Lecture 5 Linear Congruences, Chinese Remainder Theorem, Algorithms

Recap - linear congruence $ax \equiv b \mod m$ has solution if and only if g = (a, m) divides *b*. How do we find these solutions?

Case 1: g = (a, m) = 1. Then invert $a \mod m$ to get $x \equiv a^{-1}b \mod m$. Algorithmically, find $ax_0 + my_0 = 1$ with Euclidean Algorithm, then $ax_0 \equiv 1 \mod m$ so $x_0 = a^{-1}$, so $x \equiv x_0b = a^{-1}b$ solves the congruence. $(ax \equiv a(x_0b) \equiv (ax_0)b \equiv b \mod m)$. Conclusion: There is a unique solution mod m.

Case 2: g = (a, m) > 1. If $g \nmid b$, there are no solutions. If g|b, write a = a'g, b = b'g, m = m'g so that $ax \equiv b \mod m \Rightarrow a'x = b' \mod m'$ so that (a', m') is now 1. The unique solution (found by Case 1) $x \mod m'$ also satisfied $ax \equiv b \mod m$ so that we have one solution mod m. We know any solution $\tilde{x} \mod m$ must be congruent to $x \mod m'$, so \tilde{x} must have form x + m'k for some k. As k goes from 0 through g - 1 we get the g distinct integers mod m: $x, x + m', x + 2m' \dots x + (g - 1)m'$, which all satisfy $a\tilde{x} \equiv b \mod m$ because

$$a(x + km') = ax + akm'$$

= $ax + a'gkm'$
= $ax + m(a'k)$
 $\equiv ax \pmod{m}$
 $\equiv b \pmod{m}$

Conclusion: this congruence has g = (a, m) solutions mod m.

Eg.,

$$35x \equiv 14 \pmod{28}$$

(35, 28) = g = 7. To solve, first divide through by 7 to get $5x \equiv 2 \mod 4$. Solution of $x \equiv 2 \mod 4$ is x = 2, which will also satisfy original congruence. $m' = \frac{28}{7} = 4 \Rightarrow$ all solutions mod $28 \equiv 2, 6, 10, 14, 18, 22, 26$.

Simultaneous System of Congruences to Different Moduli: Given

```
x \equiv a_1 \pmod{m_1}x \equiv a_2 \pmod{m_2}\vdotsx \equiv a_k \pmod{m_k}
```

Does this system have a common solution? (Not always, eg., $x \equiv 3 \mod 8$ and $x \equiv 1 \mod 12$) In general, need some compatibility conditions.

Theorem 25 (Chinese Remainder Theorem). *If the moduli are coprime in pairs (ie.,* $(m_i, m_j) = 1$ for $i \neq j$), then the system has a unique solution mod $m_1m_2 \dots m_k$.

Proof of Uniqueness. Suppose there are two solutions $x \equiv y \equiv a_1 \mod m_1, x \equiv y \equiv a_2 \mod m_2$, etc. Then $m_1|(x-y), m_2|(x-y)$, etc. Since *m*'s are relatively prime in pairs, their product $m_1m_2...m_k$ divides x - y as well, so $x \equiv y \mod m_1m_2...m_k$. So solution, if exists, must be unique mod $m_1m_2...m_k$.

Proof of Existence. Write solution as a linear combination of a_i

$$A_1a_1 + A_2a_2 + \dots + A_ka_k$$

Want to arrange so that mod a_i all the A_j for $j \neq i$ are $\equiv 0 \mod m$, and $A_i \equiv 1 \mod m_i$. Let

$$N_1 = m_2 m_3 \dots m_k$$

$$N_2 = m_1 m_3 \dots m_k$$

$$\vdots$$

$$N_i = m_1 m_2 \dots m_{i-1} m_{i+1} \dots m_k$$

So $(N_i, m_i) = 1$, since all the other m are coprime to m_i . Let H_i equal the multiplicative inverse of $N_i \mod m_i$, and let $A_i = H_i N_i$. Then, $A_i \equiv 0 \mod m_j$ for $j \neq i$ and $A_i \equiv 1 \mod m_i$. So now let

$$a = A_1 a_1 + A_2 a_2 + \dots + A_k a_k$$

= $H_1 N_1 a_1 + H_2 N_2 a_2 + \dots + H_k N_k a_k$

Then if we take mod m_i all the terms except *i*th term will vanish (since $m_i | N_j$ for $j \neq i$). So

$$a \equiv H_i N_i a_i \pmod{m_i}$$
$$\equiv a_i \pmod{m_i}$$

Eg.

$$\begin{array}{ll} x \equiv 2 \mod 3, & N_1 = 5 \cdot 7 = 35 \equiv 2 \mod 3, & H_1 = 2 \\ x \equiv 3 \mod 5, & N_2 = 3 \cdot 7 = 21 \equiv 1 \mod 5, & H_2 = 1 \\ x \equiv 5 \mod 7, & N_3 = 3 \cdot 5 = 15 \equiv 1 \mod 7, & H_3 = 1 \end{array}$$

$$\begin{aligned} x &= H_1 N_1 a_1 + N_2 H_2 a_2 + N_3 H_3 a_3 \pmod{m_1 m_2 m_3} \\ &= 2 \cdot 35 \cdot 2 + 1 \cdot 21 \cdot 3 + 1 \cdot 15 \cdot 5 \pmod{105} \\ &= 278 \pmod{105} \\ &\equiv 68 \pmod{105} \end{aligned}$$

Note: Assuming we have $m_1, m_2 \dots m_k$ that are relatively prime, the Chinese Remainder Theorem says that any choice of $a_1 \mod m_1$, $a_2 \mod m_2$, etc. gives rise to particular $x(a_1, a_2, \dots a_k, m_1, \dots m_k) \mod m_1 m_2 \dots m_k$. Number of choices that we have is $m_1 m_2 \dots m_k$, which agrees with number of integers mod $m_1 m_2 \dots m_k$.

Note: Now note that $x(a_1, a_2, \ldots a_k, m_1, \ldots m_k)$ is coprime to $m_1m_2 \ldots m_k$ if and only if $(a_i, m_i) = 1$.

- If x is coprime to ∏ m_i then it is relatively coprime to each of them, so since x ≡ a_i mod m_i we'll also have (a_i, m_i) = 1.
- Conversely if $(a_i, m_i) = 1$ for all *i*, then since $x \equiv a_i \mod m_i$, this implies that $(x_i, m_i) = 1$ holds for all *i*, so $(x, \prod m_i) = 1$ as well.

What is the number of x coprime to $\prod m_i$? (by definition this is $\phi(m_1m_2...m_k)$)

$$\underbrace{(\# \text{ of choices of } a_1)}_{\phi(m_1)} \underbrace{(\# \text{ of choices of } a_2)}_{\phi(m_1)} \dots$$

with each a_i coprime to m_i . This gives corollary that if m_i coprime in pairs, $\phi(\prod m_i) = \prod \phi(m_i)$. We can use this to understand $\phi(n)$ for any n. With m_i coprime in pairs,

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

$$m_1 = p_1^{e_1}, \quad m_2 = p_2^{e_2} \dots \quad m_k = p_k^{e_k}$$

$$\phi(n) = \phi(p_1^{e_1})\phi(p_2^{e_2}) \dots \phi(p_k^{e_k})$$

All we need, then, is how to find $\phi(p^e)$.

$$\begin{split} \phi(p^e) &= \# \text{ of } \{x | 1 \leq x \leq p^e \text{ and } (x, p) = 1 \text{ and so } (x, p^e) = 1 \} \\ &= p^e - p^{e-1} \\ &= p^{e-1}(p-1) \\ &= p^e \left(1 - \frac{1}{p}\right) \end{split}$$

and so

$$\phi(n) = p_1^{e_1 - 1} (p_1 - 1) p_2^{e_2 - 1} (p_2 - 1) \dots p_k^{e_k - 1} (p_k - 1)$$

= $p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_k} \right)$
= $n \prod_{p|n} \left(1 - \frac{1}{p} \right)$

Numerical Calculations for Algorithms

Want to do arithmetic modulo N (some large number). Benchmark = time to write down N, which is roughly the number of digits of $N = c \log N$ for some constant c.

Addition is $\log N$ steps/time Multiplication is $\log^2 N$ steps/time in the simplest way

Karatsuba Multiplication This is a faster algorithm for multiplication (see http://en.wikipedia.org/wiki/Karatsuba_algorithm#Algorithm); reduces time to $(\log N)^{\log 3/\log 2}$

Multiplication can be further improved by using Fast Fourier Transforms to $\log N$ poly $(\log \log n)$.

Exponentiation - we want to compute $a^b \mod N$, with a at most N and b is also small ($\sim N$). Most obvious way would be repeated multiplication for $N \log^2 N$, but better to use repeated squaring. Write b in binary as

$$b = b_r b_{r-1} \dots b_0$$

= 2^r b_r + 2^{r-1} b_{r-1} + \dots + b_0

then compute $a^{2^0}, a^{2^1}, \dots a^{2^r} \mod N$ by repeatedly squaring the previous one (at most $\log^2 N$ for each). Then take

$$\left(a^{2^{0}}\right)^{b_{0}}\left(a^{2^{1}}\right)^{b_{1}}\left(a^{2^{2}}\right)^{b_{2}}\ldots\left(a^{2^{r}}\right)^{b_{r}}$$

for a total of $\log b \log^2 N \sim \log^3 N$ steps.

18.781 Theory of Numbers Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.