Lecture 8

Primitive Roots (Prime Powers), Index Calculus

Recap - if prime p, then there's a primitive root $g \bmod p$ and it's order $\bmod p$ is $p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}$. We showed that there are integers $g_{i} \bmod p$ with order exactly $q_{i}^{e_{i}}$ (counting number of solutions to $x^{q_{i}^{e_{i}}}-1 \equiv 0 \bmod p$). Set $g=\prod g_{i}$ has order $\prod q_{i}^{e_{i}}=p-1$.

Number of primitive roots - suppose that m is an integer such that there is a primitive root $g \bmod m$. How many primitive roots $\bmod m$ are there?
We want the order to be exactly $\phi(m)$. If we look at the integers $1, g, g^{2}$, $\ldots g^{\phi(m)-1}$, these are all coprime to m and distinct mod m. If we had $g^{i} \equiv g^{j}$ $\bmod m(0 \leq i<j \leq \phi(m)-1)$, then we'd have $g^{j-1} \equiv 1 \bmod m$ with $0 \leq j-i<\phi(m)$, contradicting the fact that g is a primitive root.

Since there are $\phi(m)$ of these integers, they must be all the reduced residue classes $\bmod m$ (in particular if $m=p$, a prime, then $\{1,2, \ldots p-1\}$ is a relabeling of $\left.\left\{1, g, \ldots g^{p-2}\right\} \bmod p\right)$. Suppose that a is a primitive root $\bmod m$, then $a \equiv g^{k}$ $\bmod m$. Recall that order of g^{k} is

$$
\frac{\operatorname{ord}(g)}{(k, \operatorname{ord}(g))}=\frac{\phi(m)}{(k, \phi(m))}
$$

So only way for the order to be exactly $\phi(m)$ is for k to be coprime to $\phi(m)$. Ie., the number of primitive roots $\bmod m$ is exactly $\phi(\phi(m))$ - if there's at least one. In particular, if $m=$ a prime, then number of primitive roots is $\phi(p-1)$.

Conjecture 37 (Artin's Conjecture). Let a be a natural number, which is not a square. Then there are infinitely many primes p for which a is a primite root mod p.

This is an open question. Hooley proved this conditional on GRH, and HeathBrown showed that if a is a prime, then there are at most 2 values of a which fail the conjecture
(Definition) Discrete Log: Say p is a prime, and g is a primitive root $\bmod p$ (ie., $1, g, g^{2} \ldots g^{p-2}$ are all the nonzero residue classes $\bmod p$). Say we have $a \not \equiv 0$ $\bmod p$. We know $a \equiv g^{k}$ for some $k(0 \leq k \leq p-2)-k$ is called the index or the discrete \log of a to the base $g \bmod p$. This is a computationally hard problem, and is also used in cryptography.

Index Calculus - Let's say we're trying to solve a congruence $x^{d} \equiv 1 \bmod p$. Any x which satisfied this congruence is coprime to p. So if g is a primitive root
$\bmod p$, we can write $x \equiv g^{k} \bmod p$. New variable is now k :

$$
\begin{aligned}
x^{u} \equiv 1 \quad \bmod p & \longleftrightarrow g^{k d} \equiv 1 \quad \bmod p \\
& \longleftrightarrow p-1=\operatorname{ord}(g) \text { divides } k d \\
& \longleftrightarrow \frac{p-1}{(d, p-1)} \operatorname{divides} \frac{d}{(d, p-1)} k \\
& \longleftrightarrow \frac{(p-1)}{(d, p-1)} \text { divides } k
\end{aligned}
$$

So set of solutions for k is exactly the set of multiples of $\frac{(p-1)}{(d, p-1)}$ (remember k is only modulo $p-1$). So we can get all the solutions x by raising g to the exponent k, where $0 \leq k<p-1$ is a multiple of $\frac{p-1}{(d, p-1)}$. The number of solutions is

$$
\frac{(p-1)}{\frac{p-1}{(d, p-1)}}=(d, p-1)
$$

Similarly, if we're trying to solve the congruence $x^{d} \equiv a \bmod p(a \not \equiv 0 \bmod p)$, we can write $a \equiv g^{l} \bmod p$ so if $x \equiv g^{k}$ as before then $g^{k d} \equiv g^{l} \bmod p$. This means that $g^{k d-l} \equiv 1 \bmod p \leftrightarrow p-1 \mid k d-l \leftrightarrow k d \equiv l \bmod p-1(k$ is variable $)$, which has a solution iff $(d, p-1)$ divides l, in which case it has exactly $(d, p-1)$ solutions.

Note:

$$
\begin{aligned}
(d, p-1) \text { divides } l & \longleftrightarrow p-1 \text { divides } \frac{l(p-1)}{(d, p-1)} \\
& \longleftrightarrow g^{l \frac{p-1}{(d, p-1)}} \equiv 1 \bmod p \\
& \longleftrightarrow a^{\frac{p-1}{(d, p-1)}} \equiv 1 \bmod p
\end{aligned}
$$

Theorem 38. There's a primitive root mod m iff $m=1,2,4, p^{e}$, or $2 p^{e}$ (where p is an odd prime). Let's assume that p is an odd prime, and $e \geq 2$. Want to show that there's a primitive root mod p^{e}.

Part 1 - There's a primitive root $\bmod p^{2}$

Proof. Choose g to be a primitive root $\bmod p$, and use Hensel's Lemma to show there's a primitive root $\bmod p^{2}$ of the form $g+t p$ for some $0 \leq t \leq p-1$. We know $(g+t p, p)=1$ since $p \nmid g$ and $p \mid t p$. $\operatorname{ord}_{p^{2}}(g+t p)$ must divide $\phi\left(p^{2}\right)=p(p-1)$.

On the other hand, if $(g+t p)^{k} \equiv 1 \bmod p^{2}$ then $(g+t p)^{k} \equiv 1 \bmod p \Leftrightarrow g^{k} \equiv 1$ $\bmod p \Leftrightarrow p-1 \mid k$.

So $p-1$ divides $\operatorname{ord}_{p}(g+t p)$. Since $\operatorname{ord}_{p}(g+t p)$ is a multiple of $p-1$ and divides $p(p-1)$, it's either equal to $p-1$ or equal to $p(p-1)=\phi\left(p^{2}\right)$. We'll show that there's exactly one value of t for which the former happens.

Since there are p possible values of $t(0 \leq t \leq p-1)$, any of these remaining ones give a $g+t p$ which is a primitive root $\bmod p^{2}$. Consider $f(x)=x^{p-1}-1$: \bmod p it has the root g. Since $f^{\prime}(x)=(p-1) x^{p-2}$ and $f^{\prime}(g)=(p-1) g^{p-2} \not \equiv 0 \bmod p$, by Hensel's Lemma there is a unique lift $g+t p$ of $g \bmod p^{2}$ satisfying $x^{p-1} \equiv 1$ $\bmod p^{2}$. This is the unique lift for which order is $p-1 \bmod p^{2}$. This proves that there's a primitive root $\bmod p^{2}$.

Part 2 - Let g be a primitive root $\bmod p^{2}$. Then g is a primitive root $\bmod p^{e}$ for every $e \geq 2$.

Proof. Since $\operatorname{ord}_{p^{e}}(g)$ divides $\varphi\left(p^{e}\right)=p^{e-1}(p-1)$ and also that $p-1 \mid \operatorname{ord}_{p^{e}}(g)$ (as in proof of previous part), $\operatorname{ord}_{p^{e}}(g)$ must be $p^{k}(p-1)$ for some $0 \leq k \leq e-1$. We want to show that $k=e-1$. To see that, it's enough to show that $g^{p^{e-2}(p-1)} \not \equiv 1$ $\bmod p^{e}$.

We'll show it by induction (base case is $e=2$). $g^{p-1} \not \equiv 1 \bmod p^{2}$ is true because g is a primitive root $\bmod p^{2}$, so order $=p(p-1)$. So say we know it for e.

We know that $\phi\left(p^{e-1}\right)=p^{e-2}(p-1)$. So $g^{\phi\left(p^{e-1}\right)} \equiv 1 \bmod p^{e-1}$ assuming that $g^{\phi\left(p^{e-1}\right)} \not \equiv 1 \bmod p^{e}$. In other words $g^{\phi\left(p^{e-1}\right)}=1+b p^{e-1}$ with $p \nmid b$. Need to show it for $e+1$ - ie., $g^{\phi\left(p^{e}\right)} \not \equiv 1 \bmod p^{e+1}$.
We know that $g^{p^{e-2}(p-1)}=1+b p^{e-1}$. Raising to power p we get

$$
\begin{aligned}
g^{p^{e-1}(p-1)} & =\left(1+b p^{e-1}\right)^{p} \\
& =1+p b p^{e-1}+\binom{p}{2}\left(b p^{e-1}\right)^{2}+\binom{p}{3}\left(b p^{e-1}\right)^{3}+\ldots \\
& \equiv 1+b p^{e} \bmod p^{e+1}
\end{aligned}
$$

(because for $e \geq 2,3 e-3 \geq e+1$ and $p\binom{p}{2}$ so $\binom{p}{2} b^{2} p^{2 e-2}$ divisible by $p^{2 e-1}$ and $2 e-1 \geq e+1$).

So $g^{p^{e-1}(p-1)} \equiv 1+b p^{e} \bmod p^{e+1}$ with $p \nmid b$, which $\not \equiv 1 \bmod p^{e+1}$. Completes the induction.

Main Proof. Check 1, 2, 4 directly. p odd, $m=p^{e}$ proved. $m=2 p^{e}$ (p odd) $\phi(m)=\phi(2) \phi\left(p^{e}\right)=\phi\left(p^{e}\right)$. Let g be a primitive root $\bmod p^{e}$. If g is odd, it is a primitive root $\bmod m$. If not odd, then add p^{e} to it.

Now show that nothing else works: otherwise, if $n=m m^{\prime}$ with m and m^{\prime} coprime and $m, m^{\prime}>2$, we'll show there does not exist a primitive root $\bmod m$. By hypothesis ($m, m^{\prime}>2$) we know $\phi(m)$ and $\phi\left(m^{\prime}\right)$ are even. So for $(a, n)=1$,
we have $(a, m)=1=\left(a, m^{\prime}\right)$. So $a^{\phi(m)} \equiv 1 \bmod m$ and $a^{\phi\left(m^{\prime}\right)} \equiv 1 \bmod m^{\prime}$. So

$$
\begin{aligned}
a^{\phi(m) \phi\left(m^{\prime}\right) / 2} & \equiv\left(a^{\phi(m)}\right)^{\phi\left(m^{\prime}\right) / 2} \\
& \equiv 1 \quad \bmod m \\
a^{\phi(m) \phi\left(m^{\prime}\right) / 2} & \equiv 1 \quad \bmod m^{\prime}
\end{aligned}
$$

Similarly so, $a^{\phi(m) \phi\left(m^{\prime}\right) / 2} \equiv 1 \quad \bmod n$
but $\phi(n)=\phi(m) \phi\left(m^{\prime}\right)$ so $\operatorname{ord}_{n}(a)<\phi(n)$. So a can't be a primitive root $\bmod n$.
Only remaining candidate is $n=2^{k}$ for $k \geq 3$. No primitive root $\bmod 8$ since $\operatorname{odd}^{2} \equiv 1 \bmod 8($ and $\phi(8)=4)$. So if a is odd, $a^{2}=1+8 k$. Show by induction
 primitive root $\bmod 2^{k}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

