Lecture 21

Brahmagupta-Pell Equation

Recall - For quadratic irrational x we defined

$$
\begin{aligned}
x_{0} & =x=\frac{B_{0}+\sqrt{d}}{C_{0}}, \quad C_{0} \mid d-B_{0}^{2}, \quad d, C_{0}, B_{0} \in \mathbb{Z} \\
a_{i} & =\left\lfloor x_{i}\right\rfloor \\
x_{i} & =\frac{B_{i}+\sqrt{d}}{C_{i}} \\
x_{i+1} & =\frac{1}{x_{i}-a_{i}} \\
B_{i+1} & =a_{i} C_{i}-B_{i} \\
C_{i+1} & =\frac{d-B_{i+1}^{2}}{C_{i}}
\end{aligned}
$$

We showed that $B_{i}, C_{i} \in \mathbb{Z}$, and that x has a purely periodic expansion if and only if $x>1$ and $-1<\bar{x}<0$.

Corollary 72. Let d be a positive integer, not a perfect square. Then the continued fraction of the number $x=\sqrt{d}+\lfloor\sqrt{d}\rfloor$ is purely periodic.

Proof.

$$
\begin{aligned}
& x=\sqrt{d}+\lfloor\sqrt{d}\rfloor>1 \\
& \bar{x}=\sqrt{d}-\lfloor\sqrt{d}\rfloor \text { satisfies }-1<\bar{x}<0 \text { since }\lfloor\sqrt{d}\rfloor<\sqrt{d}<\lfloor\sqrt{d}\rfloor+1
\end{aligned}
$$

Let's analyze this $x=\sqrt{d}+\lfloor\sqrt{d}\rfloor$ a little more. $x=\frac{\sqrt{d}+\lfloor\sqrt{d}\rfloor}{1}$, and $1 \mid d-\lfloor\sqrt{d}\rfloor^{2}$, so we can take $C_{0}=1$, and $B_{0}=\sqrt{d}$. Want to see what happens for higher n what x_{n} looks like. Let $x=\left[\overline{a_{0}, a_{1}, \ldots a_{r-1}}\right]$ be the continued fraction of x, r is chosen as smallest possible period.

Claim: $x_{0}=x, x_{1}, x_{2}, \ldots x_{r-1}$ are all distinct

Proof. If $x_{0}=x_{i}$ for some $i<r-1$, then we'd have period i smaller than r

So $x_{n}=x_{o}$ if and only if n is a multiple of $r\left(x_{m}=x_{n}\right.$ if $\left.m \equiv n \bmod r\right)$. We'll show that $C_{n}=1$ if and only if n is a multiple of r, and C_{n} cannot be -1 . First, if $n=k r$

$$
\frac{B_{k r}+\sqrt{d}}{C_{k r}}=x_{k r}=x_{n}=x_{0}=\sqrt{d}+\lfloor\sqrt{d}\rfloor
$$

$B_{k r}-C_{k r}\lfloor\sqrt{d}\rfloor=\sqrt{d}\left(C_{k r}-1\right)$ only happens if $C_{k r}=1$ (otherwise integer $=$ irrational). Conversely, if $C_{n}=1$ then $x_{n}=B_{n}+\sqrt{d}$.

We know x_{n} is also purely periodic $\left[\overline{a_{n}}, a_{n+1}, \ldots a_{n+r-1}\right]$, so

$$
\begin{aligned}
& x_{n}>1 \text { and }-1<\overline{x_{n}}<0 \\
\Rightarrow & -1<B_{n}-\sqrt{d}<0 \\
\Rightarrow & B_{n}<\sqrt{d}<B_{n}+1 \\
\Rightarrow & B_{n}=\lfloor\sqrt{d}\rfloor
\end{aligned}
$$

which means that $x_{n}=\sqrt{d}+\lfloor\sqrt{d}\rfloor=x_{0}$, so that n is a multiple of r.
Suppose $C_{n}=-1$. Then $x_{n}=-B_{n}-\sqrt{d}$ is purely periodic, so

$$
x_{n}>1 \Rightarrow-B_{n}-\sqrt{d}>1
$$

and

$$
-1<\overline{x_{n}}<0 \Rightarrow-1<-B_{n}+\sqrt{d}<0
$$

which means that $B_{n}>\sqrt{d}$ and $B_{n}<-\sqrt{d}-1 \Rightarrow \sqrt{d}<-\sqrt{d}-1$, which is impossible.

Note that $a_{0}=\lfloor x\rfloor=\lfloor\sqrt{d}+\lfloor\sqrt{d}\rfloor\rfloor=\lfloor\sqrt{d}\rfloor+\lfloor\sqrt{d}\rfloor=2\lfloor\sqrt{d}\rfloor$. So continued fraction expansion of $x=\sqrt{d}+\lfloor\sqrt{d}\rfloor$ is

$$
\left[\overline{2\lfloor\sqrt{d}\rfloor, a_{1}, \ldots a_{r-1}}\right]=\left[2\lfloor\sqrt{d}\rfloor, \overline{a_{1}, \ldots a_{r-1}, 2\lfloor\sqrt{d}\rfloor}\right]
$$

Continued fraction expansion of \sqrt{d} will look like that of $\sqrt{d}+\lfloor\sqrt{d}\rfloor$ except with a different first digit $\left[\lfloor\sqrt{d}\rfloor, \overline{a_{1}, \ldots a_{r-1}, 2\lfloor\sqrt{d}\rfloor}\right]$.

Note: We can run the $\left(B_{n}, C_{n}\right)$ process for $x=\sqrt{d}=\frac{0+\sqrt{d}}{1}, C_{0}=1, B_{0}=0$, note that $x_{1}=\frac{1}{x-\lfloor x\rfloor}$ is the same for $x=\sqrt{d}$ and for $x=\sqrt{d}+\lfloor\sqrt{d}\rfloor$, so since $x_{n}=\frac{B_{n}+\sqrt{d}}{C_{n}}$ is the same for these two x^{\prime} s as long as $n \geq 1$, and also because $x_{n}=\frac{B_{n}+\sqrt{d}}{C_{n}}$, then B_{n}, C_{n} are the same for $n \geq 1$ whether we start with \sqrt{d} or $\sqrt{d}+\lfloor\sqrt{d}\rfloor$, so still true that $C_{n} \neq-1$ and $C_{n}=1$ if and only if $n=k r$.

Theorem 73. If $d \in \mathbb{N}$ is not a perfect square, and $\left\{\frac{p_{n}}{q_{n}}\right\}$ are the convergents to \sqrt{d}, and C_{n} is the sequence of integers we defined for x_{n} (starting with $x_{0}=\frac{0+\sqrt{d}}{1}$), then $p_{n}^{2}-d q_{n}^{2}=(-1)^{n+1} C_{n+1}$.

Proof.

$$
\begin{aligned}
\sqrt{d}=x_{0} & =\frac{x_{n+1} p_{n}+p_{n-1}}{x_{n+1} q_{n}+q_{n-1}} \\
& =\frac{\left(\frac{B_{n+1}+\sqrt{d}}{C_{n+1}}\right) p_{n}+p_{n-1}}{\left(\frac{B_{n+1}+\sqrt{d}}{C_{n+1}}\right) q_{n}+q_{n-1}} \\
& =\frac{\left(B_{n+1} p_{n}+p_{n-1} C_{n+1}\right)+\sqrt{d} p_{n}}{\left(B_{n+1} q_{n}+q_{n-1} C_{n+1}\right)+\sqrt{d} q_{n}} \\
d q_{n}+\sqrt{d}\left(B_{n+1} q_{n}+q_{n-1} C_{n+1}\right) & =\left(B_{n+1} p_{n}+p_{n-1} C_{n+1}\right)+\sqrt{d} p_{n}
\end{aligned}
$$

By comparing coefficients, we get that

$$
\begin{aligned}
\left(B_{n+1} q_{n}+q_{n-1} C_{n+1}\right) p_{n} & =p_{n}^{2} \\
\left(B_{n+1} p_{n}+p_{n-1} C_{n+1}\right) q_{n} & =d q_{n}^{2} \\
C_{n-1} \underbrace{\left.p_{n} q_{n-1}-q_{n} p_{n-1}\right)}_{(-1)^{n-1}} & =p_{n}^{2}-d q_{n}^{2} \\
p_{n}^{2}-d q_{n}^{2} & =(-1)^{n+1} C_{n+1}
\end{aligned}
$$

Corollary 74. If r is period of the continued fraction expansion of \sqrt{d}, then $p_{k r-1}^{2}-$ $d q_{k r-1}^{2}=(-1)^{k} r$.
Remark 2. If $n r$ is even then we get a solution $\left(p_{n}, q_{n}\right)$ of the P-B equation since $p_{k r-1}^{2}-d q_{k r-1}^{2}=(-1)^{\text {even }}=1$, so we get infinitely many solutions since convergents are all distinct.
Back to P-B equations $x^{2}-d y^{2}=1$ with $d \in \mathbb{Z}$, want $x, y \in \mathbb{Z}$. If $d \leq 0$, then $x^{2}+|d| y^{2}=1$, since $x, y \in \mathbb{Z}$, finite number of easily computed solutions. So, can assume $d>0$. We showed last time that in fact, all solutions must come from continued fraction of \sqrt{d}.

More generally, $\left(^{*}\right) x^{2}-d y^{2}=N$ for $N \in \mathbb{Z}$. If (x, y) is a solution of $\left(^{*}\right)$, then so is $(\pm x, \pm y)$ for any choice of signs. Some trivial solutions for $x=0$ or $y=0$, so look for nontrivial. Then we can assume $x, y>0$. These are called positive solutions. Also assume that $(x, y)=1$. (If not, replace N with $\frac{N}{g^{2}}$ if $g=(x, y)$). So only looking for positive, primitive (x, y).

Theorem 75. Let $d \in \mathbb{N}, d \neq \square$, and let $N \in \mathbb{Z}$ such that $|N|<\sqrt{d}$. Then any positive primitive solution (x, y) of $x^{2}-d y^{2}=N$ has the property that $\frac{x}{y}$ is a convergent to \sqrt{d}.

Proof. Suppose ρ is a positive real number such that $\sqrt{\rho}$ is irrational and $\sigma \in \mathbb{R}$,
$s, t \in \mathbb{N}$ such that $s^{2}-t^{2} \rho=\sigma$ and also that $0<\sigma<\sqrt{\rho}$.

Claim:

$$
\left|\frac{s}{t}-\sqrt{\rho}\right|<\frac{1}{2 t^{2}}
$$

Proof of Claim.

$$
\begin{aligned}
\frac{s}{t}-\sqrt{\rho} & =\frac{s-t \sqrt{\rho}}{t} \\
& =\left(\frac{(s-t \sqrt{\rho})(s+t \sqrt{\rho})}{t(s+t \sqrt{\rho})}\right) \\
& =\frac{s^{2}-t^{2} \rho}{t(s+t \sqrt{\rho})} \\
& =\frac{\sigma}{t(s+t \sqrt{\rho})}
\end{aligned}
$$

Note that because $s^{2}-t^{2} \rho=\sigma>0, s>t \sqrt{\rho}$, so $s+t \sqrt{\rho}>2 t \sqrt{\rho}$, so that

$$
0<\frac{s}{t}-\sqrt{\rho}<\frac{\sigma}{t-2 t \sqrt{\rho}}<\frac{\sqrt{\rho}}{2 t^{2} \sqrt{\rho}}=\frac{1}{2 t^{2}}
$$

Now, using the claim we see that $\frac{s}{t}$ is a convergent to the continued fraction of $\sqrt{\rho}$ (by Problem 4 of PSet 9).

If $N>0$, just use $\sigma=N, \rho=d,(s, t)=(x, y)$ to show that $\frac{x}{y}$ is a convergent to \sqrt{d}. If $N<0$, rewrite $x^{2}-d y^{2}=N$ as $y^{2}-\frac{1}{d} x^{2}=-\frac{N}{d}$, then take $\sigma=-\frac{N}{d}$. $|N|<\sqrt{d}$, so $0<\sigma<\frac{\sqrt{d}}{d}=\frac{1}{\sqrt{d}}$, and so $\frac{y}{x}$ is a convergent to continued fraction of $\frac{1}{\sqrt{d}}$.

Note that if the continued fraction of $\sqrt{d}=\left[a_{0}, a_{1}, \ldots\right]$, then continued fraction of $\frac{1}{\sqrt{d}}=\left[0, a_{0}, a_{1}, \ldots\right]$ means that convergents of $\frac{1}{\sqrt{d}}$ are just reciprocals of convergents of \sqrt{d}.

$$
\left[0, a_{0}, a_{1}, \ldots\right]=\frac{1}{a_{0}+\frac{1}{\ddots}}=\frac{1}{\frac{p_{k}}{q_{k}}}=\frac{q_{k}}{p_{k}}
$$

and so if $\frac{y}{x}$ is a convergent to $\frac{1}{\sqrt{d}}$, then $\frac{x}{y}$ is a convergent to \sqrt{d}

Theorem 76. Let $d \in \mathbb{N}, d \neq \square$. All positive solutions to $x^{2}-d y^{2}= \pm 1$ are of the form $(x, y)=\left(p_{n}, q_{n}\right)$ where $\frac{p_{n}}{q_{n}}$ is convergent to \sqrt{d}. If r is the period of the continued fraction of \sqrt{d}, then

- If r is even, $x^{2}-d y^{2}=-1$ doesn't have any solutions, and all positive solutions of $x^{2}-d y^{2}=1$ are given by $x=p_{k r-1}, y=q_{k r-1}$ for $k=1,2,3, \ldots$.
- If r is odd, then all positive solutions to $x^{2}-d y^{2}=-1$ are given by taking $x=$ $p_{k r-1}, y=q_{k r-1}$ for $k=1,3,5, \ldots$, and all positive solutions to $x^{2}-d y^{2}=1$ are given by taking $x=p_{k r-1}, y=q_{k r-1}$ for $k=2,4,6, \ldots$

Proof. If (x, y) is a positive solution to $x^{2}-d y^{2}= \pm 1$ then $\operatorname{gcd}(x, y)=1$ is forced. By theorem it must come from convergent to \sqrt{d}, say $\frac{p_{n}}{q_{n}}$. But we showed that $p_{n}^{2}-d q_{n}^{2}=(-1)^{n+1} C_{n+1}$. Also C_{n+1} can't be -1 , and can be 1 if and only if $n+1$ is a multiple of r - ie., $n=k r-1$. So, $p_{k r-1}^{2}-d q_{k r-1}^{2}=(-1)^{k r} \Rightarrow$ if r even, can't be -1 , and if r odd, can be ± 1.

Remark 3. Suppose two positive solutions $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are solutions of $x^{2}-d y^{2}=1$, then $x_{1}<x_{2} \Longleftrightarrow y_{1}<y_{2}$.

Proof. $y_{1}<y_{2} \Rightarrow x_{1}^{2}=1+d y_{1}^{2}<1+d y_{2}^{2}=x_{2}^{2}$ and $x_{1}, x_{2}>0$ so $x_{1}<x_{2}$. Same for other direction, which means that we can order the positive solutions

Theorem 77. If $\left(x_{1}, y_{1}\right)$ is the least positive solution of $x^{2}-d y^{2}=1$ where $\square \neq d \in \mathbb{N}$, then all positive solutions are given by $\left(x_{n}, y_{n}\right)$ where $x_{n}+\sqrt{d} y_{n}=\left(x_{1}+\sqrt{d} y_{1}\right)^{n}$.

Eg. For $x^{2}-2 y^{2}=1,(3,2)$ is the smallest positive solution. Then $(3+2 \sqrt{2})^{2}=$ $17+12 \sqrt{2} \Rightarrow(17,12)$ is the next solution.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

