18.781 Solutions to Problem Set 7

1. If the number 1 is in S, we're done since it's relatively prime to everything. So suppose $1 \notin S$. Break up the remaining elements into n pairs $\{2,3\},\{4,5\}, \ldots,\{2 n, 2 n+1\}$. By the Pigeonhole Principle, since S contains $n+1$ elements, it has to have two elements from some pair. These two numbers are consecutive, and thus coprime.
If only n elements are chosen, the result doesn't hold, because we can choose the even elements.
2. Let $S=\{n, \ldots, n+9\}$ be the set of 10 consecutive positive integers. If some prime p divides two elements of the set, then it divides the difference of them, so it divides some natural number between 1 and 9 (inclusive). So the only possibilities for p are $2,3,5,7$. Now we'll call $x \in S$ "bad" if it's not coprime to everything else in S, and good if it is. The strategy is to show that there are at most 9 bad elements of S, so there must be at least one good element, using an inclusion-exclusion argument.
By the above reasoning, if x is bad, it has to be divisible by $2,3,5$, or 7 . Now there are exactly five elements of S divisible by 2 , so we put these in the "bad" set. There are either four or three elements of S divisible by 3 (depending on whether n is divisible by 3 or not). But correspondingly, either two or one of these elements will be divisible by 6 , and hence already in the bad set. So we add two new elements to the bad set. Then there are exactly two elements of S divisible by 5 , but one of them is divisible by 10 , so we can only add one extra bad element. Finally, there's exactly one element of S divisible by 7 , and it might or might not be in the bad set already. This leaves us with at most nine elements in the bad set. Therefore, there exists a good element of S.
3. The total number of possible ways to hand back the coats is $n!$. Now, the number of ways to hand back the coats so that person i definitely gets back their own coat is $(n-1)$!. The number of ways to hand back the coats so that persons i and j both get back their coat is $(n-2)$!, and so on. So by inclusion-exclusion, the total number of ways no one gets back their own coat is

$$
n!-n(n-1)!+\binom{n}{2}(n-2)!-\binom{n}{3}(n-3)!+\cdots+(-1)^{n}\binom{n}{n}(n-n)!
$$

which can be re-written as

$$
n!\left(\frac{1}{0!}-\frac{1}{1!}+\frac{1}{2!}-\frac{1}{3!}+\cdots+\frac{(-1)^{n}}{n!}\right)
$$

Note that if n is very large, this expression is approximately $n!/ e$. So the probability that no one receives their coat back is approximately $1 / e \approx 36.79 \%$.
4. One can try to prove this relation by induction, but it's easier using the explicit formula $F_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}$,
where $\alpha>\beta$ are the roots of $x^{2}-x-1=0$. Noting that $\alpha \beta=-1$, we have

$$
\begin{aligned}
F_{m-1} F_{n}+F_{m} F_{n+1} & =\left(\frac{\alpha^{m-1}-\beta^{m-1}}{\alpha-\beta}\right)\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)+\left(\frac{\alpha^{m}-\beta^{m}}{\alpha-\beta}\right)\left(\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}\right) \\
= & \frac{1}{(\alpha-\beta)^{2}}\left[\alpha^{m+n-1}+\beta^{m+n-1}-\alpha^{m-1} \beta^{n}-\beta^{m-1} \alpha^{n}\right. \\
& \left.+\alpha^{m+n+1}+\beta^{m+n+1}-\alpha^{m} \beta^{n+1}-\beta^{m} \alpha^{n+1}\right] \\
& =\frac{1}{(\alpha-\beta)^{2}}\left[\alpha^{m+n+1}+\beta^{m+n+1}+\alpha^{m+n-1}+\beta^{m+n-1}\right] \\
& =\frac{1}{(\alpha-\beta)^{2}}\left[\alpha^{m+n+1}+\beta^{m+n+1}-\alpha^{m+n} \beta-\beta^{m+n} \alpha\right] \\
& =\frac{1}{(\alpha-\beta)^{2}}\left(\alpha^{m+n}-\beta^{m+n}\right)(\alpha-\beta) \\
& =F_{m+n} .
\end{aligned}
$$

Next, we need to show $F_{m} \mid F_{n}$ if $m \mid n$. Let's do this by induction on k, where $n=m k$. For $k=0$ this is clear since $F_{0}=0$ is divisible by F_{m}. Now suppose the inductive hypothesis is true for $k-1$. In the expansion

$$
F_{m k}=F_{m(k-1)+m}=F_{m(k-1)-1} F_{m}+F_{m(k-1)} F_{m+1},
$$

the terms F_{m} and $F_{m(k-1)}$ are both divisible by F_{m}, so $F_{m k}$ is divisible by F_{m}, completing the induction.
5. (a) We want to show that $r(n)=1+r(1)+\cdots+r(n-1)$. If $m_{1}=n$ then the decomposition is just $n=n$. If $m_{1}=1$, then the number of decompositions is the number of ways to choose m_{2}, \ldots, m_{k} such that $n-1=m_{2}+\cdots+m_{k}$, which is $r(n-1)$. Similarly, if $m_{1}=2$, there are $r(n-2)$ decompositions, and so on. So $r(n)=1+r(1)+\cdots+r(n-1)$. Now since $r(n-1)=1+r(1)+\cdots+r(n-2)$, we see that $r(n)=(1+r(1)+\cdots+r(n-2))+r(n-1)=2 r(n-1)$. By induction on n, with the base case $r(1)=1$, we must have $r(n)=2^{n-1}$.
(b) Note that for $n=m_{1}+\cdots+m_{k}$, we must have $k \leq n$. Now consider n pebbles in a row, between which there are $n-1$ spaces. For each space we can either choose to place a bar there or leave an empty space. Each such set of choices bijectively corresponds to a decomposition of n. It follows that there are exactly 2^{n-1} choices.
6. Let $f(n)$ be the number of odd decompositions. Then, as in part (a) of the previous problem,

$$
f(n)= \begin{cases}f(n-1)+f(n-3)+\cdots+f(1) & \text { if } n \text { is even } \\ f(n-1)+f(n-3)+\cdots+f(2) & \text { if } n \text { is odd. }\end{cases}
$$

The recurrence $f(n)=f(n-1)+f(n-2)$ follows immediately. Since $f(1)=1=F_{1}$ and $f(2)=1=F_{2}$, we must have $f(n)=F_{n}$ for all n.
7. Let $f(n)$ be the number of all such sequences, and let $g(n)$ be the number of such sequences which start with 0 . Then, by symmetry, $g(n)$ is also equal to the number of such sequences starting with 1 . When a sequence starts with 2 , there are no further restrictions. So by considering the first element of the sequence, we get the recurrence

$$
f(n)=g(n)+g(n)+f(n-1)
$$

By considering the second element of the sequence when the first element is 0 , we get

$$
g(n)=g(n-1)+f(n-2)
$$

Substituting from the first equation,

$$
\frac{f(n)-f(n-1)}{2}=\frac{f(n-1)+f(n-2)}{2}+f(n-2),
$$

which when rearranged becomes

$$
f(n)-2 f(n-1)-f(n-2)=0
$$

The characteristic polynomial has roots $1 \pm \sqrt{2}$, so $f(n)=A(1+\sqrt{2})^{n}+B(1-\sqrt{2})^{n}$. We can easily calculate $f(1)=3, f(2)=7$ to solve for A and B, obtaining

$$
f(n)=\frac{1}{2}(1+\sqrt{2})^{n+1}+\frac{1}{2}(1-\sqrt{2})^{n+1}
$$

Since $-1<1-\sqrt{2}<0, f(n)$ must be the integer closest to $\frac{1}{2}(1+\sqrt{2})^{n+1}$.
8. Using the explicit formula for F_{n},

$$
\begin{aligned}
F_{p} & =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{p}-\left(\frac{1-\sqrt{5}}{2}\right)^{p}\right) \\
& =\frac{1}{2^{p-1}}\left[\binom{p}{1}+\binom{p}{3} 5+\binom{p}{5} 5^{2}+\cdots+\binom{p}{p-2} 5^{\frac{p-3}{2}}+\binom{p}{p} 5^{\frac{p-1}{2}}\right] .
\end{aligned}
$$

Reducing mod p and noting that $\binom{p}{1}, \ldots,\binom{p}{p-2}$ are all divisible by p, we get

$$
F_{p} \equiv \frac{1}{2^{p-1}} \cdot 5^{\frac{p-1}{2}} \equiv\left(\frac{5}{p}\right) \quad(\bmod p)
$$

using Fermat's Little Theorem and Euler's criterion. By quadratic reciprocity, $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)$, so $F_{p} \equiv\left(\frac{p}{5}\right)$ $(\bmod p)$. Therefore,

$$
F_{p} \equiv\left\{\begin{array}{lll}
1 & (\bmod p) & \text { if } p \equiv \pm 1 \\
-1 & (\bmod p) & \text { if } p \equiv \pm 2
\end{array} \quad(\bmod 5) .\right.
$$

Now let's compute

$$
F_{p+1}=\frac{1}{2^{p}}\left[\binom{p+1}{1}+\binom{p+1}{3} 5+\cdots+\binom{p+1}{p} 5^{\frac{p-1}{2}}\right] .
$$

Note that $\binom{p+1}{1}=\binom{p+1}{p} \equiv 1(\bmod p)$, but $\binom{p+1}{3}, \ldots,\binom{p+1}{p-2}$ are all divisible by p. One way to see this is to use the rule

$$
\binom{a_{r} p^{r}+\cdots+a_{0}}{b_{r} p^{r}+\cdots+b_{0}} \equiv\binom{a_{r}}{b_{r}} \cdots\binom{a_{0}}{b_{0}} \quad(\bmod p)
$$

Now, using Fermat's Little Theorem,

$$
F_{p+1} \equiv \frac{1}{2}\left(1+5^{\frac{p-1}{2}}\right) \quad(\bmod p)
$$

When $p \equiv \pm 1(\bmod 5),\left(\frac{5}{p}\right)=1$ and thus $F_{p+1} \equiv 1(\bmod p)$. When $p \equiv \pm 2(\bmod 5),\left(\frac{5}{p}\right)=-1$ and thus $F_{p+1} \equiv 0(\bmod p)$.
Finally, if $p \equiv \pm 1(\bmod 5)$, then $F_{p-1}=F_{p+1}-F_{p} \equiv 0(\bmod p)$, so by Problem 4,

$$
\begin{aligned}
F_{n+p-1} & =F_{n-1} F_{p-1}+F_{n} F_{p} \\
& \equiv F_{n-1} \cdot 0+F_{n} \cdot 1 \\
& \equiv F_{n} \quad(\bmod p) .
\end{aligned}
$$

Therefore, $p-1$ is a period.
9. (a) The subset $\{n+1, \ldots, 2 n\}$ has size n and property P.

Now if S has size $n+1$ then consider the odd part of every element of S (if $x=2^{k} y$ with y odd, then y is the odd part of x). There are n possible odd parts (namely $1,3, \ldots, 2 n-1$) and $n+1$ integers in S. Therefore, two elements must have the same odd part. So we have $x, x^{\prime} \in S$ with $x=2^{k} y$ and $x^{\prime}=2^{l} y$. Since either $k<l$ or $k>l$, one of x, x^{\prime} must divide the other.
(b) The same proof shows that no subset of $n+1$ elements can have property P. As for a subset of n elements with property P, the subset $\{n, n+1, \ldots, 2 n-1\}$ works.
(c) As in part (a), we write each element in the form $x=3^{k} y$, where y is relatively prime to 3 . Now there are $\lfloor(2 n+2) / 6\rfloor$ multiples of 3 in the set $\{1,3,5, \ldots, 2 n-1\}$, so there are $n-\lfloor(n+1) / 3\rfloor$ possible choices for y, setting an upper bound for the size of S. To show this bound is attainable, we form S by omitting elements $1,3,5, \ldots, 2\lfloor(n+1) / 3\rfloor-1$. Since

$$
3\left(2\left\lfloor\frac{n+1}{3}\right\rfloor+1\right) \geq 3\left(2 \cdot \frac{n-1}{3}+1\right)>2 n-1
$$

no two elements of S can divide each other.
10. (a) Consider any parenthesization of $x_{0} \cdots x_{n+1}$. The left-most symbol in the expression is either "(" or x_{0}. If it's x_{0} then the expression is x_{0}. (some parenthesization of the product $x_{1} \cdots x_{n+1}$), and the number of ways this can occur is C_{n}. If the left-most symbol is "(" then the ")" which pairs with it falls after x_{i} for some $i \geq 1$, and we must have (some parenthesization of $x_{0} \cdots x_{i}$) • (some parenthesization of $x_{i+1} \cdots x_{n+1}$). The number of ways that this can occur is $C_{i} C_{n-i}$. So

$$
C_{n+1}=\sum_{i=0}^{n} C_{i} C_{n-i}
$$

(b) The coefficient of z^{n} in $z C(z)^{2}$ is the coefficient of z^{n-1} in $C(z)^{2}$, which is equal to $C_{0} C_{n-1}+$ $C_{1} C_{n-2}+\cdots+C_{n-1} C_{0}=C_{n}$. To match up when $n=0$, we add 1. So $C(z)=1+z C(z)^{2}$.
(c) Solving the quadratic equation $z C(z)^{2}-C(z)+1=0$, we get

$$
C(z)=\frac{1 \pm \sqrt{1-4 z}}{2 z} .
$$

Now $C(z)$ is a polynomial in z, so the minus sign must be taken in order to cancel out the constant term in the numerator. Now the coefficient of z^{n} in $C(z)$ is half the coefficient of z^{n+1} in $1-(1-4 z)^{1 / 2}$:

$$
\begin{aligned}
{\left[z^{n}\right] C(z) } & =-\frac{1}{2}\binom{1 / 2}{n+1}(-4)^{n+1} \\
& =-\frac{1}{2} \frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdots\left(\frac{1}{2}-n\right)}{(n+1)!}(-4)^{n+1} \\
& =\frac{(-1)^{n+1}}{2^{n+2}} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{(n+1)!}(-1)^{n+1} 4^{n+1} \\
& =2^{n} \frac{1 \cdot 2 \cdot 3 \cdots 2 n}{(n+1)!(2 \cdot 4 \cdot 6 \cdots 2 n)} \\
& =2^{n} \frac{(2 n)!}{(n+1)!2^{n} n!} \\
& =\frac{1}{n+1}\binom{2 n}{n}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

