Lecture 3

Binomial Coefficients, Congruences

$n(n-1)(n-2) \ldots 1=n!=$ number of ways to order n objects.
$n(n-1)(n-2) \ldots(n-k+1)=$ number of ways to order k of n objects.
$\frac{n(n-1)(n-2) \ldots(n-k+1)}{k!}=$ number of ways to pick k of n objects. This is called a

(Definition) Binomial Coefficient:

$$
\binom{n}{k}=\frac{n!}{(n-k)!k!}
$$

Proposition 10. The product of any k consecutive integers is always divisible by $k!$.

Proof. wlog, suppose that the k consecutive integers are $n-k+1, n-k+2 \ldots n-$ $1, n$. If $0<k \leq n$, then

$$
\frac{(n-k+1) \ldots(n-1)(n)}{k!}=\frac{n!}{(n-k)!k!}=\binom{n}{k}
$$

which is an integer. If $0 \leq n<k$, then the sequence contains 0 and so the product is 0 , which is divisible by k !. If $n<0$, then we have

$$
\prod_{i=1}^{k}(n-k+i)=(-1)^{k} \prod_{i=0}^{k-1}(-n+k-i)
$$

which is comprised of integers covered by above cases.

We can define a more general version of binomial coefficient
(Definition) Binomial Coefficient: If $\alpha \in \mathbb{C}$ and k is a non-negative integer,

$$
\binom{\alpha}{k}=\frac{(\alpha)(\alpha-1) \ldots(\alpha-k+1)}{k!} \in \mathbb{C}
$$

Theorem 11 (Binomial Theorem). For $n \geq 1$ and $x, y \in \mathbb{C}$:

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Proof.

$$
(x+y)^{n}=\underbrace{(x+y)(x+y) \ldots(x+y)}_{n \text { times }}
$$

To get coefficient of $x^{k} y^{n-k}$ we choose k factors out of n to pick x, which is the number of ways to choose k out of n

Theorem 12 (Generalized Binomial Theorem). For $\alpha, z \in \mathbb{C},|z|<1$,

$$
(1+z)^{\alpha}=\sum_{k=0}^{\infty}\binom{\alpha}{k} z^{k}
$$

Proof. We didn't go through the proof, but use the fact that this is a convergent series and Taylor expand around 0

$$
f(z)=a_{0}+a_{1} z+a_{2} z^{2} \ldots \quad a_{n}=\left.\frac{f^{(k)}(z)}{k!}\right|_{z=0}
$$

Pascal's Triangle: write down coefficients $\binom{n}{k}$ for $k=0 \ldots n$
$n=0:$
$n=1:$
1
$n=2$:
$n=3:$

| $n=4:$ | | | 1 | | 4 | | 6 | | 4 | | 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n=5:$ | 1 | | 5 | | 10 | | 10 | | 5 | | 1 | |

* each number is the sum of the two above it

Note:

$$
\binom{m+1}{n+1}=\binom{m}{n}+\binom{m}{n+1}
$$

Proof. We want to choose $n+1$ elements from the set $\{1,2, \ldots m+1\}$. Either $m+1$ is one of the $n+1$ chosen elements or it is not. If it is, task is to choose n from m, which is the first term. If it isn't, task is to choose $n+1$ from m, which is the second term.

Number Theoretic Properties

Factorials - let p be a prime and n be a natural number. Question is "what power of p exactly divides n ! ?"

Notation: For real number x, then $\lfloor x\rfloor$ is the highest integer $\leq x$

Claim

$$
p^{e} \| n!, \quad e=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor \ldots
$$

$\|$ means exactly divides $\Rightarrow p^{e} \mid n!, p^{e+1} \nmid n!$

Proof. $n!=n(n-1) \ldots 1$
$\left\lfloor\frac{n}{p}\right\rfloor=$ number of multiples of p in $\{1,2, \ldots n\}$
$\left\lfloor\frac{n}{p^{2}}\right]=$ number of multiples of p^{2} in $\{1,2, \ldots n\}$, etc.

Note: There is an easy bound on e :

$$
\begin{aligned}
e & =\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor \ldots \\
& \leq \frac{n}{p}+\frac{n}{p^{2}}+\frac{n}{p^{3}} \ldots \\
& \leq \frac{\frac{n}{p}}{1-\frac{1}{p}} \\
& \leq \frac{n}{p-1}
\end{aligned}
$$

Proposition 13. Write n in base p, so that $n=a_{0}+a_{1} p+a_{2} p^{2} \ldots a_{k} p^{k}$, with $a_{i} \in\{0,1 \ldots p-1\}$. Then

$$
e(a, p)=\frac{n-\left(a_{0}+a_{1} \cdots+a_{k}\right)}{p-1}
$$

Proof. With the above notation, we have

$$
\begin{aligned}
\left\lfloor\frac{n}{p}\right\rfloor & =a_{1}+a_{2} p \ldots a_{k} p^{k-1} \\
\left\lfloor\frac{n}{p^{2}}\right\rfloor & =a_{2}+a_{3} p \ldots a_{k} p^{k-1}, \text { etc. } \\
\vdots & \\
a_{0} & =n-p\left\lfloor\frac{n}{p}\right\rfloor \\
a_{1} & = \\
\vdots & \left\lfloor\frac{n}{p}\right\rfloor-p\left\lfloor\frac{n}{p^{2}}\right\rfloor, \text { etc. } \\
\sum_{i=0}^{k} a & =n-(p-1)\left(\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor \ldots\right) \\
\sum_{i=0}^{k} a & =n-(p-1)(e) \\
e & =\frac{n-\sum_{i=0}^{k} a}{p-1}
\end{aligned}
$$

Corollary 14. The power of prime p dividing $\binom{n}{k}$ is the number of carries when you add k to $n-k$ in base p (and also the number of carries when you subtract k from n in base p)

Some nice consequences:

- Entire $\left(2^{k}-1\right)^{\text {th }}$ row of Pascal's Triangle consists of odd numbers
- 2^{n} th row of triangle is even, except for 1 s at the end
- ($\binom{p}{k}$ is divisible by prime p for $0<k<p$ (p divides numerator and not denominator)
- $\binom{p^{e}}{k}$ is divisible by prime p for $0<k<p^{e}$
(Definition) Congruence: Let a, b, m be integers, with $m \neq 0$. We say a is congruent to b modulo $m(a \equiv b \bmod m)$ if $m \mid(a-b)$ (ie., a and b have the same remainder when divided by m

Congruence compatible with usual arithmetic operations of addition and multiplication.
ie., if $a \equiv b \bmod m$ and $c \equiv d \bmod m$

$$
\begin{aligned}
a+c & \equiv b+d \quad(\bmod m) \\
a c & \equiv b d \quad(\bmod m)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
a & =b+m k \\
c & =d+m l \\
a+c & =b+d+m(k+l) \\
a c & =b d+b m l+d m k+m^{2} k l \\
& =b d+m(b l+d k+m k l)
\end{aligned}
$$

* This means that if $a \equiv b \bmod m$, then $a^{k} \equiv b^{k} \bmod m$, which means that if $f(x)$ is some polynomial with integer coefficients, then $f(a) \equiv f(b)$ $\bmod m$

NOT TRUE: if $a \equiv b \bmod m$ and $c \equiv d \bmod m$, then $a^{c} \equiv b^{d} \bmod m$
NOT TRUE: if $a x \equiv b x \bmod m$, then $a \equiv b \bmod m$ (essentially because $(x, m)>1)$. But if $(x, m)=1$, then true.

Proof. $m \mid(a x-b x)=(a-b) x, m$ coprime to x means that $m \mid(a-b)$

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

