Lecture 5

Linear Congruences, Chinese Remainder Theorem, Algorithms

Recap - linear congruence $a x \equiv b \bmod m$ has solution if and only if $g=(a, m)$ divides b. How do we find these solutions?

Case 1: $g=(a, m)=1$. Then invert $a \bmod m$ to get $x \equiv a^{-1} b \bmod m$. Algorithmically, find $a x_{0}+m y_{0}=1$ with Euclidean Algorithm, then $a x_{0} \equiv 1$ $\bmod m$ so $x_{0}=a^{-1}$, so $x \equiv x_{0} b=a^{-1} b$ solves the congruence. $\left(a x \equiv a\left(x_{0} b\right) \equiv\right.$ $\left.\left(a x_{0}\right) b \equiv b \bmod m\right)$. Conclusion: There is a unique solution $\bmod m$.

Case 2: $g=(a, m)>1$. If $g \nmid b$, there are no solutions. If $g \mid b$, write $a=$ $a^{\prime} g, b=b^{\prime} g, m=m^{\prime} g$ so that $a x \equiv b \bmod m \Rightarrow a^{\prime} x=b^{\prime} \bmod m^{\prime}$ so that $\left(a^{\prime}, m^{\prime}\right)$ is now 1 . The unique solution (found by Case 1) $x \bmod m^{\prime}$ also satisfied $a x \equiv b \bmod m$ so that we have one solution $\bmod m$. We know any solution $\tilde{x} \bmod m$ must be congruent to $x \bmod m^{\prime}$, so \tilde{x} must have form $x+m^{\prime} k$ for some k. As k goes from 0 through $g-1$ we get the g distinct integers mod m : $x, x+m^{\prime}, x+2 m^{\prime} \ldots x+(g-1) m^{\prime}$, which all satisfy $a \tilde{x} \equiv b \bmod m$ because

$$
\begin{aligned}
a\left(x+k m^{\prime}\right) & =a x+a k m^{\prime} \\
& =a x+a^{\prime} g k m^{\prime} \\
& =a x+m\left(a^{\prime} k\right) \\
& \equiv a x \quad(\bmod m) \\
& \equiv b \quad(\bmod m)
\end{aligned}
$$

Conclusion: this congruence has $g=(a, m)$ solutions $\bmod m$.
Eg.,

$$
35 x \equiv 14 \quad(\bmod 28)
$$

$(35,28)=g=7$. To solve, first divide through by 7 to get $5 x \equiv 2 \bmod 4$. Solution of $x \equiv 2 \bmod 4$ is $x=2$, which will also satisfy original congruence. $m^{\prime}=\frac{28}{7}=4 \Rightarrow$ all solutions $\bmod 28 \equiv 2,6,10,14,18,22,26$.

Simultaneous System of Congruences to Different Moduli: Given

$$
\begin{gathered}
x \equiv a_{1} \quad\left(\bmod m_{1}\right) \\
x \equiv a_{2} \quad\left(\bmod m_{2}\right) \\
\vdots \\
x \equiv a_{k} \quad\left(\bmod m_{k}\right)
\end{gathered}
$$

Does this system have a common solution? (Not always, eg., $x \equiv 3 \bmod 8$ and $x \equiv 1 \bmod 12)$ In general, need some compatibility conditions.

Theorem 25 (Chinese Remainder Theorem). If the moduli are coprime in pairs (ie., $\left(m_{i}, m_{j}\right)=1$ for $i \neq j$), then the system has a unique solution mod $m_{1} m_{2} \ldots m_{k}$.

Proof of Uniqueness. Suppose there are two solutions $x \equiv y \equiv a_{1} \bmod m_{1}, x \equiv$ $y \equiv a_{2} \bmod m_{2}$, etc. Then $m_{1}\left|(x-y), m_{2}\right|(x-y)$, etc. Since m^{\prime} s are relatively prime in pairs, their product $m_{1} m_{2} \ldots m_{k}$ divides $x-y$ as well, so $x \equiv y$ $\bmod m_{1} m_{2} \ldots m_{k}$. So solution, if exists, must be unique $\bmod m_{1} m_{2} \ldots m_{k}$.

Proof of Existence. Write solution as a linear combination of a_{i}

$$
A_{1} a_{1}+A_{2} a_{2}+\cdots+A_{k} a_{k}
$$

Want to arrange so that $\bmod a_{i}$ all the A_{j} for $j \neq i$ are $\equiv 0 \bmod m$, and $A_{i} \equiv 1$ $\bmod m_{i}$. Let

$$
\begin{aligned}
N_{1} & =m_{2} m_{3} \ldots m_{k} \\
N_{2} & =m_{1} m_{3} \ldots m_{k} \\
& \vdots \\
N_{i} & =m_{1} m_{2} \ldots m_{i-1} m_{i+1} \ldots m_{k}
\end{aligned}
$$

So $\left(N_{i}, m_{i}\right)=1$, since all the other m are coprime to m_{i}. Let H_{i} equal the multiplicative inverse of $N_{i} \bmod m_{i}$, and let $A_{i}=H_{i} N_{i}$. Then, $A_{i} \equiv 0 \bmod m_{j}$ for $j \neq i$ and $A_{i} \equiv 1 \bmod m_{i}$. So now let

$$
\begin{aligned}
a & =A_{1} a_{1}+A_{2} a_{2}+\cdots+A_{k} a_{k} \\
& =H_{1} N_{1} a_{1}+H_{2} N_{2} a_{2}+\cdots+H_{k} N_{k} a_{k}
\end{aligned}
$$

Then if we take mod m_{i} all the terms except i th term will vanish (since $m_{i} \mid N_{j}$ for $j \neq i$). So

$$
\begin{aligned}
a & \equiv H_{i} N_{i} a_{i} \quad\left(\bmod m_{i}\right) \\
& \equiv a_{i} \quad\left(\bmod m_{i}\right)
\end{aligned}
$$

Eg.

$$
\begin{array}{lllll}
x \equiv 2 & \bmod 3, & N_{1}=5 \cdot 7=35 \equiv 2 & \bmod 3, & H_{1}=2 \\
x \equiv 3 & \bmod 5, & N_{2}=3 \cdot 7=21 \equiv 1 & \bmod 5, & H_{2}=1 \\
x \equiv 5 & \bmod 7, & N_{3}=3 \cdot 5=15 \equiv 1 & \bmod 7, & H_{3}=1
\end{array}
$$

$$
\begin{array}{rlr}
x & =H_{1} N_{1} a_{1}+N_{2} H_{2} a_{2}+N_{3} H_{3} a_{3} & \left(\bmod m_{1} m_{2} m_{3}\right) \\
& =2 \cdot 35 \cdot 2+1 \cdot 21 \cdot 3+1 \cdot 15 \cdot 5 \quad(\bmod 105) \\
& =278 \quad(\bmod 105) & \\
& \equiv 68 \quad(\bmod 105) &
\end{array}
$$

Note: Assuming we have $m_{1}, m_{2} \ldots m_{k}$ that are relatively prime, the Chinese Remainder Theorem says that any choice of $a_{1} \bmod m_{1}, a_{2} \bmod m_{2}$, etc. gives rise to particular $x\left(a_{1}, a_{2}, \ldots a_{k}, m_{1}, \ldots m_{k}\right) \bmod m_{1} m_{2} \ldots m_{k}$. Number of choices that we have is $m_{1} m_{2} \ldots m_{k}$, which agrees with number of integers $\bmod m_{1} m_{2} \ldots m_{k}$.

Note: Now note that $x\left(a_{1}, a_{2}, \ldots a_{k}, m_{1}, \ldots m_{k}\right)$ is coprime to $m_{1} m_{2} \ldots m_{k}$ if and only if $\left(a_{i}, m_{i}\right)=1$.

- If x is coprime to $\prod m_{i}$ then it is relatively coprime to each of them, so since $x \equiv a_{i} \bmod m_{i}$ we'll also have $\left(a_{i}, m_{i}\right)=1$.
- Conversely if $\left(a_{i}, m_{i}\right)=1$ for all i, then since $x \equiv a_{i} \bmod m_{i}$, this implies that $\left(x_{i}, m_{i}\right)=1$ holds for all i, so $\left(x, \prod m_{i}\right)=1$ as well.

What is the number of x coprime to $\prod m_{i}$? (by definition this is $\phi\left(m_{1} m_{2} \ldots m_{k}\right)$)

$$
\underbrace{\left(\# \text { of choices of } a_{1}\right)}_{\phi\left(m_{1}\right)} \underbrace{\left(\# \text { of choices of } a_{2}\right)}_{\phi\left(m_{1}\right)} \cdots
$$

with each a_{i} coprime to m_{i}. This gives corollary that if m_{i} coprime in pairs, $\phi\left(\prod m_{i}\right)=\prod \phi\left(m_{i}\right)$. We can use this to understand $\phi(n)$ for any n. With m_{i} coprime in pairs,

$$
\begin{aligned}
n & =p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}} \\
m_{1} & =p_{1}^{e_{1}}, \quad m_{2}=p_{2}^{e_{2}} \ldots \quad m_{k}=p_{k}^{e_{k}} \\
\phi(n) & =\phi\left(p_{1}^{e_{1}}\right) \phi\left(p_{2}^{e_{2}}\right) \ldots \phi\left(p_{k}^{e_{k}}\right)
\end{aligned}
$$

All we need, then, is how to find $\phi\left(p^{e}\right)$.

$$
\begin{aligned}
\phi\left(p^{e}\right) & =\# \text { of }\left\{x \mid 1 \leq x \leq p^{e} \text { and }(x, p)=1 \text { and so }\left(x, p^{e}\right)=1\right\} \\
& =p^{e}-p^{e-1} \\
& =p^{e-1}(p-1) \\
& =p^{e}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

and so

$$
\begin{aligned}
\phi(n) & =p_{1}^{e_{1}-1}\left(p_{1}-1\right) p_{2}^{e_{2}-1}\left(p_{2}-1\right) \ldots p_{k}^{e_{k}-1}\left(p_{k}-1\right) \\
& =p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right) \\
& =n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
\end{aligned}
$$

Numerical Calculations for Algorithms

Want to do arithmetic modulo N (some large number). Benchmark $=$ time to write down N, which is roughly the number of digits of $N=c \log N$ for some constant c.

Addition is $\log N$ steps/time
Multiplication is $\log ^{2} N$ steps/time in the simplest way

Karatsuba Multiplication This is a faster algorithm for multiplication (see http://en.wikipedia.org/wiki/Karatsuba_algorithm\#Algorithm); reduces time to $(\log N)^{\log 3 / \log 2}$

Multiplication can be further improved by using Fast Fourier Transforms to $\log N$ poly $(\log \log n)$.

Exponentiation - we want to compute $a^{b} \bmod N$, with a at most N and b is also small $(\sim N)$. Most obvious way would be repeated multiplication for $N \log ^{2} N$, but better to use repeated squaring. Write b in binary as

$$
\begin{aligned}
b & =b_{r} b_{r-1} \cdots b_{0} \\
& =2^{r} b_{r}+2^{r-1} b_{r-1}+\cdots+b_{0}
\end{aligned}
$$

then compute $a^{2^{0}}, a^{2^{1}}, \ldots a^{2^{r}} \bmod N$ by repeatedly squaring the previous one (at most $\log ^{2} N$ for each). Then take

$$
\left(a^{2^{0}}\right)^{b_{0}}\left(a^{2^{1}}\right)^{b_{1}}\left(a^{2^{2}}\right)^{b_{2}} \ldots\left(a^{2^{r}}\right)^{b_{r}}
$$

for a total of $\log b \log ^{2} N \sim \log ^{3} N$ steps.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

