Lecture 7

Congruences mod Primes, Order, Primitive Roots

Continuation of Proof of Hensel's Lemma. By lemma,

$$
f\left(a+t p^{j}\right) \equiv f(a)+t p^{j} f^{\prime}(a) \quad\left(\bmod p^{j+1}\right)
$$

Now we want to have the right hand side $\equiv 0 \bmod p^{j+1}$.

$$
f(a)+t p^{j} f^{\prime}(a) \equiv 0 \quad \bmod p^{j+1} \leftrightarrow t f^{\prime}(a)+\frac{f(a)}{p^{j}} \equiv 0 \quad \bmod p
$$

this has a unique solution

$$
t \equiv-\left(\frac{f(a)}{p^{j}} \frac{1}{f^{\prime}(a)}\right) \quad \bmod p
$$

Direct formula - start with solution a of $f(x) \equiv 0 \bmod p$, and we want a solution $\bmod p^{*}$. Set $a_{1}=a$.

$$
a_{j+1}=a_{j}-f\left(a_{j}\right) \overline{f^{\prime}(a)} \quad\left(\bmod p^{j+1}\right)
$$

where $\overline{f^{\prime}(a)}$ is an integer chosen once at the beginning of the algorithm, which only matters $\bmod p$. It's chosen such that $\overline{f^{\prime}(a)} f^{\prime}(a) \equiv 1 \bmod p$. Then $f\left(a_{j}\right) \equiv 0$ $\bmod p^{j}$ for $j \geq 1$ as long as $f^{\prime}(a) \not \equiv 0 \bmod p$.

Eg. Solve the congruence $x^{2} \equiv-1 \bmod 125 .\left(f(x)=x^{2}+1, f^{\prime}(x)=2 x\right) . \operatorname{Mod}$ 5: $2^{2} \equiv-1 \bmod 5$, so set $a=2 . f^{\prime}(a) \equiv 4 \bmod 5$, so can choose $\overline{f^{\prime}(a)}=-1$.

$$
\begin{aligned}
a_{1} & =2 \quad(\bmod 5) \\
a_{2} & =a_{1}-f\left(a_{1}\right) \overline{f^{\prime}(a)} \quad(\bmod 25) \\
& =2-(5)(-1) \quad(\bmod 25) \\
& =7 \quad(\bmod 25) \\
a_{3} & =a_{2}-f\left(a_{2}\right) \overline{f^{\prime}(a)} \quad(\bmod 125) \\
& =7-(50)(-1) \quad(\bmod 125) \\
& =57 \quad(\bmod 125)
\end{aligned}
$$

Congruences to prime modulus: Assume that all the coefficients of $f(x)=$ $a_{n} x^{n}+a_{n-1} x^{n-1} \cdots+a_{0}$ are reduced $\bmod p$ and also that $a_{n} \not \equiv 0 \bmod p$. By dividing out by a_{n}, can assume that $f(x)$ is monic (ie., highest coefficient is 1). We can also assume degree n of f is less than p. If not, can divide f by $x^{p}-x$ to get

$$
\begin{aligned}
& f(x)=g(x)\left(x^{p}-x\right)+r(x) \text { with } \operatorname{deg}(r(x))<p \\
& f(a)=g(a)\left(a^{p}-a\right)+r(a) \equiv r(a) \quad \bmod p \text { by Fermat }
\end{aligned}
$$

so roots of $f(x) \bmod p$ are the same as the roots of $r(x) \bmod p$.

Theorem 28. A congruence $f(x) \equiv 0$ mod p of degree n has at most n solutions.

Proof. (imitates proof that polynomial of degree n has at most n complex roots)
Induction on n : congruences of degree 0 and 1 have 0 and 1 solutions, trivially. Assume that it holds for degrees $<n(n \geq 2)$

If it has no roots, then we're done. Otherwise, suppose it does have a root α. Dividing $f(x)$ by $x-\alpha$, we get $g(x) \in \mathbb{Z}[x]$ and a constant r such that $f(x)=g(x)(x-\alpha)+r$. Now if we plug in α we get $f(\alpha)=(\alpha-\alpha) g(\alpha)+r=r$, which means that $f(\alpha)=r$ and $f(x)=(x-\alpha) g(\alpha)+f(\alpha)$.

We know that $f(\alpha) \equiv 0 \bmod p$. If β is any other root of $f(x)$ then we plug β into the equation to get $f(\beta)=(\beta-\alpha) g(\beta)+f(\alpha) . \operatorname{Mod} p, f(\beta) \equiv(\beta-\alpha) g(\beta) \bmod$ p, so $0 \equiv(\beta-\alpha) g(\beta)$. We also assume that $\beta \not \equiv \alpha$, so $g(\beta) \equiv 0 \bmod p$.

So β is a root of $g(x)$ as a solution of $g(x) \equiv 0 \bmod p$. We know that $g(x)$ has degree $n-1$, so by induction hypothesis $g(x) \equiv 0 \bmod p$ has at most $n-1$ solutions, which by including α gives $f(x)$ at most n solutions.

Corollary 29. If $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \equiv 0 \bmod p$ has more than n solutions, then all $a_{i} \equiv 0 \bmod p$.

Theorem 30. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. Then $f(x) \equiv 0 \bmod p$ has exactly n distinct solutions if and only if $f(x)$ divides $x^{p}-p \bmod p$. Ie., there exists $g(x) \in \mathbb{Z}[x]$ such that $f(x) g(x)=x^{p}-x \bmod p$ as polynomials (all coefficients mod p)

Proof. Suppose $f(x)$ has n solutions. Then $n \leq p$ because only p possible roots $\bmod p\left(\right.$ ie., $\operatorname{deg}(f) \leq \operatorname{deg}\left(x^{p}-x\right)$). Divide $x^{p}-x$ by $f(x)$ to get

$$
x^{p}-x=f(x) g(x)+r(x), \quad \operatorname{deg}(r)<\operatorname{deg}(f)=n
$$

Now note, if α is a root of $f(x) \bmod p$ then plug in to get

$$
\begin{aligned}
\alpha^{p}-\alpha & =f(\alpha) g(\alpha)+r(\alpha) \\
& \equiv 0 g(\alpha)+r(\alpha) \\
& \equiv r(\alpha) \quad \bmod p
\end{aligned}
$$

so α must be a solution to $r(x) \equiv 0 \bmod p$. Since $f(x)$ has distinct roots, we see that $r(x) \equiv 0 \bmod p$ has n distinct solutions. But $\operatorname{deg}(r)<n$. So by corollary we must have $r(x) \equiv 0 \bmod p$ as a polynomial (each coefficient is $0 \bmod p$.) Ie., $x^{p}-p=f(x) g(x) \bmod p$, and so $f(x)$ divides $x^{p}-x$.

Now suppose $f(x) \mid x^{p}-x \bmod p$. Write $x^{p}-x \equiv f(x) g(x) \bmod p$, where $f(x)$ is a monic of degree n and $g(x)$ is a monic of degree $p-n$. We want to show that $f(x)$ has n distinct solutions.

By previous theorem, $g(x)$ has at most $p-n$ roots $\bmod p$. If $\alpha \in 0,1, \ldots p-1$ is not a root of $g(x) \bmod p$ then $\alpha^{p}-\alpha \equiv f(\alpha) g(\alpha) \bmod p$, which by Fermat $\equiv 0$. Since $g(\alpha) \not \equiv 0 \bmod p, f(\alpha) \equiv 0 \bmod p$. So since there are at least $p-(p-n)$ such α, we see that $f(x)$ has at least n distinct roots $\bmod p$. By the theorem, $f(x)$ has at most n roots $\bmod p \Rightarrow f(x)$ has exactly n distinct roots $\bmod p$.

Corollary 31. If $d \mid p-1$ then $x^{d} \equiv 1 \bmod p$ has exactly distinct solutions mod p.

Proof. $d \mid p-1$, so $x^{d-1}-1 \mid x^{p-1}-1$ as polynomials. $p-1=k d$, so $x^{k d}-1=$ $\left(x^{d}-1\right)\left(x^{(k-1) d} \cdots+1\right)$. So $x^{d}-1 \mid x\left(x^{p-1}-1\right)=x^{p}-x$. So has d solutions.

Corollary 32. Another proof of Wilson's Theorem

Proof. Let p be an odd prime. Let $f(x)=x(x-1)(x-2) \ldots(x-p+1)$. This has $\operatorname{deg} p$ and p solutions $\bmod p$, so it must divide $x^{p}-x \bmod p$. Both polynomials are monic of the same degree (p), so must be equal $\bmod p$.

$$
x(x-1) \ldots(x-(p-1)) \equiv x^{p}-x \quad \bmod p
$$

Coefficient of x on the LHS is just $(-1)(-2) \ldots(-(p-1))=(-1)^{p-1}(p-1)!=$ $(p-1)$! since p is odd, and so $(p-1)!\equiv-1 \bmod p($ coefficient on RHS $)$.

This tells us much more as well - eg., $1+2+\cdots+p-1 \equiv 0 \bmod p$ for $p \geq 3$, and $(1)(2)+(1)(3)+\ldots(2)(3) \cdots+(p-1)(p-2) \equiv 0 \bmod p$ for $p \geq 5$.

If we have a product $f(x)=\left(x-\alpha_{1}\right) \ldots\left(x-\alpha_{n}\right)$ then $f(x)=x^{n}-\sigma_{1} x^{n-1}+$ $\sigma_{2} x^{n-2}+\ldots(-1)^{n} \sigma_{n} . \sigma_{i}$ are elementary symmetric polynomials.

$$
\begin{aligned}
\sigma_{1} & =\sum \alpha_{i} \\
\sigma_{2} & =\sum_{i<j} \alpha_{i} \alpha_{j} \\
\sigma_{k} & =\sum\left(\text { all products of } k \text { roots } \alpha_{i}\right)
\end{aligned}
$$

Question - We know by Euler that if $(n, 35)=1$, then $n^{\phi(35)}=n^{24} \equiv 1 \bmod$ 35. Can 24 be replaced by something smaller? Ie., what's the smallest positive integer N such that if $(n, 35)=1$ then $n^{N} \equiv 1 \bmod 35$.
(Definition) Order: If $(a, m)=1$ and h is the smallest positive integer such that $a^{h} \equiv 1 \bmod m$ then say h is the order of $a \bmod m$. Written as $h=\operatorname{ord}_{m}(a)$.

Lemma 33. Let $h=\operatorname{ord}_{m}(a)$. The set of integers k such that $a^{k} \equiv 1$ mod m is exactly the set of multiples of h.

Proof. $a^{r h} \equiv\left(a^{h}\right)^{r} \equiv 1^{r} \equiv 1 \bmod m$. Suppose we have k such that $a^{k} \equiv 1 \bmod$ m. Want to show $h \mid k$. Write $k=h q+r$ where $0 \leq r<h .1 \equiv a^{k}=a^{h q+r}=$ $a^{h q} a^{r} \equiv 1 a^{r} \equiv a^{r} \bmod m$, so $a^{r} \equiv 1 \bmod m$. But $r<h$. So if $r>0$, contradicts minimality of h, which means that $r=0$, and k is multiple of h.

Lemma 34. If $h=\operatorname{ord}_{m}(a)$ then a^{k} has order $\frac{k}{(k, h)} \bmod m$.

Proof.

$$
\begin{aligned}
a^{k j} & \equiv 1 \bmod m \\
& \leftrightarrow h \mid k j \\
& \left.\leftrightarrow \frac{h}{(h, k)} \right\rvert\, \frac{k}{(h, k)} j \\
& \left.\leftrightarrow \frac{h}{(h, k)} \right\rvert\, j
\end{aligned}
$$

So smallest such positive $j=\frac{h}{(h, k)}$.

Lemma 35. If a has order h mod m and b has order $k \bmod m$, and $(h, k)=1$, then $a b$ has order hk mod m.

Proof. We know

$$
\begin{aligned}
(a b)^{h k} & \equiv\left(a^{h}\right)^{k}\left(b^{k}\right)^{h} \\
& \equiv 1^{k} 1^{h} \\
& \equiv 1 \quad \bmod m
\end{aligned}
$$

Conversely suppose that $r=\operatorname{ord}_{m}(a b)$.

$$
\begin{aligned}
(a b)^{r} & \equiv 1 & & \bmod m \\
(a b)^{r h} & \equiv 1 & & \bmod m \\
\left(a^{h}\right)^{r} b^{r h} & \equiv 1 & & \bmod m \\
b^{r h} & \equiv 1 & & \bmod m
\end{aligned}
$$

so $k|r h \Rightarrow k| r$ (since $(k, h)=1$), and similarly $h \mid r$. So $h k \mid r$, and so $h k=$ $\operatorname{ord}_{m}(a b)$.
(Definition) Primitive Root: If a has order $\phi(m) \bmod m$, we say that a is a primitive root $\bmod m$.

Eg. $\bmod 7$:

```
1 has order 1
2 has order 3 (2 \equiv 1 mod 7)
3 has order 6 \checkmark \checkmark (\phi(7)=6)
4 has order 3
5 has order 6
6 has order 2
```

Lemma 36. Let p be prime and suppose $q^{e} \| p-1$ for some other prime q. Then there's an element mod p of order q^{e}.

Assuming Lemma...

$$
p-1=q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}
$$

Lemma says that $\exists g_{1}$ with $\operatorname{ord}_{p}\left(g_{1}\right)=q_{1}^{e_{1}}, g_{2}$ with $\operatorname{ord}_{p}\left(g_{2}\right)=q_{2}^{e_{2}}$, etc. Set $g=g_{1} g_{2} \ldots g_{r}$. So by previous lemma above, g has order $q_{1}^{e_{1}} q_{2}^{e_{2}} \ldots q_{r}^{e_{r}}=p-1$ because all q_{i} are coprime in pairs. $p-1=\phi(p)$, so g is a primitive root $\bmod p$.

Proof. Consider solutions of $x^{q^{e}} \equiv 1 \bmod p$. Because $q^{e} \mid p-1, x^{q^{e}}-1$ has exactly q^{e} roots $\bmod p$. If α is any such root, then $\operatorname{ord}_{p}(\alpha)$ must divide q^{e}.

So if it's not equal to q^{e}, it must divide q^{e-1}. Then α would have to be root of $x^{q^{e-1}}-1 \equiv 0 \bmod p$, which has exactly q^{e-1} solutions. Since $q^{e}-q^{e-1}>0$, there exists α such that $\operatorname{ord}_{p}(\alpha)=q^{e}$.

MIT OpenCourseWare
http://ocw.mit.edu

18.781 Theory of Numbers

Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

