
Lecture 7 
Congruences mod Primes, Order, Primitive Roots 

Continuation of Proof of Hensel’s Lemma. By lemma, 
j+1)f(a + tpj ) ≡ f(a) + tpj f '(a) (mod p

Now we want to have the right hand side ≡ 0 mod pj+1 . 

f(a)
f(a) + tpj f '(a) ≡ 0 mod pj+1 ↔ tf '(a) + ≡ 0 mod p 

pj 

this has a unique solution   
f(a) 1 

t ≡ − mod p 
pj f '(a)

• 

Direct formula - start with solution a of f(x) ≡ 0 mod p, and we want a solution 
mod p ∗. Set a1 = a. 

j+1)aj+1 = aj − f(aj )f '(a) (mod p

where f '(a) is an integer chosen once at the beginning of the algorithm, which 
only matters mod p. It’s chosen such that f '(a)f '(a) ≡ 1 mod p. Then f(aj ) ≡ 0 
mod pj for j ≥ 1 as long as f '(a)  ≡ 0 mod p. 

Eg. Solve the congruence x2 ≡ −1 mod 125. (f(x) = x2 + 1, f '(x) = 2x). Mod 
5: 22 ≡ −1 mod 5, so set a = 2. f '(a) ≡ 4 mod 5, so can choose f '(a) = −1. 

a1 = 2 (mod 5) 

a2 = a1 − f(a1)f '(a) (mod 25) 

= 2 − (5)(−1) (mod 25) 

= 7 (mod 25) 

a3 = a2 − f(a2)f '(a) (mod 125) 

= 7 − (50)(−1) (mod 125) 

= 57 (mod 125) 

Congruences to prime modulus: Assume that all the coefficients of f(x) = 
n n−1anx + an−1x · · · + a0 are reduced mod p and also that an  ≡ 0 mod p. By 

dividing out by an, can assume that f(x) is monic (ie., highest coefficient is 1). 
We can also assume degree n of f is less than p. If not, can divide f by xp − x to 
get 

pf(x) = g(x)(x − x) + r(x) with deg(r(x)) < p 
pf(a) = g(a)(a − a) + r(a) ≡ r(a) mod p by Fermat 

so roots of f(x) mod p are the same as the roots of r(x) mod p. 
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Theorem 28. A congruence f(x) ≡ 0 mod p of degree n has at most n solutions. 

Proof. (imitates proof that polynomial of degree n has at most n complex roots) 

Induction on n: congruences of degree 0 and 1 have 0 and 1 solutions, trivially. 
Assume that it holds for degrees < n (n ≥ 2) 

If it has no roots, then we’re done. Otherwise, suppose it does have a root 
α. Dividing f(x) by x − α, we get g(x) ∈ Z[x] and a constant r such that 
f(x) = g(x)(x − α)+ r. Now if we plug in α we get f(α) = (α − α)g(α)+ r = r, 
which means that f(α) = r and f(x) = (x − α)g(α) + f(α). 

We know that f(α) ≡ 0 mod p. If β is any other root of f(x) then we plug β into 
the equation to get f(β) = (β − α)g(β) + f(α). Mod p, f(β) ≡ (β − α)g(β) mod 
p, so 0 ≡ (β − α)g(β). We also assume that β  ≡ α, so g(β) ≡ 0 mod p. 

So β is a root of g(x) as a solution of g(x) ≡ 0 mod p. We know that g(x) has 
degree n − 1, so by induction hypothesis g(x) ≡ 0 mod p has at most n − 1 
solutions, which by including α gives f(x) at most n solutions. • 

n −1Corollary 29. If anx + an−1x
n + · · · + a0 ≡ 0 mod p has more than n solutions, 

then all ai ≡ 0 mod p. 

n n−1Theorem 30. Let f(x) = x + an−1x + · · · + a0. Then f(x) ≡ 0 mod p has 
exactly n distinct solutions if and only if f(x) divides xp − p mod p. Ie., there exists 
g(x) ∈ Z[x] such that f(x)g(x) = xp − x mod p as polynomials (all coefficients mod 
p) 

Proof. Suppose f(x) has n solutions. Then n ≤ p because only p possible roots 
mod p (ie., deg(f) ≤ deg(xp − x)). Divide xp − x by f(x) to get 

xp − x = f(x)g(x) + r(x), deg(r) < deg(f) = n 

Now note, if α is a root of f(x) mod p then plug in to get 

αp − α = f(α)g(α) + r(α) 

≡ 0g(α) + r(α) 

≡ r(α) mod p 

so α must be a solution to r(x) ≡ 0 mod p. Since f(x) has distinct roots, we see 
that r(x) ≡ 0 mod p has n distinct solutions. But deg(r) < n. So by corollary 
we must have r(x) ≡ 0 mod p as a polynomial (each coefficient is 0 mod p.) Ie., 
xp − p = f(x)g(x) mod p, and so f(x) divides xp − x. 

Now suppose f(x)|xp − x mod p. Write xp − x ≡ f(x)g(x) mod p, where f(x) 
is a monic of degree n and g(x) is a monic of degree p − n. We want to show 
that f(x) has n distinct solutions. 
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By previous theorem, g(x) has at most p − n roots mod p. If α ∈ 0, 1, . . . p − 1 is 
not a root of g(x) mod p then αp − α ≡ f(α)g(α) mod p, which by Fermat ≡ 0. 
Since g(α)  ≡ 0 mod p, f(α) ≡ 0 mod p. So since there are at least p − (p − n) 
such α, we see that f(x) has at least n distinct roots mod p. By the theorem, f(x) 
has at most n roots mod p ⇒ f(x) has exactly n distinct roots mod p. • 

Corollary 31. If d|p − 1 then xd ≡ 1 mod p has exactly d distinct solutions mod p. 

kd − 1Proof. d|p − 1, so xd−1 − 1|xp−1 − 1 as polynomials. p − 1 = kd, so x = 
(k−1)d(xd − 1)(x · · · + 1). So xd − 1|x(xp−1 − 1) = xp − x. So has d solutions. • 

Corollary 32. Another proof of Wilson’s Theorem 

Proof. Let p be an odd prime. Let f(x) = x(x − 1)(x − 2) . . . (x − p + 1). This has 
deg p and p solutions mod p, so it must divide xp − x mod p. Both polynomials 
are monic of the same degree (p), so must be equal mod p. 

x(x − 1) . . . (x − (p − 1)) ≡ xp − x mod p 

Coefficient of x on the LHS is just (−1)(−2) . . . (−(p − 1)) = (−1)p−1(p − 1)! = 
(p − 1)! since p is odd, and so (p − 1)! ≡ −1 mod p (coefficient on RHS). • 

This tells us much more as well - eg., 1 + 2 + · · · + p − 1 ≡ 0 mod p for p ≥ 3, 
and (1)(2) + (1)(3) + . . . (2)(3) · · · + (p − 1)(p − 2) ≡ 0 mod p for p ≥ 5. 

n n−1If we have a product f(x) = (x − α1) . . . (x − αn) then f(x) = x − σ1x + 
σ x2 

n−2 + . . . (−1)nσn. σi are elementary symmetric polynomials.  
σ1 = αi  
σ2 = αiαj 

i<j 
σk = (all products of k roots αi) 

φ(35) 24Question - We know by Euler that if (n, 35) = 1, then n = n ≡ 1 mod 
35. Can 24 be replaced by something smaller? Ie., what’s the smallest positive 

Ninteger N such that if (n, 35) = 1 then n ≡ 1 mod 35. 

(Definition) Order: If (a, m) = 1 and h is the smallest positive integer such 
that ah ≡ 1 mod m then say h is the order of a mod m. Written as h = ordm(a). 

Lemma 33. Let h = ordm(a). The set of integers k such that ak ≡ 1 mod m is exactly 
the set of multiples of h. 
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rh ≡ (aProof. a h)r ≡ 1r ≡ 1 mod m. Suppose we have k such that ak ≡ 1 mod 
k hq+rm. Want to show h|k. Write k = hq + r where 0 ≤ r < h. 1 ≡ a = a = 

hq r r r ra a ≡ 1a ≡ a mod m, so a ≡ 1 mod m. But r < h. So if r > 0, contradicts 
minimality of h, which means that r = 0, and k is multiple of h. • 

kLemma 34. If h = ordm(a) then ak has order mod m.(k,h) 

Proof. 

kj ≡ 1a mod m 

↔ h|kj 
h k ↔ | j

(h, k) (h, k) 
h ↔ |j

(h, k) 

hSo smallest such positive j = . •(h,k) 

Lemma 35. If a has order h mod m and b has order k mod m, and (h, k) = 1, then ab 
has order hk mod m. 

Proof. We know 

(ab)hk ≡ (a h)k(bk)h 

≡ 1k1h 

≡ 1 mod m 

Conversely suppose that r = ordm(ab). 

(ab)r ≡ 1 mod m 

(ab)rh ≡ 1 mod m 
h)rbrh ≡ 1(a mod m 

brh ≡ 1 mod m 

so k|rh ⇒ k|r (since (k, h) = 1), and similarly h|r. So hk|r, and so hk = 
ordm(ab). • 

(Definition) Primitive Root: If a has order φ(m) mod m, we say that a is a 
primitive root mod m. 

Eg. mod 7: 
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1 has order 1 
2 has order 3 (23 ≡ 1 mod 7) 
3 has order 6 . (φ(7) = 6) 
4 has order 3 
5 has order 6 . (φ(7) = 6) 
6 has order 2 

Lemma 36. Let p be prime and suppose qe||p − 1 for some other prime q. Then there’s 
ean element mod p of order q . 

Assuming Lemma... 
e1 e2 erp − 1 = q q . . . q 1 2 r 

e1 e2Lemma says that ∃ g1 with ordp(g1) = q , g2 with ordp(g2) = q , etc. Set1 2 
e1 e2 erg = g1g2 . . . gr. So by previous lemma above, g has order q q2 . . . q = p − 11 r 

because all qi are coprime in pairs. p − 1 = φ(p), so g is a primitive root mod p. 

q qProof. Consider solutions of x 
e ≡ 1 mod p. Because qe|p − 1, x 

e − 1 has exactly 
eqe roots mod p. If α is any such root, then ordp(α) must divide q . 

So if it’s not equal to qe, it must divide qe−1. Then α would have to be root of 
q e−1x
e−1 − 1 ≡ 0 mod p, which has exactly qe−1 solutions. Since qe − q > 0, 

ethere exists α such that ordp(α) = q . • 
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