗ M) F (N1) 0→ → → 

is exact. Since Hom is left exact, the rows in the commutative diagram 

0 −→
 ⏐⏐�
Hom(N1, N2) 

F 

−→
 ⏐⏐�
Hom(X ⊗ M, N2) 

F 

−→
 ⏐⏐�
Hom(Y ⊗ M, N2) 

F 

0 − Hom(F (N1), F (N2)) − Hom(F (X ⊗ M), F (N2)) − Hom(F (Y ⊗ M), F (N2))→ → → 

are exact. Since by step (1) the second and third vertical arrows are 
isomorphisms, so is the first one. 

(3) The functor F is surjective on isomorphism classes of objects of 
ModC (A). 

We know (see Exercise 2.9.15) that for any object L ∈ ModC(A) 
there exists an exact sequence 

f̃  
Y ⊗ A −→ X ⊗ A → L → 0 



� 
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for some X, Y ∈ C. Let f ∈ Hom(Y ⊗ M, X ⊗ M) be the preimage of 
f̃  under the isomorphism 

Hom(Y ⊗M, X⊗M) ∼ = HomA(Y ⊗A, X⊗A)= HomA(F (Y ⊗M), F (X⊗M)) ∼

and let N ∈M be the cokernel of f . It is clear that F (N) = L. 
We proved that F is an equivalence of categories and proved the 

Theorem. 

Remark 2.11.3. This Theorem is a special case of Barr-Beck Theorem 
in category theory, see [ML]. We leave it to the interested reader to 

⏐⏐� 

deduce Theorem 2.11.2 from Barr-Beck Theorem. 

We have two situations where condition 1 of Theorem 2.11.2 is sat
isfied: 

1. M is an arbitrary module category over C and M ∈M is projec
tive. 
2. M is an exact module category and M ∈M is arbitrary. 

⏐⏐�

Exercise 2.11.4. Check that in both of these cases Hom(M, ) is exact •
(Hint: in the first case first prove that Hom(M, N) is a projective object 
of C for any N ∈M). 

Exercise 2.11.5. Show that in both of these cases condition 2 is equiv
alent to the fact that [M ] generates Gr(M) as Z+−module over Gr(C). 

Thus we have proved 

Theorem 2.11.6. (i) Let M be a finite module category over C. Then 
there exists an algebra A ∈ C and a module equivalence M� ModC (A). 

(ii) Let M be an exact module category over C and let M ∈ M be 
an object such that [M ] generates Gr(M) as Z+−module over Gr(C). 
Then there is a module equivalence M� ModC (A) where A = Hom(M, M). 

2.12. Categories of module functors. Let M1, M2 be two module 
categories over a multitensor category C, and let (F, s), (G, t) be two 
module functors M1 →M2. 

Definition 2.12.1. A module functor morphism from (F, s) to (G, t) 
is a natural transformation a from F to G such that the following 
diagram commutes for any X ∈ C, M ∈M: 

s
F (X ⊗ M) −−−→ X ⊗ F (M) 

(2.12.1)
 a id⊗a 

t
G(X ⊗ M) −−−→ X ⊗ G(M) 
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It is easy to see that the module functors with module functor mor
phisms introduced above form a category called the category of mod
ule functors. This category is very difficult to manage (consider the 
case = Vec !) and we are going to consider a subcategory. LetC
F unC (M1, M2) denote the full subcategory of the category of module 
functors consisting of right exact module functors (which are not nec
essarily left exact). First of all this category can be described in down 
to earth terms: 

Proposition 2.12.2. Assume that M1 � ModC (A) and M2 � ModC (B) 
for some algebras A, B ∈ C. The category F unC (M1, M2) is equiva
lent to the category of A − B−bimodules via the functor which sends a 
bimodule M to the functor • ⊗A M . 

Proof. The proof repeats the standard proof from ring theory in the 
categorical setting. � 

Thus we have the following 

Corollary 2.12.3. The category F unC(M1, M2) of right exact module 
functors from M1 to M2 is abelian. 

Proof. Exercise. � 

In a similar way one can show that the category of left exact module 
functors is abelian (using Hom over A instead of tensor product over 
A). 

We would like now to construct new tensor categories in the fol
lowing way: take a module category M and consider the category 
F unC (M, M) with composition of functors as a tensor product. 

Exercise 2.12.4. The category F unC (M, M) has a natural structure 
of monoidal category. 

But in general the category F unC (M, M) is not rigid (consider the 
case C = Vec!). Thus to get a good theory (and examples of new tensor 
categories), we restrict ourselves to the case of exact module categories. 
We will see that in this case we can say much more about the categories 
F unC (M, M) than in general. 

2.13. Module functors between exact module categories. Let 
M1 and M2 be two exact module categories over C. Note that the 
category F unC(M1, M2) coincides with the category of the additive 
module functors from M1 to M2 by Proposition 2.7.8. 

Exercise 2.13.1. Any object of F unC (M1, M2) is of finite length. 



� 
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Lemma 2.13.2. Let M1, M2, M3 be exact module categories over 
C. The bifunctor of composition F unC(M2, M3) × F unC(M1, M2) →
F unC (M1, M3) is biexact.


Proof. This is an immediate consequence of Proposition 2.7.8. �


Another immediate consequence of Proposition 2.7.8 is the following: 

Lemma 2.13.3. Let M1, M2 be exact module categories over C. Any 
functor F ∈ F unC (M1, M2) has both right and left adjoint. 

We also have the following immediate 

Corollary 2.13.4. Let M1, M2 be exact module categories over C. 
Any functor F ∈ F unC (M1, M2) maps projective objects to projectives. 

In view of Example 2.6.6 this Corollary is a generalization of Theo
rem 1.49.3 (but this does not give a new proof of Theorem 1.49.3). 

Proposition 2.13.5. The category F unC (M1, M2) is finite. 

Proof. We are going to use Theorem 2.11.2. Thus M1 = ModC (A1) 
and M2 = ModC (A2) for some algebras A1, A2 ∈ C. It is easy to 
see that the category F unC(M1, M2) is equivalent to the category of 
(A1, A2)−bimodules. But this category clearly has enough projective 
objects: for any projective P ∈ C the bimodule A1⊗P ⊗A2 is projective. 

2.14. Dual categories. Observe that the adjoint to a module func
tor has itself a natural structure of a module functor (we leave it to 
the reader to define this). In particular, it follows that the category 
F unC (M, M) is a rigid monoidal category. 

Definition 2.14.1. We denote this category as C∗ and call it the dualM
category to C with respect to M. 

By Proposition 2.13.5, this category is finite. 

Remark 2.14.2. This notion is a categorical version of notion of the 
endomorphism ring of a module (i.e., a centralizer algebra), and gives 
many new examples of tensor categories. 

Lemma 2.14.3. The unit object 1 ∈ C∗ is a direct sum of projectors M
to subcategories Mi. Each such projector is a simple object. 

Proof. The first statement is clear. For the second statement it is 
enough to consider the case when M is indecomposable. Let F be a 
nonzero module subfunctor of the identity functor. Then F (X) = 0 
for any X = 0. Hence F (X) = X for any simple X ∈ M and thus 
F (X) = X 

�
for any X ∈M since F is exact. � 
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Thus, the category C∗ is a finite multitensor category; in particular M
if M is indecomposable then C∗ is finite tensor category. Note that M
by the definition M is a module category over C∗ .M

Lemma 2.14.4. The module category M over C∗ is exact. M 

∗
M 

Proof. Let A ∈ C be an algebra such that M = ModC(A). Thus the 
category C∗ is identified with the category Bimod(A)op of A−bimodules M
with opposite tensor product (because A−bimodules act naturally on 
ModC (A) from the right). Any projective object in the category of 
A−bimodules is a direct summand of the object of the form A ⊗ P ⊗ A 
for some projective P ∈ C. Now for any M ∈ ModC (A) one has that 
M ⊗A A ⊗ P ⊗ A = (M ⊗ P ) ⊗ A is projective by exactness of the 
category ModC (A). The Lemma is proved. � 

Example 2.14.5. It is instructive to consider the internal Hom for 
the category ModC(A) considered as a module category over C∗ = M
Bimod(A). We leave to the reader to check that Hom (M, N) =
C
∗M N (the right hand side has an obvious structure of A bimodule). ⊗ −

∗(A,A) = A A is an algebra in the category ⊗∗
M 

In particular B = HomC
of A−bimodules. Thus B is an algebra in the category C and it is easy 
to see from definitions that the algebra structure on B = ∗A ⊗ A 
comes from the evaluation morphism ev : A ⊗ ∗A → 1. Moreover, 
the coevaluation morphism induces an embedding of algebras A →
∗A ⊗ A ⊗ A → ∗A ⊗ A = B and the A−bimodule structure of B comes 
from the left and right multiplication by A. 

Thus for any exact module category M over C the category (C∗ )∗ 
M M

is well defined. There is an obvious tensor functor can : C → (C∗ )∗ .M M

Theorem 2.14.6. The functor can : C → (C∗ )∗ is an equivalence of M M
categories. 

Proof. Let A be an algebra such that M = ModC(A). The cate
gory C∗ is identified with the category Bimod(A)op. The category 
(C∗ )∗

M 

M M is identified with the category of B−bimodules in the category 
of A−bimodules (here B is the same as in Example 2.14.5 and is con
sidered as an algebra in the category of A−modules). But this latter 
category is tautologically identified with the category of B−bimodules 
(here B is an algebra in the category C) since for any B−module one 
reconstructs the A−module structure via the embedding A B from→
Example 2.14.5. We are going to use the following 

Lemma 2.14.7. Any left B−module is of the form ∗A ⊗ X for some 
X ∈ C with the obvious structure of an A−module. Similarly, any right 
B−module is of the form X ⊗ A. 
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Proof. Let us consider C as a module category over itself. Consider an 
object ∗A ∈ C as an object of this module category. Then by Example 
2.10.8 Hom(∗A, ∗A) = ∗A ⊗ A = B and the statement follows from 
Theorem 2.11.2. The case of right modules is completely parallel. � 

It follows from the Lemma that any B−bimodule is of the form 
∗A ⊗ X ⊗ A and it is easy to see that can(X) = ∗A ⊗ X ⊗ A. The 
Theorem is proved. � 

Remark 2.14.8. Theorem 2.14.6 categorifies the classical “double cen
tralizer theorem” for projective modules, which says that if A is a finite 
dimensional algebra and P is a projective A-module then the central
izer of EndA(P ) in P is A. 

Corollary 2.14.9. Assume that C is a finite tensor (not only multi-
tensor) category. Then an exact module category M over C is inde
composable over C∗ .M

Proof. This is an immediate consequence of Theorem 2.14.6 and Lemma 
2.14.3. � 

Let M be a fixed module category over C. For any other module cat
egory M1 over C the category FunC(M1, M) has an obvious structure 
of a module category over C∗ = FunC(M, M).M 

Lemma 2.14.10. The module category FunC (M1, M) over C∗ is ex-M
act. 

Proof. Assume that M = ModC(A) and M1 = ModC (A1). Identify 
C∗ with the category of A−bimodules and FunC(M1, M) with the M
category of (A1 −A)−bimodules. Any projective object of Bimod(A) is 
a direct summand of an object of the form A⊗P ⊗A for some projective 
P ∈ C. Let M be an (A1 − A)−bimodule, then M ⊗A A ⊗ P ⊗ A = 
M ⊗ P ⊗ A. Now HomA1−A(M ⊗ P ⊗ A, ) = HomA1 (M ⊗ P, ) (here 
HomA1−A is the Hom in the category of (A1 −A)−bimodules and HomA1 

is the Hom in the category of left A1−modules) and it is enough to 
check that M ⊗ P is a projective left A1−module. This is equivalent 
to (M ⊗ P )∗ being injective (since N �→ N∗ is an equivalence of the 
category of left A−modules to the category of right A−modules). But 
(M ⊗ P )∗ = P ∗ ⊗ M∗ and results follows from projectivity of P ∗ and 
Lemma 2.7.3. � 

The proof of the following Theorem is similar to the proof of Theorem 
2.14.6 and is left to the reader. 
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Theorem 2.14.11. Let M be an exact module category over C. The 
�→ FunC(M1, M) and M2 �→ Fun (M2, M) mutu

ally inverse bijections of the sets of equivalence classes of exact module 
∗
M

maps M1 C are


categories over C and over C∗ .M

Following Müger, [Mu], we will say that the categories C and (C∗ )op 
M

are weakly Morita equivalent. 

Example 2.14.12. Let C be a finite multitensor category. Then C is 
an exact module category over C � Cop. 

Definition 2.14.13. The corresponding dual category Z(C) := CC∗�Cop 

is called the Drinfeld center of C. 

This notion categorifies the notion of the center of a ring, since the 
center of a ring A is the ring of endomorphisms of A as an A-bimodule. 

Let M be an exact module category over C. For X, Y ∈M we have 
two notions of internal Hom — with values in C and with values in 

respectively. The following simple ∗
M

C∗ , denoted by Hom and HomM C
consequence of calculations in Examples 2.10.8 and 2.14.5 is very useful. 

C

Proposition 2.14.14. (“Basic identity”) Let X, Y, Z ∈ M. There is 
a canonical isomorphism 

HomC (X, Y ) ⊗ Z � ∗Hom ∗
MC
(Z, X) ⊗ Y. 

Proof. By Theorem 2.14.6 it is enough to find a canonical isomorphism

∗HomC (Z, X) ⊗ Y � Hom ∗

MC
(X, Y ) ⊗ Z. 

This isomorphism is constructed as follows. Choose an algebra A such 
that M = ModC (A). By Example 2.10.8 the LHS is ∗(X ⊗A Z∗) ⊗ Y = 
∗(Z ⊗A 

∗X)∗ ⊗ Y = (Z ⊗A 
∗X) ⊗ Y . On the other hand by Example 

2.14.5 the RHS is Z ⊗A (
∗X ⊗ Y ). Thus the associativity isomorphism 

gives a canonical isomorphism of the LHS and RHS. Observe that the 
isomorphism inverse to the one we constructed is the image of the 
identity under the homomorphism 

Hom(Y, Y ) Hom(Hom
→
 C∗
M 
(X, Y ) ⊗ X, Y )
→


Hom(Hom
 ∗
MC
(X, Y ) ⊗ HomC (Z, X) ⊗ Z, Y ) � 

Hom(Hom (Z, X) ⊗ HomC C∗
M 
(X, Y ) ⊗ Z, Y ) �


Hom(Hom
 (X, Y ) ⊗ Z, ∗Hom (Z, X) ⊗ Y )
C∗
M C 

and thus does not depend on the choice of A. �
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Remark 2.14.15. Following [Mu] one can construct from M a 2
category with 2 objects A, B such that End(A) ∼ = (C∗ )op= C, End(B) ∼ ,M
Hom(A, B) ∼ M, and Hom(B, A) F unC (M, C). In this language = = 
Proposition 2.14.14 expresses the associativity of the composition of 
Hom’s. 
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