
Lecture 8
Primitive Roots (Prime Powers), Index Calculus

Recap - if prime p, then there’s a primitive root g mod p and it’s order mod p
is p− 1 = qe1 e2 er

1 q2 . . . qr . We showed that there are integers gi mod p with order
exactly

e

qeii (counting number of solutions to xq i∏ i − 1 ≡ 0 mod p). Set g =
∏
gi -

has order qeii = p− 1.

Number of primitive roots - suppose that m is an integer such that there is a
primitive root g mod m. How many primitive roots mod m are there?

We want the order to be exactly φ(m). If we look at the integers 1, g, g2,
. . . gφ(m)−1, these are all coprime to m and distinct mod m. If we had gi ≡ gj

mod m (0 ≤ i < j ≤ φ(m) − 1), then we’d have gj−1 ≡ 1 mod m with
0 ≤ j − i < φ(m), contradicting the fact that g is a primitive root.

Since there are φ(m) of these integers, they must be all the reduced residue
classes modm (in particular ifm = p, a prime, then {1, 2, . . . p

−2
−1} is a relabeling

of {1, g, . . . gp }mod p). Suppose that a is a primitive root mod m, then a ≡ gk
mod m. Recall that order of gk is

ord(g) φ(m)
=

(k, ord(g)) (k, φ(m))

So only way for the order to be exactly φ(m) is for k to be coprime to φ(m). Ie.,
the number of primitive roots mod m is exactly φ(φ(m)) - if there’s at least one.
In particular, if m = a prime, then number of primitive roots is φ(p− 1).

Conjecture 37 (Artin’s Conjecture). Let a be a natural number, which is not a square.
Then there are infinitely many primes p for which a is a primite root mod p.

This is an open question. Hooley proved this conditional on GRH, and Heath-
Brown showed that if a is a prime, then there are at most 2 values of a which
fail the conjecture

(Definition) Discrete Log: Say p is a prime, and g is a primitive root mod p (ie.,
1, g, g2 . . . gp−2 are all the nonzero residue classes mod p). Say we have a 6≡ 0
mod p. We know a ≡ gk for some k (0 ≤ k ≤ p− 2) - k is called the index or the
discrete log of a to the base g mod p. This is a computationally hard problem,
and is also used in cryptography.

Index Calculus - Let’s say we’re trying to solve a congruence xd ≡ 1 mod p.
Any x which satisfied this congruence is coprime to p. So if g is a primitive root
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mod p, we can write x ≡ gk mod p. New variable is now k:

xu ≡ 1 mod p←→ gkd ≡ 1 mod p

←→ p− 1 = ord(g) divides kd
p− 1 d←→ divides k

(d, p− 1) (d, p− 1)

(p− 1)←→ divides k
(d, p− 1)

So set of solutions for k is exactly the set of multiples of (p−1) k(d,p (r−1) emember is
only modulo p−1). So we can get all the solutions x by raising g to the exponent
k, where 0 ≤ k < p− 1 is a multiple of p−1

(d,p−1) . The number of solutions is

(p− 1)
= (d, pp−1

(d,p−1)
− 1)

Similarly, if we’re trying to solve the congruence xd ≡ a mod p (a 6≡ 0 mod p),
we can write a ≡ gl mod p so if x ≡ gk as before then gkd ≡ gl mod p. This
means that gkd−l ≡ 1 mod p↔ p− 1|kd− l↔ kd ≡ l mod p− 1 (k is variable),
which has a solution iff (d, p− 1) divides l, in which case it has exactly (d, p− 1)
solutions.

Note:

l(p
(d, p− 1) divides l←→ p− 1 divides

− 1)

(d, p− 1)

←→ l p−1

g (d,p−1) 1 mod p

←→
p−1

≡

a (d,p−1) ≡ 1 mod p

Theorem 38. There’s a primitive root mod m iff m = 1, 2, 4, pe, or 2pe (where p is an
odd prime). Let’s assume that p is an odd prime, and e ≥ 2. Want to show that there’s a
primitive root mod pe.

Part 1 - There’s a primitive root mod p2

Proof. Choose g to be a primitive root mod p, and use Hensel’s Lemma to show
there’s a primitive root mod p2 of the form g+tp for some 0 ≤ t ≤ p−1. We know
(g + tp, p) = 1 since p - g and p|tp. ordp2(g + tp) must divide φ(p2) = p(p− 1).

On the other hand, if (g + tp)k ≡ 1 mod p2 then (g + tp)k ≡ 1 mod p⇔ gk ≡ 1
mod p⇔ p− 1|k.

So p−1 divides ordp(g+ tp). Since ordp(g+ tp) is a multiple of p−1 and divides
p(p− 1), it’s either equal to p− 1 or equal to p(p− 1) = φ(p2). We’ll show that
there’s exactly one value of t for which the former happens.
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Since there are p possible values of t(0 ≤ t ≤ p− 1), any of these remaining ones
give a g + tp which is a primitive root mod p2. Consider f(x) = xp−1 1: mod
p it has the root g. Since f ′(x) = (p− 1)xp 2

−
− and f ′(g) = (p− 1)gp−2 6≡ 0 mod p,

by Hensel’s Lemma there is a unique lift g + tp of g mod p2 satisfying xp−1 1
mod p2 2

≡
. This is the unique lift for which order is p− 1 mod p . This proves that

there’s a primitive root mod p2. �

Part 2 - Let g be a primitive root mod p2. Then g is a primitive root mod pe for
every e ≥ 2.

Proof. Since ord e e 1
pe(g) divides ϕ(p ) = p − (p−1) and also that p−1| ordpe(g) (as

in proof of previous part), ordpe(g) must be pk(p−1) for some 0 ≤ k ≤ e−1. We
want to show that k = e 1. To see that, it’s enough to show that gp

e−2(p−1) 1
mod pe

− 6≡
.

We’ll show it by induction (base case is e = 2). gp−1 6≡ 1 mod p2 is true because
g is a primitive root mod p2, so order = p(p− 1). So say we know it for e.

We know that φ(pe−1) = pe−2(p 1). So gφ(p
e−1) 1 mod pe−1 assuming that

gφ(p
e−1)

− ≡
6≡ 1 mod e. In other words

e−1

p gφ(p ) = 1 + bpe−1 with p - b. Need to
show it for e+ 1 - ie.,

e

gφ(p ) 6≡ 1 mod pe+1.

We know that gp
e−2(p−1) = 1 + bpe−1. Raising to power p we get

gp
e−1(p−1) = (1 + bpe−1)p

= 1 + pbpe−1
p

+ (bpe−1
p

)2 + (bpe−1)3 + . . .
2 3

≡ 1 + bpe mod

(
pe

)
+1

( )

(because for e ≥ 2, 3e− 3 ≥ e+ 1 and p| p 1
2 so p b2p2e2

−2 divisible by p2e− and
2e− 1 ≥ e+ 1).

( ) ( )
So gp

e−1(p−1) ≡ 1 + bpe mod pe+1 with p - b, which 6≡ 1 mod pe+1. Completes
the induction. �

Main Proof. Check 1, 2, 4 directly. p odd, m = pe proved. m = 2pe (p odd) -
φ(m) = φ(2)φ(pe) = φ(pe). Let g be a primitive root mod pe. If g is odd, it is a
primitive root mod m. If not odd, then add pe to it.

Now show that nothing else works: otherwise, if n = mm′ with m and m′

coprime and m,m′ > 2, we’ll show there does not exist a primitive root mod m.
By hypothesis (m,m′ > 2) we know φ(m) and φ(m′) are even. So for (a, n) = 1,
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we have (a,m) = 1 = (a,m′). So aφ(m) ≡ 1 mod m and aφ(m
′) ≡ 1 mod m′. So

aφ(m)φ(m′)/2 ≡ (aφ(m))φ(m
′)/2

≡ 1 mod m

aφ(m)φ(m′)/2 ≡ 1 mod m′

Similarly so, aφ(m)φ(m′)/2 ≡ 1 mod n

but φ(n) = φ(m)φ(m′) so ordn(a) < φ(n). So a can’t be a primitive root mod n.

Only remaining candidate is n = 2k for k ≥ 3. No primitive root mod 8 since
odd2 ≡ 1 mod 8 (and φ(8) = 4). So if a is odd, a2 = 1 + 8k. Show by induction
that a2

k−2 ≡ 1 mod 2k (k ≥ 3). Since φ(2k) = 2k−1, we see there does not exist a
primitive root mod 2k.

�
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