
Lecture 21
Brahmagupta-Pell Equation

Recall - For quadratic irrational x we defined

B0 +
√
d

x0 = x = , C0|d−B2
0 , d, C0, B0

C
∈ Z

0

ai = bxic
Bi +

√
d

xi =
Ci
1

xi+1 =
xi − ai

Bi+1 = aiCi −Bi
d

C
−B2

= i+1
i+1

Ci

We showed that Bi, Ci ∈ Z, and that x has a purely periodic expansion if and
only if x > 1 and −1 < x < 0.

Corollary 72. Let d be a positive integer, not a perfect square. Then the continued
fraction of the number x =

√
d+

√
b dc is purely periodic.

Proof.

x =
√
d+

√
b dc > 1

x =
√
d

√
− b dc satisfies <

√
− 1 < x 0 since b dc <

√
d <

√
b dc+ 1

�

√
analyze this d+

√
Let’s dx =

√
d+

√
b dc a little more. x = b c , and 1|d

√
− b dc2

0

√ 1 ,
so we can take C0 = 1, and B = d. Want to see what happens for higher n -
what xn looks like. Let x = [a0, a1, . . . ar 1] be the continued fraction of x, r is−
chosen as smallest possible period.

Claim: x0 = x, x1, x2, . . . xr−1 are all distinct

Proof. If x0 = xi for some i < r − 1, then we’d have period i smaller than r �

So xn = xo if and only if n is a multiple of r (xm = xn if m ≡ n mod r). We’ll
show that Cn = 1 if and only if n is a multiple of r, and Cn cannot be −1. First,
if n = kr
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Bkr +
√
d

= xkr = xn = x0 =
√
d+

√
Ckr

b dc

Bkr
√ √

− Ckrb dc = d(Ckr − 1) only happens if Ckr = 1 (otherwise integer =

irrational). Conversely, if Cn = 1 then xn = Bn +
√
d.

We know xn is also purely periodic [an, an+1, . . . an+r ]−1 , so

xn > 1 and − 1 < xn < 0
√

⇒ −1 < Bn − d < 0

⇒ Bn <
√
d < Bn + 1
√

⇒ Bn = b dc

which means that xn =
√
d+

√
b dc = x0, so that n is a multiple of r.

Suppose Cn =
√

−1. Then xn = −Bn − d is purely periodic, so

xn > 1⇒ −Bn
√

− d > 1

and
−1 < xn < 0

√
⇒ −1 < −Bn + d < 0

which means that Bn >
√
d and Bn <

√
− d − 1

√
⇒ d <

√
− d − 1, which is

impossible.

Note that a0 = bxc =
√
b d +

√
√ b √dcc =

√
b dc +

√
b dc = 2

√
b dc. So continued

fraction expansion of x = d+ b dc is

[2
√
b dc, a1, . . . ar 1] = [2

√
b dc, a1, . . . a− r−1, 2

√
b dc]

Continued fraction expansion of
√
d will look like that of

√
d+

√
b dc except with

a different first digit [
√
b dc, a1, . . . ar−1, 2

√
b dc].

√
Note: We can run the (Bn, Cn) process for x =

√
d = 0+ d , C0 = 1, B0 = 0√ √1 ,

note that x1 = 1 dx x is the same for x = and for x = d +
√

−b c b dc, so since

x = Bn+
√
d

n Cn
is the same for these two x’s as long as n

B +
√
d

≥ 1, and also because

xn = n , then Bn, C√ nCn
are the same for n ≥ 1 whether we start with

√
d or

d+
√
b dc, so still true that Cn = −1 and Cn = 1 if and only if n = kr.

Theorem 73. If d ∈ N is not a perfect square, and
√

{pnqn } are the convergents to d,
√

and Cn is the sequence of integers we defined for xn (starting with x0 = 0+ d
1 ), then

p2n − dq2n = (−1)n+1Cn+1.
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Proof.
√ xn+1pn + pn
d = x0 =

−1

xn+1qn + qn−1
Bn+1+

√
d pn + pn 1C −

=

(
n+1

)
(
Bn+1+

√
d

Cn+1

)
qn + qn−1

(Bn+1pn + pn−1Cn+1) +
√
dpn

=
(Bn+1qn + q

√ n−1Cn+1) +
√
dqn

dqn + d(Bn+1qn + qn−1Cn+1) = (Bn+1pn + pn C−1 n+1) +
√
dpn

By comparing coefficients, we get that

(Bn+1qn + qn 1Cn+1)pn = p2− n

(Bn+1pn + pn 1Cn+1)q =− n dq2n

Cn−1 (︸pnqn−1 ︷︷− qnpn−1︸) = p2n − dq2n
(−1)n−1

p2n − dq2n = (−1)n+1Cn+1

�

Corollary 74. If r is period of the continued fraction expansion of
√
d, then p2kr−1 −

dq2kr−1 = (−1)kr.
Remark 2. If nr is even then we get a solution (pn, qn) of the P-B equation
since 2 − 2 − evenpkr−1 dqkr−1 = ( 1) = 1, so we get infinitely many solutions since
convergents are all distinct.
Back to P-B equations x2 − dy2 = 1 with d ∈ Z, want x, y ∈ Z. If d ≤ 0, then
x2 + |d|y2 = 1, since x, y ∈ Z, finite number of easily computed solutions. So,
can assume d > 0. We showed last time that in fact, all solutions must come
from continued fraction of

√
d.

More generally, (*) x2 − dy2 = N for N ∈ Z. If (x, y) is a solution of (*), then
so is (±x,±y) for any choice of signs. Some trivial solutions for x = 0 or y = 0,
so look for nontrivial. Then we can assume x, y > 0. These are called positive
solutions. Also assume that (x, y) = 1. (If not, replace N with N

2 if g = (x, y)g ).
So only looking for positive, primitive (x, y).

Theorem 75. Let d
√

∈ N, d = �, and let N ∈ Z such that |N | < d. Then
any positive primitive solution (x, y) of x2 − dy2 = N has the property that x

y is a
convergent to

√
d.

Proof. Suppose ρ is a positive real number such that
√
ρ is irrational and σ ∈ R,
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s, t ∈ N such that s2 − t2ρ = σ and also that 0 < σ <
√
ρ.

Claim: ∣∣∣s √ 1
ρ

t
−

∣∣∣ <
2t2

Proof of Claim.

s √ s
ρ =

− t√ρ
t
−

t

=

(
(s

√ √− t ρ)(s+ t ρ)

t(s+ t
√
ρ)

)
s2

=
− t2ρ

t(s+ t
√
ρ)

σ
=
t(s+ t

√
ρ)

Note that because s2 t2ρ = σ > 0, s > t
√ √− ρ, so s+ t

√
ρ > 2t ρ, so that

s
0 <

√ σ
√
ρ 1

t
− ρ <

t 2t
√ < √ =

− ρ 2t2 ρ 2t2

�

Now, using the claim we see that st is a convergent to the continued fraction of√
ρ (by Problem 4 of PSet 9).

If N > 0, just use σ = N, ρ = d, (s, t) = (x, y) to show that x
y is a convergent

to
√
d. If N < 0, rewrite x2 − dy2 = N as y2 − 1x2 =d −Nd , then take σ = −Nd .

|N | <
√ √
d, so 0 < σ < d = 1

d
√ , and so y

d x is a convergent to continued fraction
of √1 .

d

Note that if the continued fraction of
√
d = [a0, a1, . . . ], then continued fraction

of √1 = [0, a0, a1, . . . ] means that convergents of 1
d

√ are just reciprocals of
d

convergents of
√
d.

1 1 qk
[0, a0, a1, . . . ] = =

a0 + 1 pk =
p

. k
.

q

.
k

ak

and so if y
√

√1
x is a convergent to , then x

d y is a convergent to d �

Theorem 76. Let d ∈ N, d = �. All positive solutions to x2 − dy2 = ±1 are of the
form (x, y) = (pn, q

pn

√ n) where qn
is convergent to

√
d. If r is the period of the continued

fraction of d, then
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• If r is even, x2 − dy2 = −1 doesn’t have any solutions, and all positive solutions
of x2 − dy2 = 1 are given by x = pkr−1, y = qkr 1 for k = 1, 2, 3, . . . .−

• If r is odd, then all positive solutions to x2 − dy2 = −1 are given by taking x =
pkr−1, y = q 2 2

kr 1 for k = 1, 3, 5, . . . , and all positive solutions to x − dy = 1−
are given by taking x = pkr−1, y = qkr−1 for k = 2, 4, 6, . . .

Proof. If (x, y) is a positive solution to x2−dy2 = ±1 then gcd(x, y) = 1 is forced.
By theorem it must come from convergent to

√
d, say pn

qn
. But we showed that

p2 − dq2 = (−1)n+1
n n Cn+1. Also Cn+1 can’t be −1, and can be 1 if and only if
n+ 1 is a multiple of r - ie., n = kr− 1. So, p2kr−1− dq2kr−1 = (−1)kr ⇒ if r even,
can’t be −1, and if r odd, can be ±1. �

Remark 3. Suppose two positive solutions (x1, y1) and (x2, y2) are solutions of
x2 − dy2 = 1, then x1 < x2 ⇐⇒ y1 < y2.

Proof. y 2 2 2 2
1 < y2 ⇒ x1 = 1 + dy1 < 1 + dy2 = x2 and x1, x2 > 0 so x1 < x2. Same

for other direction, which means that we can order the positive solutions �

Theorem 77. If (x1, y1) is the least positive solution of x2−dy2 = 1 where� = d ∈ N,
then all positive solutions are given by (x n

n, yn) where xn +
√
dyn = (x1 +

√
dy1) .

Eg. For x2 − 2y2√ = 1, (3, 2) is the smallest positive solution. Then (3 + 2
√

2)2 =
17 + 12 2⇒ (17, 12) is the next solution.
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