Lecture 8

Primitive Roots (Prime Powers), Index Calculus

Recap - if prime p, then there's a primitive root $g \mod p$ and it's order mod p is $p-1=q_1^{e_1}q_2^{e_2}\dots q_r^{e_r}$. We showed that there are integers $g_i \mod p$ with order exactly $q_i^{e_i}$ (counting number of solutions to $x^{q_i^{e_i}}-1\equiv 0 \mod p$). Set $g=\prod g_i$ has order $\prod q_i^{e_i}=p-1$.

Number of primitive roots - suppose that m is an integer such that there is a primitive root $g \mod m$. How many primitive roots mod m are there?

We want the order to be exactly $\phi(m)$. If we look at the integers 1, g, g^2 , $\dots g^{\phi(m)-1}$, these are all coprime to m and distinct mod m. If we had $g^i \equiv g^j \mod m$ ($0 \le i < j \le \phi(m) - 1$), then we'd have $g^{j-1} \equiv 1 \mod m$ with $0 \le j - i < \phi(m)$, contradicting the fact that g is a primitive root.

Since there are $\phi(m)$ of these integers, they must be all the reduced residue classes mod m (in particular if m=p, a prime, then $\{1,2,\ldots p-1\}$ is a relabeling of $\{1,g,\ldots g^{p-2}\}$ mod p). Suppose that a is a primitive root mod m, then $a\equiv g^k$ mod m. Recall that order of g^k is

$$\frac{\operatorname{ord}(g)}{(k,\operatorname{ord}(g))} = \frac{\phi(m)}{(k,\phi(m))}$$

So only way for the order to be exactly $\phi(m)$ is for k to be coprime to $\phi(m)$. Ie., the number of primitive roots mod m is exactly $\phi(\phi(m))$ - if there's at least one. In particular, if m=a prime, then number of primitive roots is $\phi(p-1)$.

Conjecture 37 (Artin's Conjecture). *Let* a *be a natural number, which is not a square. Then there are infinitely many primes* p *for which* a *is a primite root mod* p.

This is an open question. Hooley proved this conditional on GRH, and Heath-Brown showed that if a is a prime, then there are at most 2 values of a which fail the conjecture

(Definition) Discrete Log: Say p is a prime, and g is a primitive root mod p (ie., $1, g, g^2 \dots g^{p-2}$ are all the nonzero residue classes mod p). Say we have $a \not\equiv 0$ mod p. We know $a \equiv g^k$ for some k ($0 \le k \le p-2$) - k is called the **index** or the **discrete log** of a to the base g mod p. This is a computationally hard problem, and is also used in cryptography.

Index Calculus - Let's say we're trying to solve a congruence $x^d \equiv 1 \mod p$. Any x which satisfied this congruence is coprime to p. So if g is a primitive root

mod p, we can write $x \equiv g^k \mod p$. New variable is now k:

$$\begin{split} x^u &\equiv 1 \mod p \longleftrightarrow g^{kd} \equiv 1 \mod p \\ &\longleftrightarrow p-1 = \operatorname{ord}(g) \text{ divides } kd \\ &\longleftrightarrow \frac{p-1}{(d,p-1)} \text{ divides } \frac{d}{(d,p-1)}k \\ &\longleftrightarrow \frac{(p-1)}{(d,p-1)} \text{ divides } k \end{split}$$

So set of solutions for k is exactly the set of multiples of $\frac{(p-1)}{(d,p-1)}$ (remember k is only modulo p-1). So we can get all the solutions x by raising g to the exponent k, where $0 \le k < p-1$ is a multiple of $\frac{p-1}{(d,p-1)}$. The number of solutions is

$$\frac{(p-1)}{\frac{p-1}{(d,p-1)}} = (d, p-1)$$

Similarly, if we're trying to solve the congruence $x^d \equiv a \bmod p$ ($a \not\equiv 0 \bmod p$), we can write $a \equiv g^l \bmod p$ so if $x \equiv g^k$ as before then $g^{kd} \equiv g^l \bmod p$. This means that $g^{kd-l} \equiv 1 \bmod p \leftrightarrow p-1 | kd-l \leftrightarrow kd \equiv l \bmod p-1$ (k is variable), which has a solution iff (d,p-1) divides l, in which case it has exactly (d,p-1) solutions.

Note:

$$(d,p-1)$$
 divides $l\longleftrightarrow p-1$ divides $\dfrac{l(p-1)}{(d,p-1)}$ $\longleftrightarrow g^{l\frac{p-1}{(d,p-1)}}\equiv 1\mod p$ $\longleftrightarrow a^{\frac{p-1}{(d,p-1)}}\equiv 1\mod p$

Theorem 38. There's a primitive root mod m iff $m = 1, 2, 4, p^e$, or $2p^e$ (where p is an odd prime). Let's assume that p is an odd prime, and $e \ge 2$. Want to show that there's a primitive root mod p^e .

Part 1 - There's a primitive root mod p^2

Proof. Choose g to be a primitive root mod p, and use Hensel's Lemma to show there's a primitive root mod p^2 of the form g+tp for some $0 \le t \le p-1$. We know (g+tp,p)=1 since $p \nmid g$ and p|tp. $\operatorname{ord}_{p^2}(g+tp)$ must divide $\phi(p^2)=p(p-1)$.

On the other hand, if $(g+tp)^k \equiv 1 \mod p^2$ then $(g+tp)^k \equiv 1 \mod p \Leftrightarrow g^k \equiv 1 \mod p \Leftrightarrow p-1|k$.

So p-1 divides $\operatorname{ord}_p(g+tp)$. Since $\operatorname{ord}_p(g+tp)$ is a multiple of p-1 and divides p(p-1), it's either equal to p-1 or equal to $p(p-1)=\phi(p^2)$. We'll show that there's exactly one value of t for which the former happens.

Since there are p possible values of $t(0 \le t \le p-1)$, any of these remaining ones give a g+tp which is a primitive root mod p^2 . Consider $f(x)=x^{p-1}-1$: mod p it has the root g. Since $f'(x)=(p-1)x^{p-2}$ and $f'(g)=(p-1)g^{p-2}\not\equiv 0$ mod p, by Hensel's Lemma there is a unique lift g+tp of g mod p^2 satisfying $x^{p-1}\equiv 1$ mod p^2 . This is the unique lift for which order is p-1 mod p^2 . This proves that there's a primitive root mod p^2 .

Part 2 - Let g be a primitive root mod p^2 . Then g is a primitive root mod p^e for every $e \ge 2$.

Proof. Since $\operatorname{ord}_{p^e}(g)$ divides $\varphi(p^e)=p^{e-1}(p-1)$ and also that $p-1|\operatorname{ord}_{p^e}(g)$ (as in proof of previous part), $\operatorname{ord}_{p^e}(g)$ must be $p^k(p-1)$ for some $0\leq k\leq e-1$. We want to show that k=e-1. To see that, it's enough to show that $g^{p^{e-2}(p-1)}\not\equiv 1$ mod p^e .

We'll show it by induction (base case is e = 2). $g^{p-1} \not\equiv 1 \mod p^2$ is true because g is a primitive root mod p^2 , so order = p(p-1). So say we know it for e.

We know that $\phi(p^{e-1})=p^{e-2}(p-1)$. So $g^{\phi(p^{e-1})}\equiv 1 \bmod p^{e-1}$ assuming that $g^{\phi(p^{e-1})}\not\equiv 1 \bmod p^e$. In other words $g^{\phi(p^{e-1})}=1+bp^{e-1}$ with $p\nmid b$. Need to show it for e+1 - ie., $g^{\phi(p^e)}\not\equiv 1 \bmod p^{e+1}$.

We know that $g^{p^{e-2}(p-1)} = 1 + bp^{e-1}$. Raising to power p we get

$$\begin{split} g^{p^{e-1}(p-1)} &= (1+bp^{e-1})^p \\ &= 1+pbp^{e-1} + \binom{p}{2}(bp^{e-1})^2 + \binom{p}{3}(bp^{e-1})^3 + \dots \\ &\equiv 1+bp^e \mod p^{e+1} \end{split}$$

(because for $e \ge 2$, $3e-3 \ge e+1$ and $p|\binom{p}{2}$ so $\binom{p}{2}b^2p^{2e-2}$ divisible by p^{2e-1} and $2e-1 \ge e+1$).

So $g^{p^{e-1}(p-1)} \equiv 1 + bp^e \mod p^{e+1}$ with $p \nmid b$, which $\not\equiv 1 \mod p^{e+1}$. Completes the induction.

Main Proof. Check 1, 2, 4 directly. p odd, $m=p^e$ proved. $m=2p^e$ (p odd) - $\phi(m)=\phi(2)\phi(p^e)=\phi(p^e)$. Let g be a primitive root mod p^e . If g is odd, it is a primitive root mod m. If not odd, then add p^e to it.

Now show that nothing else works: otherwise, if n = mm' with m and m' coprime and m, m' > 2, we'll show there does not exist a primitive root mod m. By hypothesis (m, m' > 2) we know $\phi(m)$ and $\phi(m')$ are even. So for (a, n) = 1,

we have (a, m) = 1 = (a, m'). So $a^{\phi(m)} \equiv 1 \mod m$ and $a^{\phi(m')} \equiv 1 \mod m'$. So

$$a^{\phi(m)\phi(m')/2} \equiv (a^{\phi(m)})^{\phi(m')/2}$$

$$\equiv 1 \mod m$$

$$a^{\phi(m)\phi(m')/2} \equiv 1 \mod m'$$
 Similarly so, $a^{\phi(m)\phi(m')/2} \equiv 1 \mod n$

but $\phi(n) = \phi(m)\phi(m')$ so $\operatorname{ord}_n(a) < \phi(n)$. So a can't be a primitive root mod n.

Only remaining candidate is $n=2^k$ for $k\geq 3$. No primitive root mod 8 since $\operatorname{odd}^2\equiv 1$ mod 8 (and $\phi(8)=4$). So if a is odd, $a^2=1+8k$. Show by induction that $a^{2^{k-2}}\equiv 1$ mod 2^k ($k\geq 3$). Since $\phi(2^k)=2^{k-1}$, we see there does not exist a primitive root mod 2^k .

MIT OpenCourseWare http://ocw.mit.edu

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.