Lecture 15

Linear Recurrences

Proof of 4. from last time, that probability of any two positive integers at random are relatively prime is $\frac{6}{\pi^{2}}$. ie., that

$$
\lim _{N \rightarrow \infty} \frac{|\{(x, y) \in\{1 \ldots N\} \times\{1 \ldots N\}:(x, y)=1\}|}{N^{2}}=\frac{6}{\pi^{2}}
$$

Why? If x, y random, fixed prime p, probability that p divides x is $\frac{1}{p}$, so probability divides both is $\frac{1}{p^{2}}$, with complement $1-\frac{1}{p^{2}}$. $\prod_{p \text { prime }}\left(1-\frac{1}{p^{2}}\right)$ is the probability that no prime divides both x, y, which means x, y are coprime.

Proof of 5 . from last time - with a, b random, the probability that their gcd is n has to be of the form $\frac{c}{n^{2}}$ for some constant c.

$$
(a, b) \Rightarrow a=n a^{\prime}, b=n b^{\prime}
$$

$$
\begin{aligned}
\left(a^{\prime}, b^{\prime}\right) & =1 \\
& \Rightarrow P((a, b)=n)=\frac{6}{\pi^{2} n^{2}} \\
& \Rightarrow c=\frac{6}{\pi^{2}}=\frac{c}{n^{2}}
\end{aligned}
$$

Also because

$$
\sum_{n} P((a, b)=n)=1=c\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\ldots\right)
$$

then $c \frac{\pi^{2}}{6}=1 \Rightarrow c=\frac{6}{\pi^{2}}$ so $P((a, b)=n)=\frac{6}{\pi^{2} n^{2}}$.
If $(a, b)=(c, d)$, they're equal to same n, so

$$
\begin{aligned}
P((a, b)=(c, d)) & =\sum_{n} P((a, b)=n,(c, d)=n) \\
& =\sum_{n} \frac{1}{\zeta(2) n^{2}} \frac{1}{\zeta(2) n^{2}} \\
& =\frac{1}{\zeta(2)^{2}} \sum_{n} \frac{1}{n^{4}} \\
& =\frac{\zeta(4)}{\zeta(2)^{2}} \\
& =\frac{\frac{\pi^{2}}{90}}{\left(\frac{\pi^{2}}{6}\right)^{2}} \\
& =\frac{2}{5}
\end{aligned}
$$

Combinatorial Principles - 1. count in two different ways, 2. pigeon-hole principle, 3. inclusion/exclusion principle

1. Counting in two different ways

Eg.

$$
\sum_{d \mid n} \phi(d)=n
$$

by counting set $\{1 \ldots n\}$ in 2 different ways.
RHS - count $1,2, \ldots n$.
LHS - split $\{1 \ldots n\}$ into subsets dependent on what its gcd with n is.

$$
\{1 \ldots n\}=\bigsqcup_{d \mid n} S_{d} \text { where } S_{d}=\{x \in 1 \ldots n:(x, n)=d\}
$$

If x in S_{d} then $\frac{x}{d}$ is integer in range $1 \ldots \frac{n}{d}$, and also such that $\left(\frac{x}{d}, \frac{n}{d}\right)=1$, conversely if $1 \leq x^{\prime} \leq \frac{n}{d}$ then $x=x^{\prime} d$ lies in S_{d}. So $\left|S_{d}\right|$ is $\phi\left(\frac{n}{d}\right)$

$$
n=\sum_{d \mid n} \phi\left(\frac{n}{d}\right)=\sum_{d \mid n} \phi(d)
$$

Eg. Binomial Coefficients

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

LHS - choose n from $2 n$
RHS - choose k from first n and $n-k$ from second n, then use $\binom{n}{n-k}=\binom{n}{k}$ and sum over k from 0 to n
2. Pigeonhole Principle - n pigeonholes and at least $n+1$ pigeons, then some pigeonhole must have at least 2 pigeons

Eg. If p is odd prime, and a, b, c coprime to p, then $a x^{2}+b y^{2}+c z^{2} \equiv 0 \bmod p$ has a non-trivial solution. Enough to show that $a x^{2}+b y^{2}+c \equiv 0 \bmod p$ has a solution $\left(x_{0}, y_{0}\right)$, since then $\left(x_{0}, y_{0}, 1\right)$ is solution to original congruence.

Consider the $\frac{p+1}{2}$ integers $a x^{2}$, where $x \in\left\{0,1, \ldots \frac{p-1}{2}\right\}$. They are all distinct
$\bmod p$. (If not, then

$$
\begin{aligned}
a x^{2} & \equiv a x^{\prime 2} \\
\Rightarrow x^{2} & \equiv x^{\prime 2} \quad \bmod p \\
\Rightarrow x^{2}-x^{\prime 2} & =\left(x+x^{\prime}\right)\left(x-x^{\prime}\right) \\
\Rightarrow x^{\prime} & \equiv \pm x \quad \bmod p
\end{aligned}
$$

but this is impossible if $x \not \equiv x^{\prime}$ and they're both in range.
Similarly, set of integers $-c-b y^{2}$ as y ranges from 0 to $\frac{p-1}{2}$ are all distinct $\left(\frac{p+1}{2}\right.$ of them).

So $p+1$ integers in all, but only p residue classes $\bmod p$, so there must be two that are congruent $\bmod p$, but they can't both be of form $a x^{2}$ or of form $-c-b y^{2}$. so we must have some $a x^{2} \equiv-c-b y^{2} \bmod p$.
3. Inclusion/Exclusion We'll have a finite set X (universe) and $A, B \subseteq X$.

$$
\begin{aligned}
|A \cup B| & =|A|+|B|-|A \cap B| \\
|A \cup B \cup C| & =|A|+|B|+|C|-|A \cap B|-|A \cap C| \\
& -|B \cap C|+|A \cap B \cap C| \\
\left|\bigcup A_{n}\right| & =\sum_{k=1}^{n}(-1)^{k-1} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{k}}\right| \\
\left|\overline{\bigcup A_{n}}\right| & =\left|\bigcap \overline{A_{n}}\right|=\sum_{k=0}^{n}(-1)^{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left|A_{i_{1}} \cap A_{i_{2}} \cap \cdots \cap A_{i_{n}}\right|
\end{aligned}
$$

where $k=0$ (empty intersection) is defined to be all of X.

Proof. For any element x of X - if in none of A_{i}, then it gets counted (on RHS) exactly once in empty intersection, equation to number of times it's counted in LHS. If $x \in X$ is in exactly m of these sets ($m \geq 1$), then it gets counted (choosing k sets from among m sets in which x appears

$$
\sum_{k=0}^{n}(-1)^{k}\binom{m}{k}=\sum_{k=0}^{m}(-1)^{k}\binom{m}{k}=(1-1)^{m}=0
$$

this equals contribution to LHS.

Another way - let $\chi_{A_{i}}$ be the characteristic function of the set A_{i}, where

$$
\chi_{A_{i}}(x)= \begin{cases}1 & x \in A_{i} \\ 0 & \text { otherwise }\end{cases}
$$

The element x is not in any of the A_{i} when each of $\chi_{A_{i}}(x)=0$ - ie., $\left(1-\chi_{A_{i}}\right)(x)=$ 1

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1-\chi_{A_{i}}\right)(x) & = \begin{cases}1 & x \notin A_{i} \forall i \\
0 & \text { otherwise }\end{cases} \\
& =\chi_{\overline{\cup A_{i}}} \\
\text { So } \chi_{\overline{\cup A_{i}}} & =\left(1-\chi_{A_{1}}\right)\left(1-\chi_{A_{2}}\right) \ldots \\
& =1-\sum \chi_{A_{i}}+\sum \underbrace{\chi_{A_{i}} \chi_{A_{j}}}_{\chi_{A_{i} \cap A_{j}}} \cdots
\end{aligned}
$$

Summing $\chi_{\overline{\bigcup A_{i}}}(x)$ over all $x \Rightarrow$

$$
\left|\overline{\bigcup A_{i}}\right|=|x|-\sum\left|A_{i}\right|+\sum\left|A_{i} \cap A_{j}\right| \ldots
$$

Eg. If $n=p_{1}^{e_{1}} \ldots p_{n}^{e_{n}}, \phi(n)=n\left(1-\frac{1}{p_{1}}\right) \ldots\left(1-\frac{1}{p_{n}}\right) . X=\{1 \ldots n\}, A_{i}=\{m \in$ $\left.X: p_{i} \mid m\right\}$. If $(m, n)>1$, then some p_{i} must divide m and conversely. So $\left|\overline{\bigcup A_{i}}\right|=\phi(n) .\left|A_{i}\right|=\frac{n}{p_{i}},\left|A_{i} \cap A_{j}\right|=\frac{n}{p_{i} p_{j}}$, etc. So RHS says

$$
\begin{aligned}
& n-\frac{n}{p_{1}}-\ldots \frac{n}{p_{r}}+\frac{n}{p_{1} p_{2}} \cdots-\frac{n}{p_{1} p_{2} p_{3}} \cdots \\
& =n\left(1-\frac{1}{p_{1}}-\ldots \frac{1}{p_{r}}+\frac{1}{p_{1} p_{2}} \cdots-\frac{1}{p_{1} p_{2} p_{3}} \cdots\right) \\
& =n \prod\left(1-\frac{1}{p_{i}}\right)
\end{aligned}
$$

Recurrences - Recurrence is a rule for generating the next element of a sequence from previous elements.

Eg. $a_{0}=1, a_{n}=n a_{n-1}$ for $n \geq 1 \Rightarrow a_{n}=n$!

Eg. $a_{0}=0, a_{1}=1, a_{n}=a_{n-1}+n \Rightarrow a_{n}=\frac{n(n+1)}{2}$

Eg. $F_{0}=0, F_{1}=1, F_{n}=F_{n-1}+F_{n-2}$ This is the Fibonacci sequence, where

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

$|(1-\sqrt{5}) / 2|<1$, and $\left|\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right|<\frac{1}{2}$, so F_{n} is the closest integer to $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}$. Implies that $F_{n+1} / F_{n} \Rightarrow \frac{1+\sqrt{5}}{2}$ as $n \Rightarrow \infty$.

We'll see how to get this explicit formula from the theory of linear of recurrences with constant coefficients (very similar to linear ordinary differential equations with constant coefficients).

Eg. Start with a linear recurrence $u_{n}+a u_{n-1}+b u_{n-2}=0$ for $n \geq 2$, given initial values. To get explicit formula, we'll use characteristic polynomial $T^{n}+$ $a T^{n-1}+b T^{n-2}=0 \Rightarrow T^{2}+a T+b=0$ and use the roots of this characteristic polynomial.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

